A NEW PROOF OF A THEOREM OF DIRAC

William G. Brown

(received October 30, 1964)

In [1] Dirac has determined the structure of all 3-connected graphs which do not contain two independent (i.e., disjoint) circuits. We shall here provide a short proof of this theorem by applying Tutte's theory of 3-connected graphs [2].

For definitions of the terms used the reader is referred to [1]. We shall restrict our attention to simple graphs, i.e. graphs without multiple edges. <k> will denote the complete k -graph. $\quad \mathrm{W}_{\mathrm{k}}$ will denote the k -wheel: a graph whose vertices are labelled $0,1, \ldots, k$, with edges $(0,1), \ldots,(0, k),(1,2)$, $(2,3), \ldots,(k-1, k),(k, 1) . \quad p^{K}$ will denote the graph with vertices $x_{1}, x_{2}, x_{3}, y_{1}, \ldots, y_{p}$ and edges (x_{i}, y_{j}) $(i=1,2,3 ; j=1,2, \ldots, p)(p>1)$. We define ${ }_{p} K_{1}={ }_{p} K+\left(x_{1}, x_{2}\right)$, $\mathrm{p}_{2}={ }_{\mathrm{p}} \mathrm{K}_{1}+\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right), \mathrm{p}_{3}={ }_{\mathrm{p}} \mathrm{K}_{2}+\left(\mathrm{x}_{3}, \mathrm{x}_{1}\right)$; the subscripts p may be suppressed. The class of graphs having two independent circuits will be denoted by Ω.

The theorem of Tutte we require states that every simple 3 -connected graph having more than 3 vertices is either a wheel or can be obtained from a wheel by a sequence of operations of the following two types:
I. inscribing a new edge;
II. replacing a vertex x by two vertices $x^{\prime}, x^{\prime \prime}$ connected by an edge, such that every vertex formerly connected to x is connected to exactly one of $x^{\prime}, x^{\prime \prime}$, and such that each of $x^{\prime}, x^{\prime \prime}$ is connected to at least two of these vertices.

Canad. Math. Bull. vol. 8, no. 4, June 1965

We observe that any graph obtained from a graph in Ω by Operations I or II also lies in Ω.

Dirac's result [1, pp. 186-193] is
THEOREM. The only 3-connected (simple) graphs with at least 4 vertices and not in Ω are of the following types:

1) $W_{k}(k>3)$;
2) ${ }_{\mathrm{p}}^{\mathrm{K}}, \mathrm{p}_{1} \mathrm{~K}_{\mathrm{p}} \mathrm{K}_{2}, \mathrm{P}_{3}(\mathrm{p}>2)$;
3) ${ }_{2} \mathrm{~K}_{3}$;
4) <5>.

We first observe that none of the graphs listed lies in Ω.

LEMMA 1. An application of I or II to $W_{k}(k>4)$ yields a graph in Ω.

Proof:
a) Label the vertices so that an added edge is $(1, n)$ where $3 \leq n \leq[(k+1) / 2]$. Then two independent circuits are $((\overline{1}, 2,3, \ldots, n))$ and $((0, n+1, n+2, \ldots, k))$.
b) The only vertex at which II can be applied is 0 . Suppose one of $0^{\prime}, 0^{\prime \prime}$, say 0^{\prime}, is connected to two consecutive vertices, which can be taken to be 1 and 2 . Then there must exist two vertices p and q connected to $0^{\prime \prime}$ and such that $2<p<q \leq k$. Then two circuits are ($\left(1,0^{\prime}, 2\right)$) and ($\left.\left(p, p+1, \ldots, q, 0^{\prime \prime}\right)\right)$. Otherwise the vertices can be so labelled that $0^{\prime \prime}$ is connected to all even vertices, and 0^{\prime} to all odd vertices. Two circuits are ((1, $\left.\left.0^{\prime}, 3,2\right)\right)$ and ((4, $\left.\left.0^{\prime \prime}, 6,5\right)\right)$ (here $k \geq 6$).

It follows from Lemma 1 and the theorem of Tutte that the only graphs other than the wheels that we need consider are those obtainable from W_{4} by a sequence of operations I and II. We note that W_{4} is a ${ }_{2} K_{2}$.

LEMMA 2. Any graph obtained by operation II from a $\mathrm{K}, \mathrm{K}_{1}, \mathrm{~K}_{2}$, or K_{3} and which does not lie in Ω, is a K or a K_{1}.

Proof: The only vertices where II can be applied are the $x^{\prime} s$, as the $y^{\prime} s$ have valency less than 4.
a) Let a K be given. Label the vertices so that x_{1} is replaced by x_{1}^{\prime} connected to y_{1}, y_{2}, \ldots, and $x_{1}^{\prime \prime}$ connected to y_{3}, y_{4}, \ldots (p must be greater than 3). Then two circuits are $\left(\left(x_{1}^{\prime}, y_{1}, x_{2}, y_{2}\right)\right)$ and $\left(\left(x_{1}^{\prime \prime}, y_{3}, x_{3}, y_{4}\right)\right)$.
b) Let a K_{1} be given. Applying II at x_{3} yields a graph in Ω by the same argument as in a). Label the vertices so that x_{1} is replaced by x_{1}^{\prime} connected to y_{1}, y_{2}, \cdots and $x_{1}^{i r}$ connected to x_{2}, y_{3}, \ldots; (here $p>2$). Then two circuits are $\left(\left(x_{1}^{\prime}, y_{1}, x_{3}, y_{2}\right)\right)$ and $\left(\left(x_{1}^{\prime \prime}, x_{2}, y_{3}\right)\right)$.
c) Let a K_{2} or K_{3} be given. When $\mathrm{p}>2$, the only type of application of II not considered above is where x_{2} is replaced by x_{2}^{\prime} connected to x_{1} and x_{3} only, and $x_{2}^{\prime \prime}$ connected to y_{1}, \ldots, y_{p}. It can be seen by renaming $x_{3}, x_{2}^{\prime \prime}$ and x_{2}^{\prime} respectively x_{2}, x_{3}, and y_{p+1} that the resulting graph is a K or K_{1}.
d) One further case remains when $p=2$. (I am indebted to the referee for drawing this to my attention.) Given a $2_{2} \mathrm{~K}_{2}$ or $2^{K_{3}}$, let x_{2} be replaced by x_{2}^{\prime} connected to x_{1} and y_{2}, and $x_{2}^{\prime \prime}$ connected to x_{3} and y_{2}. Two circuits are $\left(\left(x_{1}, x_{2}^{\prime}, y_{2}\right)\right)$ and $\left(\left(x_{2}^{\prime \prime}, y_{1}, x_{3}\right)\right)$.

LEMMA 3. Any graph not in Ω obtained by operation I

a) a $2^{\mathrm{K}_{3}}$ or $<5>$ if $\mathrm{p}=2$;
b) a $\mathrm{p}_{1}, \mathrm{p}_{2}$, or p_{3} if $\mathrm{p}>2$.

Proof: (We observe that $2^{K}{ }_{2} \mathrm{~K}_{1}$ are not 3-connected.) The lemma is obvious for a new edge connecting two x ' we consider the case where the new edge connects two $y^{\prime} s$ and assume the vertices labelled so that the new edge is $\left(y_{1}, y_{2}\right)$.
a) Let $p=2 . \quad K_{2}$ yields a K_{3}; this can be seen by relabelling $x_{1}, x_{3}, y_{1}, y_{2}$ as $y_{1}, y_{2}, x_{1}, x_{3}$ respectively. K_{3} yields a <5>.
b) Let $p=3$. Clearly K yields a K_{1}, (interchange $x^{\prime} s$ and $\left.y^{\prime} s\right)$. But K_{1} yields a graph in Ω having circuits $\left(\left(x_{1}, x_{2}, y_{3}\right)\right)$ and $\left(\left(y_{1}, y_{2}, x_{3}\right)\right)$. Thus K_{2} and K_{3} also yield graphs in Ω.
c) Let $p>3$. Then in all cases the circuits $\left(\left(x_{1}, y_{1}, y_{2}\right)\right)$ and $\left(\left(x_{2}, y_{3}, x_{3}, y_{4}\right)\right)$ are present.

To complete the proof of the theorem we need only remark that an operation II on <5> (and all such operations are equivalent) yields a graph in Ω. Thus, for $p>2$, operations I on
 and operations II on $\mathrm{p}, \mathrm{p}_{1}, \mathrm{P}_{2}, \mathrm{p}_{3}$ yield only $\mathrm{p}+1 \mathrm{~K}$ and $p+1 K_{1}$ not in Ω. The proof follows by induction on p.

REFERENCES

1. G. A. Dirac, Some results concerning the structure of graphs, Canad. Math. Bull. 6 (1963) 183-210.
2. W.T. Tutte, A theory of 3-connected graphs, Proc. Koninkl. Akad. Wetenschappen A 64 (1961) 441-455.

University of British Columbia

