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PRODUCTS OF RADON MEASURES: 
A COUNTER-EXAMPLE 

BY 

D. H. FREMLIN 

ABSTRACT. I show that if X is the hyperstonian space of Lebes-
gue measure on [0,1], then there are open sets in X x X which are 
not measurable for the simple product outer measure. This answers 
a question of M. C. Godfrey and M. Sion. 

1. Products of measure spaces. If (X, 2, /x) and (Y, T, v) are two measure 
spaces of finite magnitude (i.e. JLLX<OO5 VY<&>), we may define an outer 
measure <p on X x Y by 

<p(C) = inf| X *x£n- vFn:Ene%&FneTV neN, C ç U EnxFn 
I n e N neN 

if A«p is the measure defined from <p by Carathéodory's construction, A<p(FxF) 
exists and is equal to JLLE • vF for every Ee 2, FeT. ([8], §29. A<p is the 
completion of the product measure defined by [7] or [1] on the cr-algebra of 
sets generated by {ExF.Ee£, Fe T}). On the other hand, if (X, £, £, JLL) and 
( Y, ©, T, i>) are compact Radon measure spaces, we have a linear functional 6 
on (C(XxY) defined by 

0(w) = J *>(du) j w(t, u)ix(dt) V w e C(Xx Y), 

and S defines a Radon measure AR on Xx Y (See [2], chap. Ill, §4, no. 1.) It is 
well known that XR(ExF) exists and is equal to fiE • vF for every Ee% and 
F G T; consequently, if we follow the convention that Radon measures are 
taken to be complete (see [5], §73), XR is an extension of Â . In many cases 
(e.g. if one of (X, £) and ( Y, ©) is compact and metrizable) AR and Â  coincide. 
In [6] the question is raised, whether they coincide in all cases; I show below 
that they do not. 

2. Hyperstonian spaces. For my example, I need a compact Radon meas­
ure space which is extremally disconnected (i.e. the closure of an open set is 
open), diffuse (i.e. without atoms), of non-zero magnitude, and which has the 
property that G and G have the same measure for every open set G. These 
properties are possessed by any "hyperstonian" space derived from a diffuse 
probability space by the method of [3], Theorem 1 (p. 169). 
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3. A result of Erdos & Oxtoby. I need the following fact, proved in the 
general case in [4]. Let (X, 2 , /x) and (Y, T, v) be diffuse measure spaces of 
finite magnitude, and e > 0 . Then there exist sequences ( I n ) n e N in 2 and (/n)neN 
in T such that (i) £ n e N MXI - vJn<e (ii) if F G 2 , F G T are such that JLLE • vF>09 

then there is an n e N such that /Lt(E fl In) • i/(Fn J n ) > 0 ; i.e. 

À^Ho H (£ x F)) > 0 , where H0 = U » € N I » x Jn. 

(R. O. Davies has given the following much easier proof of this result. We 
may suppose, without loss of generality, that JLLX= VY=1. Take (e n) n 6 N to be 
any sequence of positive numbers, < 1 , such that £ n e N en = °°, ZneN e ^ £• Take 
(^n)neN? (Xt)neN to be independent sequences of measurable sets such that 
nln = vJn = en for every n. Of course £ n e N ^In • *Jn < e. if F G 2 , F G T are such 
that jLt(Eni n ) - i / (Ff l / n ) = 0 for every M G N , set P = {n:/x(Ffl/n) = 0}, Q = 
{n:i>(FDJn) = 0}. Then P U Q = N, so one of ^n^psn, ZneQ^n is infinite; 
suppose the former. We have E essentially included in X\In for each neP, so 
that 

^E<pt(nx\/n)=ria-en)=o. 
n e P n e P 

Similarly, if X n e Q £n = °°, then vF=0.) 

4. A lemma. The following lemma is in some ways the core of my argument. 

Let (X, 2 , JJL) be a measure space of finite magnitude, and X0 a second-
countable topology on X (not necessarily Hausdorff) such that î £ 0 ^ 2 . Let 
H Q Ç X X X be a %0x%0-open set such that A < p (H o n(FxF) )>0 whenever E 
and F are non-negligible measurable subsets of X (Here Â  is the "classical" 
product measure defined in §1, and H0 is k^-measurable because %0 is 
second-countable, so that H0 must be a countable union of products of open sets.) 
Then, for A^-almost all (t, u)eXxX, there exist E,FeX0 such that F x Fç : H 0 

and teÉ, ueF, the closures being taken for X0. 

Proof. Let ( Wn)n € N be a sequence such that { Wn : n e N} is a base for S£0- For 
each J I G N , set 

Gn = {t:3ue Wn,(t, u)eH0}. 

Because H0 is £ 0 x£o-open, G n G £ 0 e 2 and Dn = X\GneX. As DnxWn 

does not meet H0, A<p(Dn x Wn) = (xDn • vWn = 0, by the hypothesis on H0. Set 
C1 = (XxX)\{JneN(DnxWn); then \(p((XxX)\C1) = 0. But d is precisely 
{(t, u):iov every ^-neighbourhood U of u, 3sG U, (t,s)eH0}. Similarly, if 
C2 = {(t,u):for every ^-neighbourhood U of t, 3s eU, (s,u)eH0}, then 
A<p((X x X) \ C2) = 0. Set C = Ci fl C2; then C is A^-almost the whole of X x X. 
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Let (t, u) be any point of G Let <U„)„ €N and (Vn)nGN be non-increasing 
sequences such that {Un: n eN} and {Vn: n eN} are bases of neighbourhoods of 
t, u respectively. Choose strictly increasing sequences (m k} k e N and (n k } k e N in 
N, and sequences (Ek}kGN , (Fk)k e N in 5£0 as follows. Set m0 = 0. Given mk, 
observe that, as (t, u)eC2, Umkx{u} meets H0; choose nk>mk and a non­
empty open set Ek ç Umic such that Ek x Vnk ç H0. Now (f, w) G C I , SO {t} x Vnk 

meets H0, and we can find a non-empty open set F kçV n k and an m k +i^n k 

such that [ /m k + 1xFkçH0 . Continue. 

Now, for / < k, 

E, x Fk ç Ey x Vnk ç E, x Vny ç H0, 

while for / > k 

EyXFfcÇl/^xFkSl/^^xFfcCHo. 

So if E = UJ6NJS,- and F = U k e N ^ , then ExF^H0. Since £ n [ / m k 2 E ^ 0 
and Ffl V n k 2 F k ^ 0 for each k e N , f e Ë and u e F . AS (f, u) is an arbitrary 
point of C, this proves the lemma. 

5. The example. Let (X, SE, S, JLL) be a compact Radon measure space of the 
kind described in §2; e.g. the hyperstonian space of Lebesgue measure on 
[0,1]. Let (In)neN and (JW)M6N be sequences in 2 such that £ n e N jxln • yJn < 
(/LLX)2 but, for every pair E, F of non-negligible members of 2 , there is an 
n e N such that jLt(Enin) • /x (Ff l / n )>0 (§3 above); because JLL is outer regu­
lar, we may (enlarging In and Jn slightly if necessary) take them to be open. Set 
H0 = [JneNInxJn> Then H0 is open and is measurable for the classical product 
measure A<p. 

Let 

H = U { Ë X F : E , F < E £ , E X F Ç H 0 } . 

Then H is open i n X x X (because X is extremally disconnected),but H is not 
A<p-measurable. 

For suppose, if possible, that A<P(H) exists. In this case, A<p(H) = AR(H), 
where AR is the product Radon measure on X x X . Because AR is a Radon 
measure, 

AR(H) = supJAR( LI Et x F* : E 0 , . . . , En, F 0 , . . . , F n e £ , E* x E^HoVi < nV 

But, given open sets E 0 , . . . , En, F 0 , . . . , Fn such that E, X F J Ç H O for each 
i < n, note that ^Et = iiEh ixFt = [xFi for each i < n. So 

AR((E< x Ft)\H0) < AR((Ef x F^E, x F,)) = OVi < n, 
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and 

X R ( u Ê i x F i ) < X R H o = X<PH0. 

So 

A<p(H) = AR(H)<A<pHo<( jaX)2. 

So we have <pH<(juX)2, where <p is the product outer measure, and there 
exist sequences (F n ) n e N and (Fn)n e N in X such that H^\Jne^EnxFn and 
XneN \xEn • tiFn<(iiX)2; in the same way as In, Jn above could be taken to be 
open, we may suppose that F„ and Fn are open for each n e N. 

Let So be the topology on X generated by the countable set 

{In:neN}U{Jn:neN}U{X\Én:neN}U{X\Fn:neN}. 

Then SE0 is second-countable and S 0 ^ S ç 2 . As In, Jn G S 0 for each n e N, H 0 

is open for X0x^0. 
At the same time, 

C = ( X x X ) \ U (ËnxFn) 
neN 

is not A<p-negligible, because £ n e N ^ E n • ju,Fn=£neN j^Fn * /xFn<(juX)2, using 
the fact that X is hyperstonian. By the lemma in §4, there exists a point 
(t, u)eC and F, Fe$E0 such that F x F ç H 0 and (f, u)eÉxF, where F and F 
are the S£0-closures of F, F respectively. Now if F and F are the ^-closures of 
E and F, we have ËxF^H^ UneNFn xF n . As F and F are ^-compact, while 
F n and Fn are 5£-open for every n e N , there is some n e N such that 

F x F ç F x F ç (J ËiXFi=B say. 

B is S£0
 x !£o-clqsed, so ÉxF^B and (f, u)eB. But (t, w) was chosen to lie in 

C = (XxX)\UieN(FiXFi). This is the required contradiction. 

REMARK. What I have really shown above is that <pH=(fjiX)2, while 
<p((XxX)\H) = (jLiX)2-A<pHo>0. 

6. Completion regular measures. R. A. Johnson has pointed out that the 
example above also settles a question raised in [1], §70, Exercise 8. Following 
[1] or [7], let us say that a Radon measure yu on a compact Hausdorff space X 
is completion regular if for every Borel set E ç X there exist Baire sets G, H 
such that G g F c H and /LL(H\ G) = 0. It is easy to see that this is equivalent to 
saying: for every open set G ç X , there is a Baire set H such that H^G and 
IxH = /xG. Compact hyperstonian spaces are always completion regular, since if 
G is open, then G is a Baire set, and JLLG = /LIG. However, the product Radon 
measure of two hyperstonian spaces is not in general completion regular, for it 
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is easy to see that every Baire set of the product is in the or-algebra generated 
by measurable rectangles, and is therefore measurable for the classical product 
measure; so that a completion regular product Radon measure must coincide 
with the classical product measure, which in the example above is not the case. 
Thus we have here two completion regular Radon measures with a Radon 
product measure which is not completion regular. 
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