A NEW PROOF OF A THEOREM OF DIRAC

William G. Brown

(received October 30, 1964)

In [1] Dirac has determined the structure of all 3-connected graphs which do not contain two independent (i.e., disjoint) circuits. We shall here provide a short proof of this theorem by applying Tutte's theory of 3-connected graphs [2].

For definitions of the terms used the reader is referred to [1]. We shall restrict our attention to simple graphs, i. e. graphs without multiple edges. <k> will denote the complete k-graph. W will denote the k-wheel: a graph whose vertices are labelled 0, 1, ..., k, with edges (0, 1), ..., (0, k), (1, 2), (2, 3), ..., (k-1, k), (k, 1). K will denote the graph with vertices $x_1, x_2, x_3, y_1, ..., y_p$ and edges (x_i, y_j) (i = 1, 2, 3; j = 1, 2, ..., p) (p > 1). We define $_{p}K_1 = _{p}K + (x_1, x_2),$ $_{p}K_2 = _{p}K_1 + (x_2, x_3), _{p}K_3 = _{p}K_2 + (x_3, x_1);$ the subscripts p may be suppressed. The class of graphs having two independent circuits will be denoted by Ω .

The theorem of Tutte we require states that every simple 3-connected graph having more than 3 vertices is either a wheel or can be obtained from a wheel by a sequence of operations of the following two types:

- I. inscribing a new edge;
- II. replacing a vertex x by two vertices x', x" connected by an edge, such that every vertex formerly connected to x is connected to exactly one of x', x", and such that each of x', x" is connected to at least two of these vertices.

Canad. Math. Bull. vol. 8, no. 4, June 1965

459

We observe that any graph obtained from a graph in \mathcal{N} by Operations I or II also lies in \mathcal{R} .

Dirac's result [1, pp. 186-193] is

THEOREM. The only 3-connected (simple) graphs with at least 4 vertices and not in Ω are of the following types:

- 1) W_{L} (k > 3);
- 2) K, K, K, K, K, K, (p > 2);
- 3) ₂K₃;
- 4) <5>.

We first observe that none of the graphs listed lies in \mathcal{N} .

LEMMA 1. An application of I or II to W_k (k > 4) yields a graph in \mathcal{N} .

Proof:

a) Label the vertices so that an added edge is (1,n) where $3 \le n \le [(k+1)/2]$. Then two independent circuits are $((1,2,3,\ldots,n))$ and $((0,n+1,n+2,\ldots,k))$.

b) The only vertex at which II can be applied is 0. Suppose one of 0', 0", say 0', is connected to two consecutive vertices, which can be taken to be 1 and 2. Then there must exist two vertices p and q connected to 0" and such that 2 . Then two circuits are <math>((1,0',2)) and $((p,p+1,\ldots,q,0"))$. Otherwise the vertices can be so labelled that 0" is connected to all even vertices, and 0' to all odd vertices. Two circuits are ((1,0',3,2)) and ((4,0",6,5))(here k > 6).

It follows from Lemma 1 and the theorem of Tutte that the only graphs other than the wheels that we need consider are those obtainable from W_4 by a sequence of operations I and II. We note that W_4 is a ${}_2K_2$. LEMMA 2. Any graph obtained by operation II from a K, K_1 , K_2 , or K_3 and which does not lie in \mathcal{N} , is a K or a K_4 .

<u>Proof:</u> The only vertices where II can be applied are the x's, as the y's have valency less than 4.

a) Let a K be given. Label the vertices so that x_1 is replaced by x'_1 connected to y_1, y_2, \ldots , and x''_1 connected to y_3, y_4, \ldots ; (p must be greater than 3). Then two circuits are $((x'_1, y_1, x_2, y_2))$ and $((x''_1, y_3, x_3, y_4))$.

b) Let a K_1 be given. Applying II at x_3 yields a graph in \mathcal{N} by the same argument as in a). Label the vertices so that x_1 is replaced by x'_1 connected to y_1, y_2, \ldots and x''_1 connected to x_2, y_3, \ldots ; (here p > 2). Then two circuits are $((x'_1, y_1, x_3, y_2))$ and $((x''_1, x_2, y_3))$.

c) Let a K_2 or K_3 be given. When p > 2, the only type of application of II not considered above is where x_2 is replaced by x'_2 connected to x_1 and x_3 <u>only</u>, and x''_2 connected to y_1, \ldots, y_p . It can be seen by renaming x_3, x''_2 and x'_2 respectively x_2, x_3 , and y_{p+1} that the resulting graph is a K or K_4 .

d) One further case remains when p = 2. (I am indebted to the referee for drawing this to my attention.) Given a ${}_{2}^{K}$ or ${}_{2}^{K}$, let x_{2} be replaced by x'_{2} connected to x_{1} and y_{2} , and x''_{2} connected to x_{3} and y_{2} . Two circuits are $((x_{1}, x'_{2}, y_{2}))$ and $((x''_{2}, y_{1}, x_{3}))$.

461

LEMMA 3. Any graph not in \mathcal{N} obtained by operation I from a 3-connected K, K, K, or K is p p 1 p 2 p 3

- a) a $_{2}K_{3}$ or <5> if p = 2;
- b) a K_1 , K_2 , or K_3 if p > 2.

<u>Proof</u>: (We observe that ${}_{2}K$, ${}_{2}K_{1}$ are not 3-connected.) The lemma is obvious for a new edge connecting two x's. We consider the case where the new edge connects two y's and assume the vertices labelled so that the new edge is (y_{4}, y_{2}) .

a) Let p = 2. K_2 yields a K_3 ; this can be seen by relabelling x_1, x_3, y_1, y_2 as y_1, y_2, x_1, x_3 respectively. K_3 yields a <5>.

b) Let p = 3. Clearly K yields a K_1 , (interchange x's and y's). But K_1 yields a graph in \mathcal{N} having circuits $((x_1, x_2, y_3))$ and $((y_1, y_2, x_3))$. Thus K_2 and K_3 also yield graphs in \mathcal{N} .

c) Let p > 3. Then in all cases the circuits $((x_1, y_1, y_2))$ and $((x_2, y_3, x_3, y_4))$ are present.

To complete the proof of the theorem we need only remark that an operation II on <5> (and all such operations are equivalent) yields a graph in \mathcal{N} . Thus, for p > 2, operations I on $\stackrel{K}{p}$, $\stackrel{K}{p}$

REFERENCES

- 1. G. A. Dirac, Some results concerning the structure of graphs, Canad. Math. Bull. 6 (1963) 183-210.
- W. T. Tutte, A theory of 3-connected graphs, Proc. Koninkl. Akad. Wetenschappen A 64 (1961) 441-455.

University of British Columbia