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1. Introduction

Generalized integers are defined in [2] as follows: Suppose there is given a
finite or infinite sequence {p} of real numbers which are called generalized primes
such that 1 < pt < p2 < • • •• Form the set {/} of all possibles-products, i.e. the
products of the form p^pl2 • • •, where at, oc2, • • • are integers S 0 of which all
but a finite number are 0. Call these numbers generalized integers and suppose
that no two generalized integers are equal if their a's are different. Then arrange
{/} in an increasing sequence 1 = lt < l2 < l3 < • • • < / „ < • • • .

Let x be any real number ^ 1 and let [x] denote the number of generalized
integers ^ x. We assume throughout the paper that

(1.1) [x] = x+0(x% where 0 ^ a < 1.

This assumption is fundamental and under this assumption it has been shown by
Horadam ([4], theorem 1) that the number of generalized primes is infinite.
Generalized primes were first introduced by Beurling [1 ], who proved using an
assumption equivalent to (1.1) that

A 1).(1.2) f(s) = ft ( - M , where {(s) = £ A , (s >

A generalized integer d is called a divisor of /„ if there exists a 8 e {/} such
that db = /„. Let (lr, ls) and [lr, ls] respectively denote the greatest common divisor
and the least common multiple of lr and /,. A divisor d of /„ is called unitary if
db = /„ and (d, b) = 1. Let t*(/n) and t(ln) denote respectively the number of
unitary divisors of /„ and number of ordered pairs of generalized integers lr and /s
with [lr, /s] = /„. It is clear that r*(/n) = 2r, where r is the number of distinct
generalized prime divisors of /„. Also, t(ln) = ^ I ^ T * ^ ) as indicated in [6], so that
*(/„) = T(/*), where t(/n) is the number of divisors of /„. Let 0(x) denote the number
of ordered pairs of generalized integers with l.c.m. ^ x. Clearly 6(x) = Xing* *('»)•
It has been recently shown by Horadam [6] using an estimate for X'n§*T*(^)
obtained by her in [5] that
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K) 2C(2) U ( 2 ) C2(2)/ W

where yx is the constant given in (2.1) below and ('(s) is the derivative of
The object of the present paper is to give a more exact estimation of 6(x)

(see theorem 3.2 below) with an error term equal to 0(x(2 + ")/3 log x).

2. Auxiliary results

The following elementary estimates given by Horadam in [3] and [6] are
needed in our present discussion. These estimates can be proved by using Abel's
transformation as described in [3] and (1.1).

(2.1) £ } = lo

where y1 is a constant.

(2.2) £ ± = O(X
l-<

(2-4) 1 ^ =

(2-5) Z ^ - = O

(2.6) X 1 ^ = i l g 1 + ( g ) ,

where d1 is a constant.
Further, we need the following:

LEMMA 2.1. ([3], lemma2.2).///(/_) = Yjii=lng(d)h(8)andG(x) = £,„£,»(/.),
4)» then for all xlfx2 satisfying xlXz = x,

Z /(/-) = I 9(QH (~) + Z HOG (j) -G(Xl)H(X2).

LEMMA 2.2.

(2.7) T ( X ) = ^ T ( / , ) =

PROOF. Taking g(ln) = h(ln) = 1, Xl = x2 = V* m lemma 2.1, we get (2.7)
by making use of (1.1), (2.1) and (2.2).
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LEMMA 2.3.

(2.8) X — = il°g2 x + 2y1logx + yl-2S1+O(x("-i)l2 logx).

PROOF. Taking g(ln) = h(ln) = l//n, Xj = x2 = V* is lemma 2.1, we get
(2.8) by making use of (2.1), (2.2) and (2.6).

LEMMA 2.4. If z3(ln) denotes the number of ordered triads {lr,ls,lt) of
generalized integers such that lr ls I, = ln, then

(2.9) X r3(/n) = ^ log2x + ( 3 y 1 - l ) x l o g x + ( 3 ^ - 3 7 l - 3 5 1 + l)x

+ O(x(2+">/3 logx).

PROOF. We have T3( / . ) = £ , , . , , = ,,, = £ « = 1IIT(«Q. Taking g(ln) = T(/B),

n) = 1, x t = x*, x2 = x* in lemma 2.1 we get by lemma 2.2, (2.1) and (1.1),

- {x*(| log

x I =̂> +0

- x ( f log x + 2y! - l ) + O(x(2+a) /3 log x).

We have by (2.2) and (2.1),

E H'n) _ y y 1 _ y 1 = V _ V

'nsx* '„ in&xi d»=indb* ds^xid5x
 dzxid* S

1 - 1
1 =0

= O(x( 2-2 a ) / 3 logx).

Also, by (2.2)

Y 1 = n(x(l ~"

Hence by lemma 2.3 and (2.6),
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r-±logx + y2-2d1+O(x(x 1 ) / 3 logx)
3

+ x(log x + 2yx —1){^ log

— x{^(y)2 log2 x + ^j +O(x(a~1) /3 log x)}

- x ( | l o g x + 2y1-l) + O(x(2+x)/3 logx)

g

Hence lemma 2.4 follows.

LEMMA 2.5. If #(/„) and h(ln) are multiplicative functions, then

is also multiplicative.

PROOF. This can be proved exactly in the same way as the corresponding
result for natural numbers proved in ([7], lemma 2.4 for k = 2).

3. Asymptotic formula for 0(x)

Let n(ln) be the Mobius function for generalized integers defined by Horadam
[2] as follows: y.{ln) = 0 if /„ has a square factor; fi(ln) = (—I/, where r is the
number of distinct generalized prime factors of /„ and /„ has no square factor;
^(1) = 1. It is clear that fi(ln) is multiplicative.

LEMMA 3.1. ([3], (2.1)). If s > 1,

(3.i) £MO = _L.
»=i ls

n C(s)

LEMMA 3.2. Ifs > 1,

(3-2)

where rj'(s) is the derivative oft](s) =

PROOF. Since the series in (3.2) is uniformly convergent for s ^ 1+e > 1,
we obtain (3.2) by term-wise differentiation of the series in (3.1) with respect to s.

LEMMA 3.3. Ifs > 1,

where rj"(s) is the second derivative of rf(s).
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PROOF. This follows by term-wise differentiation of the series in (3.2).
We now prove the following:

THEOREM 3.1.

PROOF. Since n{ln) is multiplicative and t3(/n) = ^^(d) is multiplicative,
it follows by lemma 2.5 that the function on the right side of the theorem is multi-
plicative. Also, /(/„) = T( / 2 ) is multiplicative. Hence, it is enough, if we prove the
theorem for /„ = p", where/? is a generalized prime and this can be done by making
use of

v) = 2v+l .

THEOREM 3.2.

+ O(x( 2 + a ) / 3 logx),

where yt and (5X are constants given in (2.1) and (2.6), r\'{2) and r\"{2) are the
values of the first and second derivatives of n{s) = 1/C(s)ats = 2.

PROOF. We have by theorem 3.1 and lemma 2.4,

<K*) = E KQ =

= E

-£ log2 x + (3Vl - l ) x log x + (3yi-3yi-351
2

+ 2 x 1

https://doi.org/10.1017/S1446788700009149 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009149


416 D. Suryanarayana and V. Siva Rama Prasad [6]

Hence, by lemmas 3.1, 3.2, 3.3 for J = 2 and (2.3), (2.4), (2.5), we have

6(x) = j | iog 2

+ 2x \n"(2) + 0 P~A\ +O(x(2+*>/3 logx)

x log2 x4
+ O(x(2+")/3logx).

Thus theorem 3.2 is proved.
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