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1. Introduction

Generalized integers are defined in [2] as follows: Suppose there is given a
finite or infinite sequence {p} of real numbers which are called generalized primes
such that | < p, < p, < ---. Form the set {/} of all possible p-products, i.e. the
products of the form p{'p3* - - -, where «,, «,, - - - are integers = O of which all
but a finite number are 0. Call these numbers generalized integers and suppose
that no two generalized integers are equal if their o’s are different. Then arrange
{1} in an increasing sequence | =/, <, <ly <--- <, <---.

Let x be any real number = 1 and let [x] denote the number of generalized
integers < x. We assume throughout the paper that

(1.1) [x] = x+0(x*), where 0 < « < 1.

This assumption is fundamental and under this assumption it has been shown by
Horadam ([4], theorem 1) that the number of generalized primes is infinite.
Generalized primes were first introduced by Beurling [1], who proved using an
assumption equivalent to (1.1) that

9

(12) () =11 ( ! ) where {(s) = 3 11 (s > 1).

r=1 l—p,.— n=1

A generalized integer d is called a divisor of /, if there exists a é € {/} such
that do = 1,. Let (/,, I;) and [/,, /] respectively denote the greatest common divisor
and the least common multiple of /, and /. A divisor d of /, is called unitary if
dé =1, and (d, 8) = 1. Let t*(/,) and #(/,) denote respectively the number of
unitary divisors of /, and number of ordered pairs of generalized integers /, and /;
with [, ] = I,. It is clear that t*(/,) = 2", where r is the number of distinct
generalized prime divisors of /,. Also, #(l,) =Y 4, 7*(d) as indicated in [6], so that
t(1,) = ©(I%), where 7(/,) is the number of divisors of ,. Let §(x) denote the number
of ordered pairs of generalized integers with L.e.m. < x. Clearly 0(x) = Y ; <. 2(,)-
It has been recently shown by Horadam [6] using an estimate for Y, .. t*(/,)
obtained by her in [5] that

411

https://doi.org/10.1017/51446788700009149 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700009149

412 D. Suryanarayana and V. Siva Rama Prasad [2]

. =xlogzx 3y, -1 27'(2) + log % +Ox
@3 0 -5+ o i) ¥ B0

where 7, is the constant given in (2.1) below and {'(s) is the derivative of {(s) .
The object of the present paper is to give a more exact estimation of 6(x)
(see theorem 3.2 below) with an error term equal to 0(x* /3 Jog x).

2. Auxiliary results

The following elementary estimates given by Horadam in [3] and [6] are
needed in our present discussion. These estimates can be proved by using Abel’s
transformation as described in [3] and (1.1).

1 -
2.1 Y — =logx+y, +0(x*""),
Insx 4,
where y, is a constant.

1

(2.2) l; %= o(x'"%),ifp <1
1 1
2.3 - =0—
( ) l,,gx 13 ( X )
logl, (log x)
2.4 =0
( ) l,.Zx li X
log? 1, log® x
@9 2o o)
(2.6) ¥ lolg b_y log® x+6,+0(x*"" log x),
h,<x

where d, is a constant.
Further, we need the following:

LemMa 2.1, ([3), lemma 2.2). If f(1,) = Y 45=1,9(d)h(0) and G(x) = Y < 9(l,)
H(x) = Y, <xh(l,), then for all x, x, satisfying x,x, = x,

ZJ0) =5 o0H (¥) + T b6 (¥) ~6emnc)

InSxy InSxy
LEmMMA 2.2.

@.7) T(x) = ¥ ©(l)) = x(log x +2r; = 1)+-0(x* *72).

Insx

Proor. Taking g(I,) = h(l,) = 1, x; = x, = /x in lemma 2.1, we get (2.7)
by making use of (1.1), (2.1) and (2.2).
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Lemma 2.3.

(2.8) Y T(ll) 1 log? x+2y, log x+77 —25, +O(x“*~ /% log x).

Insx n

Proor. Taking g(l,) = h(l,) = 1/I,, x, = X, = /x is lemma 2.1, we get
(2.8) by making use of (2.1), (2.2) and (2.6).

LemMA 2.4, If t5(l,) denotes the number of ordered triads (I,,1,1) of
generalized integers such that 11l = 1, then

(2.9) Z 3(l,) = = log x+(3y; —1)x log x+(3y? — 3y, — 38, + 1)x
+0(x?*9 1og x).
PrOOF. We have t3(],) =3, , 1 =1, = das=1,7(d). Taking g(l) = t(1,),
h(l,) = 1, x; = x¥, x, = x* in lemma 2.1 we get by lemma 2.2, (2.1) and (1.1),

S o) = 3 () [1—] 3 T(,—) ~TEAx]

1,<x InSx l,<x¥
(1+a)/2
X X X
= (1 + { (lo - +2 —1) +0(———)}
AL { ( )} 2\ /08y, o o
—{x*G log x+2y, — 1)+ O(x" **P)}{x* + O(x*/*)}

=xy (%) +0 (x‘ > T(ll )) +x(log x+2y, —1) Z -

l,,gx* n l,.<x§ n l,.<x’3‘ n
log l,l
_ (1+¢z)/2
x Z Z l(1+a)/2
ln§x% n l,.Sx‘}

—x(% log x+2y, — 1)+ 0(x**9/3 Jog x).

We have by (2.2) and (2.1),

yW_y y L_vy

l,sx? I 1,.§x‘3‘da=1,.daba d.s<x?rda5a ds:c‘}dakx*/d‘sa

“o(Z (@) ) =o k)

= O(x'* 7293 1og x).

1 1 1

Also, by (2.2)

1
) J(T+a)2

I,,gx% n

= O(x"*~/%),
Hence by lemma 2.3 and (2.6),
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Z 3(l,) = x {%( ) log? x+ -t y‘ log x+y;—28,+0(x*~ V" log x);

+x(log x+2y, — 1){% log x+7y, +0(x*~1?)}
—x{3(3)? log® x+8, +0(x“~ "’ log x)}
—x(% log x+2y, —1)+0(x2*9/3 log x)
= glogz x+(3y;. —1)x log x+(3y} — 3y, — 38, + 1)x +O(x**9" log x).

Hence lemma 2.4 follows.

LemMma 2.5. If g(1,) and h(l,) are multiplicative functions, then

l
(1) = dh =
1) = 3 o ()
is also multiplicative.

ProoF. This can be proved exactly in the same way as the corresponding
result for natural numbers proved in ([7], lemma 2.4 for k = 2).

3. Asymptotic formula for 8(x)

Let p(I,) be the Mobius function for generalized integers defined by Horadam
[2] as follows: u(l,) = O if I, has a square factor; u(l,) = (=1, where r is the
number of distinct generalized prime factors of /, and /, has no square factor;
p(1) = 1.1t is clear that u(/,) is multiplicative.

Lemma 3.1. ([3], 2.1)). Ifs > 1,

o H(l) _
31 .2‘1 I C(s)
LEMMA 3.2. Ifs > 1,

(3.2) :ﬁ #(h) log Iy ) logh _ _y(s),

where n'(s) is the derivative of n(s) = l/C(s).

PRroOF. Since the series in (3.2) is uniformly convergent for s = 1+¢ > 1,
we obtain (3.2) by term-wise differentiation of the series in (3.1) with respect to s.

Lemma 3.3. Ifs > 1,
© lo L,
(33) 5 gl _ i,

where 1''(s) is the second derivative of 17(s).
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Proor. This follows by term-wise differentiation of the series in (3.2).

We now prove the following:

THEOREM 3.1.
l
tl) = d 2.
() = 3 udres (32)

PROOF. Since p(/,) is multiplicative and t3(/,) = Y 4, 7(d) is multiplicative,
it follows by lemma 2.5 that the function on the right side of the theorem is multi-
plicative. Also, #(l,) = t(/?) is multiplicative. Hence, it is enough, if we prove the
theorem for [, = p®, where p is a generalized prime and this can be done by making

use of
1
w(r) = 2 o(d) = F 0D
and #(p’) = 2v+1.
THEOREM 3.2.
log® x 3y,—1 ,
3.4 0(x) = = 27(2)) x 1
60 o =T (Bl o) xiog »
3?§_3YI_351+1 ’ 1
203y, —1n'(2)+21"'(2
{ %) +2(37, )n()+f1()}x

+0(x3+97 jog x),

where vy, and &, are constants given in (2.1) and (2.6), n'(2) and n''(2) are the
values of the first and second derivatives of n(s) = 1/{(s) at s = 2.

PrROOF. We have by theorem 3.1 and lemma 2.4,
o(x) = Z (L) = Z Z_ u(d)rs(é) =d2625xu(d)fa(5)
Z u(d) Z 73(5)

dsJx o<x/d
X
d;xﬂ( ){— log? (dz) +(3y,— ) 108 7 +(3yi- 3)’1“351"'1)‘—

(2+a)/3
X X
0 (G oo o)

= {% log? x+(3y, —1)x log x +(3y7 —3y, =35, + l)x} )y ”gin)
ln§\/x n

—2x(log x+3y,—1) 3 w(ly) log 1,

InSvx [

2
+2x Y W +0(x?*973 Jog x).

InsJx n
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Hence, by lemmas 3.1, 3.2, 3.3 for s = 2 and (2.3), (2.4), (2.5), we have

0(x) = { log® x+(3y, — 1)x log x+(3y1 — 3y, — 351‘*'1)"}{~ +0( 1 )}

@ N~
—2x(log x+3y, — 1) { n(2)+0 (l(j/gxx)l

2
+2x {n"(2)+o (log X
\/x

xlog X 3y, — X
20) +( ) +2n (2))xlog

{3% —3y,—38,+1
{(2)
+0(x**973 Jog x).

)} +0(x*983 1og x)

+2(3y, - 1)'1’(2)+2'1”(2)} x

Thus theorem 3.2 is proved.
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