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Boulevard de l’Observatoire, CS 34229, 06304 Nice Cedex 4, France

(Received 22 May 2014; revised 28 July 2014; accepted 4 August 2014;

first published online 5 September 2014)

With the aim to develop a tool for simulating turbulence in collisionless magnetized
plasmas, fluid models retaining low-frequency kinetic effects such as Landau damping
and finite Larmor radius (FLR) corrections are discussed. It turns out that, in
the absence of ion-cyclotron resonance, the dispersion and damping of kinetic
Alfvén waves at scales as small as a fraction of the ion Larmor radius are
accurately reproduced when using fluid estimates of the non-gyrotropic moments,
at leading-order within a large-scale asymptotics. Differently, evaluations based on
the low-frequency linear kinetic theory are necessary in regimes of large temperature
anisotropies, and in particular in the presence of the mirror instability. Combining
both descriptions leads to a new Landau fluid model retaining large-scale FLR
nonlinearities, while reproducing the linear dynamics of low-frequency modes at the
sub-ionic scales.

1. Introduction
In many instances, magnetohydrodynamics (MHD) or its dispersive extension

including the Hall effect (Hall-MHD) cannot provide a satisfactory description of
collisionless or weakly collisional plasmas, in part due to the lack of realistic wave
damping. On the other hand, especially in the turbulent regime, a fully kinetic
description requires huge computational resources and is still difficult to implement,
even on the present-day most powerful computers. This situation motivates making
efforts to extend the fluid description to magnetized plasmas by retaining kinetic
effects such as Landau damping and finite Larmor radius (FLR) corrections at scales
comparable to or smaller than the ion gyroradius. As with the gyrokinetic theory
(see e.g. Howes et al. (2006)), the aim is to capture the low-frequency dynamics, when
ion-cyclotron resonances can be overlooked.

Linear Landau damping was first retained within a fluid description of a magnetized
plasma by Snyder et al. (1997) who developed a so-called Landau fluid model for the
MHD scales by performing a closure of the hierarchy derived from the drift kinetic
equation. The fourth-rank cumulants of the various particle species, or in a simplified
formulation, the heat fluxes, are expressed in terms of lower rank moments in a
way consistent with the low-frequency linear kinetic theory, up to the replacement
of the plasma dispersion function by suitable Padé approximants. This description
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involves dynamical equations for the parallel and perpendicular pressures of the ions
and the electrons, and thus permits the development of temperature anisotropies.
Another step in the development of Landau fluid models was made by supplementing
FLR corrections. Their effect is to be retained when considering scales close to the
ion gyroradius. An example is provided by the computation of non-homogeneous
equilibrium configurations serving as initial conditions for kinetic simulations of
magnetic reconnection with shear flows (Cerri et al. 2013). FLR-corrections can be
calculated in two ways. A first approach consists in solving the equations for the
non-gyrotropic parts of the pressure or heat flux tensors, perturbatively with respect
to a small parameter measuring the space and time scale separation between the
ion gyromotion and the considered phenomena (Macmahon 1965; Ramos 2005).
When limited to the linear regime (Goswami et al. 2005; Passot et al. 2012), this
approach is easily implemented, even when retaining second order contributions,
but the general formulation, that has the main advantage of being asymptotically
exact, becomes excessively intricate when going beyond the leading order. Another
approach consists in expressing all the non-gyrotropic moments directly from the
low-frequency kinetic theory, again modeling the plasma dispersion function with
appropriate Padé approximants (Passot and Sulem 2007; Passot et al. 2012). This
description retains all the scales in the directions quasi-transverse to the ambient
magnetic field, thus reproducing the linear properties of kinetic Alfvén waves, such
as their dispersion relation, polarization and magnetic compressibility (Hunana et al.
2013a,b). It also provides a precise description of the mirror instability and of its arrest
at small scales. This so-called FLR-Landau fluid model was recently implemented for
three-dimensional simulations of both Alfvén and mirror turbulences (Passot et al.
2014). It is noticeable that in these simulations, as long as the turbulence level is
sufficiently low, ion and electron Landau damping provide a sufficient dissipation for
numerical simulations to be stable, with no need for filtering nor artificial dissipation.
Power law spectra, similar to those observed in satellite data (Alexandrova et al.
2008; Sahraoui et al. 2009, 2010), develop in the so-called dissipation range, down
to the smallest resolved scale. Trying to benefit from the advantages of both FLR
descriptions suggests a matching procedure, resulting in an asymptotically exact
nonlinear description at large scales and a linearly correct modeling of the low-
frequency small-scale fluctuations.

The present paper is organized as follows. Section 2 briefly reviews the fluid
hierarchy derived from the Vlasov-Maxwell equations, mainly to specify the notations.
Section 3 discusses a fluid model involving the leading-order FLR contributions to
the gyrotropic pressure and heat flux tensors, within a large-scale asymptotics (see e.g.
Ramos (2005)), to which we supplement fluid-hierarchy closures retaining Landau
damping, either at the level of the third or of the fourth-rank moments. Although
these closures are based on the linear kinetic theory, they nevertheless must take
into account the curvature of the magnetic field lines, in order to prevent spurious
instabilities in the nonlinear regime (Passot et al. 2014). In Sec. 4, the resulting models
are assessed at the level of the dispersion and damping of linear kinetic Alfvén waves,
which turn out to be accurately captured, even at scales significantly smaller than
guaranteed by the asymptotic ordering, at least when the temperature anisotropy is not
too strong. When the temperature anisotropy is large enough for micro-instabilities
such as the mirror instability to develop, a more accurate description of the sub-ion
scales, as provided by the FLR-Landau fluid model discussed in Passot and Sulem
(2007) and Passot et al. (2012), is required. After revisiting this model in Sec. 5.1, we
discuss in Sec. 5.2 a new fluid model, resulting from a matching of the large-scale
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nonlinear asymptotics of Sec. 3 with the small-scale kinetic-based approach of Sec.
5.1. Section 6 summarizes the main conclusions.

2. The fluid hierarchy
We consider a proton-electron plasma and denote the particle species by the

subscript r , which may refer to the ions (p) or the electrons (e).
The equations for the density ρp = mpn and velocity up of the ions (protons) are

∂tρp + ∇ · (ρpup) = 0 (2.1)

∂t up + up · ∇up +
1

ρp

∇ · pp − e

mp

(
E +

1

c
up ∧ B

)
= 0. (2.2)

Concentrating on the ion scales and thus neglecting electron inertia, the electric
field E is given by Ohm’s law E = − 1

c
up ∧ B + EH , where we isolate the Hall

electric field EH = 1
ne

( 1
c

j ∧ B − ∇ · pe). Here, the velocities are nonrelativistic and
the electric current thus given by j = c

4π
∇ ∧ B, with the magnetic field obeying the

Faraday equation ∂t B = −c ∇ ∧ E. Moreover the ion and electron pressure tensors
are respectively written as pp = pG

p + Π and pe = pG
e (as the electron Larmor

radius is neglected) where, for each species, the gyrotropic pressure has the form
pG

r = p⊥rn + p‖rτ , with n = I − b ⊗ b and τ = b ⊗ b. Here, b = B/|B| is the unit
vector along the local magnetic field.

The parallel and perpendicular pressures of each particle species obey
( d

dt
= ∂t + up · ∇)

∂tp‖r + ∇ · (p‖r ur ) + (2p‖r∇ur + ∇ · qr ) : τ +
[
(Π · ∇up)S : τ − Π :

dτ

dt

]
δrp = 0 (2.3)

∂tp⊥r + ∇ · (p⊥r ur ) +
1

2
(2p⊥r∇ur + ∇ · qr ) : n +

1

2

[
(Π · ∇up)S : n + Π :

dτ

dt

]
δrp = 0,

(2.4)

where qr denotes the corresponding heat flux tensor. The electron velocity is given by
ue = up − j/ne, and δrp means that the corresponding terms exist for ions only. The
superscripts S indicate that the corresponding tensors are symmetrized. It is in fact
of interest in (2.4) to rewrite

(Π · ∇up)S : n = −2(∇ · Π) · up + 2∇ · (up · Π) − (Π · ∇up)S : τ, (2.5)

in order to make more conspicuous the conservation of the energy

E =
1

2

∫
(ρp|up|2 + |B|2 + 2p⊥p + p‖p + 2p⊥e + p‖e) dx. (2.6)

Furthermore, the Faraday equation rewrites

∂t b +
1

|B| (∂t |B|)b = b · ∇u − u · ∇b − 1

|B| (u · ∇|B|) b − (∇ · u) b − c

|B|∇∧EH , (2.7)

and, after multiplying by the tensor n, one simply obtains

db
dt

=
(

b · ∇up − c

|B|∇ ∧ EH

)
· n. (2.8)
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Combining with the condition Π : τ = 0, one has

Π :
dτ

dt
= 2 b · Π ·

(
b · ∇up − c

|B|∇∧EH

)
. (2.9)

The heat flux tensor can furthermore be written qr = Sr + σr , where the tensor
σr obeys the conditions σr : n = 0 and σr : τ = 0. The elements of the tensor Sr are
classically expressed (see e.g. Goswami et al. (2005)) in terms of the components of
two vectors S‖

r and S⊥
r defined by S‖

r = qr : τ and S⊥
r = (1/2) qr : n that measure

the directional fluxes of the parallel and perpendicular heats respectively. The usual
perpendicular and parallel gyrotropic heat fluxes are given by q⊥r = S⊥

r · b and

q‖r = S‖
r · b, and thus correspond to the fluxes along the magnetic field. We write

S⊥
r = q⊥r b + S⊥

⊥r and S‖
r = q‖r b + S‖

⊥r , and find for the Sr contributions to the flux
terms in the gyrotropic pressure equations

(∇ · Sr ) : τ = ∇ · (q‖r b + S‖
⊥r ) − 2 (q⊥r∇ · b + b · ∇b · S‖

⊥r ) (2.10)

1

2
(∇ · Sr ) : n = ∇ · (q⊥r b + S⊥

⊥r ) + q⊥r∇ · b + b · ∇b · S‖
⊥r . (2.11)

It also turns out that the tensor σ does not contribute at the linear level in (2.3) and
(2.4). This is shown in Passot and Sulem (2007) by substituting the kinetic expressions
of the various fluid moments in the linearized equations for the perpendicular and
parallel pressures, which leads to (∇ · σr ) : τ = 0 and (∇ · σr ) : n = 0. The leading order
of σ can also be evaluated in a large-scale asymptotics (see Sec. 3), where it is clearly
seen to contribute at the nonlinear level only.

In addition to the non-gyrotropic contributions, the parallel and perpendicular heat
fluxes q‖r and q⊥r must be determined either directly by closure relations, or by means
of the dynamical equations provided by the fluid hierarchy, thus pushing the closure
problem to the level of the gyrotropic fourth-rank moments or cumulants. In the
latter case, the corresponding non-gyrotropic contributions are also to be evaluated.

3. A large-scale fully-nonlinear FLR-Landau fluid model
The estimate of the non-gyrotropic contribution within a large-scale asymptotics,

initiated in the early sixties, is usually limited to leading order (Macmahon 1965). We
shall retain this level of accuracy when dealing with the full nonlinear expressions.

3.1. Non-gyrotropic moments

3.1.1. Ion non-gyrotropic pressure tensor

Denoting by ΩL
p = eB/mpc the pointwise ion gyrofrequency, one has (see e.g.

Schekochihin et al. (2010) for a simple derivation)

Π =
1

4ΩL
p

[b∧W · (I + 3 τ ) − (I + 3 τ ) · W∧b] +
1

ΩL
p

[b⊗(w∧b) + (w∧b)⊗b]. (3.1)

Here I is the density matrix,

W = [p⊥p∇up + ∇(q⊥p b)]S (3.2)

and (∂‖ = b · ∇)

w = (p⊥p − p‖p)
(db

dt
+ ∂‖up

)
+ (3q⊥p − q‖p)∂‖b, (3.3)
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with db
dt

given by (2.8) where, at large scales, the contribution of the Hall electric field
is subdominant and thus neglected, leading to

db
dt

+ ∂‖up = 2∂‖up − (τ : ∇up) b. (3.4)

It follows that w ∧ b reduces to

w ∧ b = [2(p⊥p − p‖p)∂‖up + (3q⊥p − q‖p)∂‖b] ∧ b. (3.5)

3.1.2. Non-gyrotropic heat fluxes

Starting for example from (30) and (31) of Goswami et al. (2005), one easily
establishes the expression given in Macmahon (1965) and Ramos (2005) for the

vectors S⊥
⊥p and S‖

⊥p measuring the transverse fluxes of perpendicular and parallel
heats:

S⊥
⊥p =

1

ΩL
p

b ∧
[
2
p⊥p

mp

∇T⊥p + 4q⊥p∂‖ up + 2r̃‖⊥∂‖b
]

(3.6)

S‖
⊥p =

1

ΩL
p

b ∧
[p⊥p

mp

∇T‖p + 2
T‖p

mp

(p‖p − p⊥p)∂‖b + 2q‖p∂‖up

+ 2q⊥p(b ∧ ωp) + ∇r̃‖⊥p + (r̃‖‖p + 3r̃‖⊥p) ∂‖b
]
. (3.7)

Here r̃‖⊥p and r̃‖‖p are gyrotropic fourth-rank cumulants. Similarly, for the electrons,
the contributions relevant at ion scales read

S⊥
⊥e = − 2p⊥e

mpΩL
p

b ∧ ∇T⊥e (3.8)

S‖
⊥e = − p⊥e

mpΩL
p

b ∧
[
∇T‖e − 2T‖e

(
1 −

T‖e

T⊥e

)
∂‖b

]
. (3.9)

As previously mentioned, the full heat flux tensor also involves the tensor σr .
Following Ramos (2005), we write

σr,ijk = (εilmτjlnkn + εjlmτklnin + εklmτilnjn

+ εilmτklnjn + εjlmτilnkn + εklmτjlnin) Tr,mn (3.10)

with

Tp =
1

4ΩL
p

{
q⊥p(∇up)S +

[T⊥p

mp

(p‖p − p⊥p) + 4r‖⊥p

]
(∇b)S

}
(3.11)

and

Te = − 1

4ΩL
p

T⊥e

mp

(p‖e − p⊥e)(∇b)S. (3.12)

In (3.11),

r‖⊥p = r̃‖⊥p +
1

ρp

p⊥pp‖p (3.13)

is a gyrotropic fourth-rank moment.
In the equations for the gyrotropic pressures, one actually only needs ∂kσr,ijkτij =

−2σr,ijkbi∂kbj and ∂kσr,ijknij = 2σr,ijkbi∂kbj . It follows that

∂kσr,ijknij = −∂kσr,ijkτij (3.14)
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with

∂kσp,ijkτij =
q⊥p

2ΩL
p

blεlkm(∇b)Skjnjn(∇up)Snm (3.15)

and

∂kσe,ijkτij = 0, (3.16)

making the σ -contribution relevant only for the ions.

3.2. Closure of the fluid hierarchy

3.2.1. A closure for the gyrotropic heat fluxes

In order to retain linear Landau damping, the gyrotropic heat fluxes q‖r and q⊥r

can be evaluated through a so-called Landau-fluid closure, consistent with the low-
frequency large-scale linear kinetic theory. In contrast with Snyder et al. (1997) who
concentrate on the purely MHD scales, we here retain leading order contributions
originating from the Hall term and the FLR corrections. The derivation is made in
Appendix A, starting from the formulas for the heat fluxes and the temperatures of
each particle species provided by the linear kinetic theory and replacing the plasma
response function by three-pole and one-pole Padé approximants respectively (Hedrick
and Leboeuf 1992). Defining for each species r , the mean (or, in the linear theory,
the equilibrium) temperatures T ⊥r = p⊥r/n0 and T ‖r = p‖r/n0, (where n0 is the mean
number density of the ions and the electrons), one introduces the instantaneous space-
averaged thermal velocities vth‖r = (2T ‖r/mr )

1/2, ion gyrofrequency Ωp = eB0/mpc

and Larmor radius rL = (1/Ωp)(2T ⊥p/mp)1/2. One gets

q‖r = −p‖rvth‖r

2√
π

H
T‖r

T ‖r

, (3.17)

together with

q⊥p = −
p⊥p

Ωp

(T ⊥p − T ‖p)

mp

b ·
(

∇ ∧ B
B0

)
− p⊥pvth‖p

× H√
π

[
T⊥p

T ⊥p

− 1

Ωp

b · (∇ ∧ up) +

(
T ⊥p

T ‖p

− 1

)
|B|
B0

]
(3.18)

and

q⊥e =
p⊥e

Ωp

(T ⊥e − T ‖e)

mp

b ·
(

∇ ∧ B
B0

)
− p⊥evth‖e

H√
π

[
T⊥e

T ⊥e

+

(
T ⊥e

T ‖e

− 1

)
|B|
B0

]
. (3.19)

In a purely linear analysis, b is replaced by the unit vector along the ambient
magnetic field, while the operator H, physically associated with the Landau resonance,
identifies with the negative Hilbert operator in the direction of this field. In Fourier
space, it then reduces to the multiplication by i sgn kz, that is to say ikz/|kz| for kz �= 0
and 0 for kz = 0.

Differently, when the model is considered in the nonlinear regime, the distortion
of the magnetic field lines being retained in the dynamical equations governing the
gyrotropic moments, it is important to also take it into account at the level of closure
(3.24)–(3.26). Otherwise, the inconsistent description of the longitudinal derivative
∂‖ = b · ∇ in the hierarchy equations and in the linearly-evaluated terms on which
it acts may lead to spurious secondary instabilities in multi-dimensional nonlinear
simulations. Indeed, while terms involving the operator ∂‖H are purely dissipative
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in the linear theory (as in Fourier space, this operator then reduces to −|kz|) and
also in one-space dimension (Borgogno et al. 2007; Laveder et al. 2013), in several
dimensions a mismatch in the description of the two operators may produce a small
antidiffusive contribution (Passot et al. 2014). In the present context, the β of the
plasma is not assumed to be small, making the field line distortion not fully negligible.
Furthermore, the H operator also arises in the non-gyrotropic pressure tensor when
closing the hierarchy at the level of the heat fluxes. We are thus led to use a
different modeling. As accurately retaining the magnetic field distortion requires the
replacement of the Hilbert transform along the ambient field by an integral along the
individual magnetic field lines, which is hardly feasible on the present day computers,
we resorted to provide a semi-phenomenological modeling of the H operator. While
the ikz factor arising in the numerator of the Fourier representation of the linearized
operator is easily replaced by the directional derivative ∂‖ in physical space, finding
an equivalent of the denominator |kz| is less straightforward. In the model used by
Sharma et al. (2006), the Fourier multiplier |kz|−1 is simply replaced by a typical scale,
which thus transforms ∂‖H into a diffusive operator along the field lines, as in a
weakly collisional regime. The non-local character of the Landau operator associated
with the fact that H is a zero-order operator, seems nevertheless an important feature
that we choose to preserve. The simple approach is to keep the Fourier multiplier
|kz|−1 as is, with the shortcoming that it displays a singularity for all the modes with
wavevector purely transverse to the ambient field. This suggests to replace |kz|−1 by
(|kz| + c)−1 where c is a small constant, relevant only for the Fourier modes with
kz = 0. Such modes are not affected within a purely linear description while, in the
case of finite locally uniform oblique field line perturbations, they are here subject to
a diffusive decay along the transverse directions. Another possibility is to replace H

by
̂

[(k · τ · k)− 1
2 ]∂‖ (here and below the hat indicates the inverse Fourier transform)

where, in order to keep the operator local in Fourier space, the expected tensor τ

has been replaced by its instantaneous space average τ . With such a formulation, the
operator is generically not singular on the numerical grid. It also provides a linearly
exact approximation whatever the direction of the ambient magnetic field (up to the
use of Padé approximants), and thus requires that the distortion of the magnetic field
lines be moderate. Optimizing the modeling of the Landau operator is an important
issue that deserves further investigations.

Note that equation (3.18) for the ion perpendicular heat flux identifies with the
large-scale limit of the general expression derived in Passot and Sulem (2007) by
expressing q⊥p by means of the dynamical equation for T⊥p and designing a closure
formula from the kinetic expression of the latter quantity.

Furthermore, the ion non-gyrotropic heat-flux vectors S⊥
⊥p and S

‖
⊥p , together with the

tensor Tp , given in the previous section, involve the gyrotropic fourth-rank cumulants
r̃‖‖p and r̃‖⊥p . These latter quantities are evaluated on the basis of the linear kinetic
theory in (11) and (12) of Passot et al. (2012). Their large-scale limits, we are here
interested in, are explicitly given in the next section. The gyrotropic perpendicular
heat flux q⊥p enters these expressions. When substituting from (3.18), one gets

r̃‖‖p = −3

2
n0v

2
th‖rT

′
‖p (3.20)

r̃‖⊥p = −
p⊥p

2
v2

th‖r

[ T ′
⊥p

T ⊥p

− 1

Ωp

b · (∇ ∧ up) +
(T ⊥p

T ‖p

− 1
) |B|

B0

]
. (3.21)

where prime refers to fluctuations about the instantaneous spatial average.
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3.2.2. Advantage of a higher order closure?

A natural question is whether it is worthwhile to push the fluid hierarchy to higher
order by keeping the dynamical equations for the gyrotropic heat fluxes q‖r and q⊥r

and closing the fluid hierarchy at the level of the fourth-rank moments. The full
nonlinear equations are given in Ramos (2005) and turn out to be rather intricate.
In order to build a model with a reasonable degree of complexity, it appears suitable
to simplify these equations. As the fourth-rank velocity cumulants are evaluated in
the framework of the linear kinetic theory, it seems appropriate to prescribe that,
in the equations for the gyrotropic heat fluxes, the terms involving non-gyrotropic
contributions are retained only if they survive when the equations are linearized about
a uniform equilibrium. The equations for the gyrotropic heat fluxes then reduce to
(ρe/ρp = me/mp)

∂tq‖r + ∇ · (q‖r ur ) + 3q‖r∇ur : τ + 3p‖r∂‖

(p‖r

ρr

)
+ ∇ · (r̃‖‖r b)

− 3r̃‖⊥r∇ · b + RNG
‖r = 0 (3.22)

∂tq⊥r + ∇ · (urq⊥r ) + q⊥r∇ · ur + p‖r∂‖

(p⊥r

ρr

)
+ ∇ · (r̃‖⊥r b)

+
[
(p‖r − p⊥r )

p⊥r

ρr

− r̃⊥⊥r + r̃‖⊥r

]
∇ · b +

p⊥p

ρp

∇ · (n · Π) δrp + RNG
⊥r = 0, (3.23)

where the gyrotropic fourth-rank cumulants r̃‖‖r , r̃‖⊥r and r̃⊥⊥r and the contributions
RNG

‖r
and RNG

⊥r originating from the non-gyrotropic fourth-rank cumulants are to be

evaluated to close the hierarchy. Note that ∇ · b = −(1/|B|)∂‖|B| = −∂‖ ln(|B|).
When, starting from the predictions of the low-frequency linear theory, the

gyrotropic fourth-rank cumulants r̃‖‖r and r̃‖⊥r are evaluated by using four-pole and
two-pole Padé approximants respectively for the plasma response function (Hedrick
and Leboeuf 1992), one gets the closure relations provided by (11)–(15) of Passot
et al. (2012) which, when keeping only the first-order corrections in a large-scale
expansion, reduce to

r̃‖‖r =
32 − 9π

2(3π − 8)
n0v

2
th‖rT

′
‖r − 2

√
π

3π − 8
vth‖rHq‖r (3.24)

r̃‖⊥p = −
√

π

2
vth‖pH

[
q⊥p +

v2
th‖p

2Ωp

T ⊥p

T ‖p

(p⊥p − p‖p)

(
∇ ∧ B

B0

)
· b

]
(3.25)

r̃‖⊥e = −
√

π

2
vth‖eH

[
q⊥e −

v2
th‖p

2Ωp

T ⊥e

T ‖p

(p⊥e − p‖e)
(

∇ ∧ B
B0

)
· b

]
(3.26)

r̃⊥⊥r = 0. (3.27)

With the same ordering, one has

p⊥p

ρp

∇ · (n · Π) + RNG
⊥p = − T ⊥p

mpΩp

(p⊥p − 2p‖p)∂‖

(
∇ · cE

B0

)
(3.28)

and

RNG
⊥e =

T ⊥e

mpΩp

(p⊥e − 2p‖e)∂‖

(
∇ · cE

B0

)
(3.29)

where, for consistency, we use the further approximation cE/B0 = b ∧ up . As the
present estimates are based on the linear kinetic theory only, one can in fact simply
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write

∇ · cE
B0

= −b · (∇ ∧ up). (3.30)

4. Validation and limits of the models
4.1. Dispersion and decay of kinetic Alfvén waves

In order to validate the above models, we analyze in this section their predictions
concerning the dispersion and damping of kinetic Alfvén waves. Alfvénic fluctuations
are indeed a main component of Solar Wind turbulence, and a correct description
of their dissipation is most useful in modeling such a medium. The case of a
wave propagating in a direction quasi-transverse to the ambient magnetic field is
considered in Fig. 1 where the propagation angle θ = 89.94◦ is chosen in order push
the ion-cyclotron resonance at very small scales. Isotropic and equal ion and electron
temperatures are considered for different values of the beta parameter, namely β = 0.1
(top), 1 (middle) and 10 (bottom). For the two models discussed above, we globally
observe an excellent agreement with the prediction of the kinetic theory obtained
with the WHAMP software (Rönnmark 1982), for both the real frequency (left) and
the decay rate (right), even at scales significantly smaller than those for which the
asymptotics is supposed to be valid. It is nevertheless noticeable that for β = 0.1, the
damping resulting from the heat flux closure displays a significantly better behavior
a small scales k⊥rL > 10 than the fourth-rank moment closure.

A comparable accuracy of both closures still holds when decreasing the angle to
θ = 85◦, although on a less extended spectral range (Fig. 2).

A ion temperature anisotropy ap = T⊥p/T‖p = 1.5 is assumed in Fig. 3 where
β‖p = 1, θ = 89.94◦ and T⊥e = T‖e = T‖p . In this case, the closure at the level of
the fourth-rank cumulants appears to be more accurate, especially at small scales.
Several comments are in order. First, in all the considered examples the damping rate
remains accurate at smaller scales than the real frequency, ensuring in particular a
precise description of the dissipation at scales comparable or even smaller than the ion
Larmor radius. Furthermore, retaining the O(Ω−1

p ) corrections in the kinetic estimate
of the gyrotropic heat fluxes when the closure is performed at this level, or in the
non-gyrotropic contributions to the fourth-rank cumulants when dynamical equations
are retained for the parallel and perpendicular heat fluxes, is a main requirement to
prevent the development of spurious linear instabilities. It is important to note that in
the former closure, the first-order correction to the perpendicular heat flux, although
formally subdominant, is to be retained even when substituted in the non-gyrotropic
pressure tensor, as this contribution involves the parallel vorticity and current, which
are dominant components of the kinetic Alfvén eigenmodes.

The above analysis thus leads to the conclusion that, for weak temperature
anisotropy, the heat flux closure provides a satisfactory modeling, with no need
to push the fluid hierarchy to higher order.

4.2. Mirror instability

When the temperature anisotropy ap = T⊥p/T‖p is increased beyond a critical value
depending on the plasma beta, mirror modes become unstable. This micro-instability
which is driven by the Landau resonance and arrested at small scales by finite Lamor
radius effects, is supposed to play an important role in monitoring the temperature
anisotropy in the Solar Wind. Observations indeed suggest that it constrains the
system to remain close to threshold (Matteini et al. 2012, and references therein), a
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zv

A
)

k⊥rL

ω
r /(

k zv
A
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A
)

k⊥rL

Figure 1. Frequency ωr and damping rate −ωi normalized by kzvA (where kz = k cos θ and
vA = B0/

√
4πρ0 is the Alfvén velocity) of a kinetic Alfvén wave propagating in a direction

making an angle θ = 89.94◦, versus k⊥rL, for equal and isotropic ion and electron temperatures,
and β = 0.1 (top), 1 (middle), 10 (bottom). The solid line corresponds to the full kinetic theory
using the WHAMP software, while red stars and blue crosses result from the model equations
with the closure performed at the level of the heat-fluxes and of the fourth-rank moments
respectively. In some cases, the blue crosses are not visible, the predictions of the two models
being very close.

conclusion also supported by numerical simulations of a one-dimensional reduction
of the model described in Sec. 5.1 (Laveder et al. 2011).

The mirror instability growth rates predicted by the two large-scale models described
in Sec. 3 are displayed in Fig. 4 (parameters given in the caption) in regimes close
to threshold (left) and relatively far from it (right), together with the result of the
FLR-Landau fluid model (Passot and Sulem 2007; Passot et al. 2012), discussed in
Sec. 5.1, which retains an accurate description of the linear kinetic properties at the
quasi-transverse sub-ion scales. We observe that near threshold both the large-scale
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ω

r /(
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Figure 2. Same as Fig. 1 for θ = 85◦ and β‖p = 1.

ω
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k zv
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−ω
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)

Figure 3. Same as Fig. 1 for θ = 89.94◦, proton temperature anisotropy ap = T⊥p/T‖p = 1.5,
T⊥e = T‖e = T‖i , and β‖p = 1.

ω
i /Ω

p

k⊥rL k⊥rL

ω
i /Ω

p

Figure 4. Mirror instability growth rate ωi normalized by the ion gyrofrequency Ωp , versus
k⊥rL, for a propagation angle θ = 85◦, in conditions near (left) and far (right) from threshold.
In the former regime, T⊥p/T‖p = 1.45, T⊥e/T‖e = 1.1, T‖e = T‖p and β‖p = 1.5. In the latter,
T⊥p/T‖p = 2, T⊥e/T‖e = 1, T‖e = T‖p and β‖p = 2. As in the previous figures, the solid line
refers to the predictions of the full kinetic theory using the WHAMP software, while the red
stars and the blue crosses are associated with the heat-flux and fourth-rank moment large-scale
closures respectively. The green triangles correspond to the FLR-Landau fluid model described
in Sec. 5.1.
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ω
r /(

k ⊥
V

) ,
 Ω

p
 /(

k ⊥
V

)

k⊥rL

Figure 5. Frequency ωr , normalized by k⊥V (where V = vA(1+βT )1/2 and βT = βp +βe) of a
purely transverse fast magnetosonic wave, versus k⊥rL, for equal and isotropic ion and electron
temperatures and βp = βe = 3: red stars and blue crosses (almost exactly superimposed)
correspond to the two large-scale models and green triangles to the FLR-Landau fluid
discussed in Sec. 5, while the black solid line refers to the full kinetic theory and the blue solid
line to the normalized cyclotron frequency Ωp/(k⊥V ).

models are quantitatively accurate at very large scale only, but already display a
significant deviation from the kinetic theory at k⊥rL = 0.2, the error being in fact
larger in the case of the fourth-rank moment closure. Far from threshold, both
large-scale models are incorrect even qualitatively, as no arrest of the instability is
obtained at small scales. In contrast, in both regimes, the growth rate predicted by the
kinetic theory is accurately reproduced by the FLR-Landau fluid model discussed in
Sec. 5.

4.3. Fast magnetosonic waves

As discussed for example in Passot et al. (2012), retaining only the leading-order FLR
corrections is not sufficient to accurately capture the dispersion of fast magnetosonic
waves, even at very large scales. This point is illustrated in Fig. 5 in the case
of purely transverse propagation, in a plasma with equal and isotropic ion and
electron temperatures and βp = βe = 3. The real frequency ωr (no damping is
present in the transverse direction), normalized by k⊥V is plotted versus k⊥rL. Here,
V = vA(1+βT )1/2, where vA = B0/

√
4πρ0 denotes the Alfvén velocity and βT = βp+βe.

We note that the sign of the dispersion is in particular not reproduced. Differently, a
rather satisfactory agreement is obtained with the FLR-Landau fluid at large enough
scales (typically k⊥rL < 0.4), the discrepancy with the kinetic theory visible at smaller
scales originating from the effect of the ion-cyclotron resonance. We remind that
such fast waves are averaged out within the gyrokinetic formalism. We indeed see in
Fig. 5 that the (normalized) frequency obtained from the full kinetic theory (black
solid line) tends to approach and asymptotes the cyclotron frequency (blue solid
line).

5. Beyond large-scale modeling
As discussed in Sec. 4.2, a large-scale expansion of the non-gyrotropic moments

does not permit a satisfactory description of the mirror instability which is in contrast
well reproduced by the FLR-Landau fluid model (Passot and Sulem 2007; Passot
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et al. 2012). Based on the linear kinetic theory within the gyrokinetic ordering, this
approach is indeed designed for simulating the ion scales. It however does not retain
the nonlinearities associated with the FLR corrections that are evaluated at the linear
level only. This suggests to construct a new model where a linearly accurate description
of the small-scale FLR corrections is supplemented to the large-scale nonlinear
model. For this purpose, it is convenient to first briefly revisit the FLR-Landau
fluid.

5.1. A FLR-Landau fluid model for the sub-ion scales

While the models described in Sec. 3 involve a fully non-linear description of FLR
corrections within a large-scale perturbative expansion, a different strategy is needed
in order to accurately simulate the sub-ion scale. In this context, the approach
developed in Passot and Sulem (2007) and Passot et al. (2012) consists in determining
the non-gyrotropic moments from the low-frequency linear kinetic theory. In its
original form, the resulting closed system is suitable to address the linear dynamics
and indeed successfully predicts the dispersion and damping of the kinetic Alfvén
waves, together with their polarization and magnetic compressibility (Hunana et al.
2013a,b). As already mentioned, this model also accurately reproduces the mirror
instability and its quenching at small scales. Nevertheless, in the multidimensional
nonlinear regime, the distortion of the magnetic field lines has to be taken into
account when evaluating the kinetic contributions, and this even though accuracy is
ensured at the linear level only. Otherwise, when plugging the kinetic contributions
within the nonlinear dynamical equations (which themselves involve derivatives along
the magnetic field lines), the mismatch between the two descriptions may induce
spurious secondary instabilities associated with the presence of small anti-diffusive
terms (Passot et al. 2014).

This model is closed at the level of the fourth-rank cumulants, and thus involves
heat flux equations, taken in the form of equations (3.22) and (3.23) which only involve
the non-gyrotropic quantities contributing to the linear theory. In the same spirit, a
simplification can be made in the pressure equations by dropping the (nonlinear)
contributions of the tensors σp and Π . In order to preserve energy conservation, the
subdominant term −2(∇ · Π) · up can nevertheless be retained in the equation for

the ion perpendicular pressure. In this framework, only the quantities ∇ · Π⊥, ∇ · S⊥
⊥r

and ∇ · S‖
⊥r are to be estimated. Retaining the work of the non-gyrotropic pressure

forces in the equations for the gyrotropic pressures, which was shown to contribute in
some instances to the heating of the plasma (Laveder et al. 2013), in contrast requires
estimating the full tensor Π together with the vectors S⊥

⊥r and S⊥‖r .

5.1.1. Fourth-rank cumulants

When the Landau fluid closure is extended to small scales, the fourth-rank
cumulants are given by

r̃‖‖r =
32 − 9π

2(3π − 8)
n0v

2
th‖rT

′
‖r − 2

√
π

3π − 8
vth‖rHq‖r (5.1)

r̃‖⊥p = −
√

π

2
vth‖pH

[
q⊥p +

v2
th‖p

2Ωp

T ⊥p

T ‖p

(p⊥p − p‖p)R̂‖⊥

(
∇∧ B

B0

)
· b

]
(5.2)

r̃‖⊥e = −
√

π

2
vth‖eH

[
q⊥e −

v2
th‖p

2Ωp

T ⊥e

T ‖p

(p⊥e − p‖e)
(

∇∧ B
B0

)
· b

]
(5.3)

https://doi.org/10.1017/S0022377814000671 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377814000671


14 P. L. Sulem and T. Passot

r̃⊥⊥p = p⊥p

T ⊥p

mp

[
R̂

[1]
⊥

ρ

ρ0

+
1

Ωp

R̂
[2]
⊥

(
∇∧up

)
· b + R̂

[3]
⊥

T⊥p

T ⊥p

]
(5.4)

r̃⊥⊥e = 0. (5.5)

The widehat symbols refer to integral operators obtained by inverse Fourier transform,
with respect of the transverse vector k⊥, of functions indicated by Gothic script and
that we refer to as ‘Bessel coefficients’. They are explicit functions of the non-
dimensional square wavenumber b = k2

⊥r2
L/2 = k2

⊥T ⊥p/(mpΩ2
p), built from the

functions Γ0(b) and Γ1(b) defined by Γν(b) = e−bIν(b) where Iν is the modified
Bessel function of first kind. Bessel coefficients are listed in Table 1, together with
their asymptotic behavior in the large-scale limit b → 0, based on the expansion
Γ0(b) = 1 − b + 3

4
b2 − 5

12
b3 + O(b4) and Γ1(b) = 1

2
b − 1

2
b2 + 5

16
b3 + O(b4). For

consistency with the modeling of the H operator, the square wavenumber k2
⊥ is

replaced by k ·n · k in the definition of the variable b that enters the Bessel coefficients.
Using such a closure in the nonlinear context requires a moderate distortion of the
magnetic field lines.

5.1.2. Non-gyrotropic pressure tensor

The divergence of the non-gyrotropic pressure tensor, whose components are defined
by (∇ · Π)i = ∂jΠij , is written

∇ · Π = ∇ · [−An + B ε · b + b⊗Π‖ + Π‖⊗b], (5.6)

where the tensor within the square brackets can a priori differ from Π by a
zero-divergence contribution. Here, the additional contribution −(Π‖ · b)τ , a priori
present within the square brackets in order to prevent double counting, actually
vanishes. Furthermore, ε denotes the fundamental antisymetric third-rank tensor.
The expression of ∇ · Π given by equation (5.6) differs from that directly obtained
from the linear kinetic theory in Passot and Sulem (2007) and Passot et al. (2012),
by the replacement of the unit vector along the ambient field by the unit vector in
the direction of the local magnetic field. This transformation of the purely linear
expressions derived from the kinetic theory into nonlinear formulas involving the
local magnetic field, implies some arbitrariness. Inspection of (3.1)–(3.5) for the large-
scale FLR contributions nevertheless reveals that it is suitable to isolate the Hall
contribution EH (that scales like 1/Ωp) to the electric field and then to replace
c
B0

n : ∇E by −b · (∇ ∧ up) + c
B0

n : ∇EH , and ∇∧ cE
B0

· b by n : ∇up + b · (∇ ∧ cEH

B0
), thus

dropping subdominant nonlinear terms proportional to magnetic field derivatives.
The potentials A and B then rewrite

A = p⊥p

[ 1

Ωp

Â1 b · (∇∧up) + Â2

T⊥p

T ⊥p

]
(5.7)

B =
p⊥p

Ωp

[
B̂3 n : ∇up − B̂1 b ·

(
∇∧cEH

B0

)]
. (5.8)

Furthermore, we write

Π‖ =
1

Ωp

(2p‖p − p⊥p)
(

b ∧ ∂‖u + n · ∂‖
cEH

B0

)
− n · ∇C2 − b ∧ ∇D2, (5.9)

which implies Π‖ · b = 0, as previously mentioned. In (5.9), the first term originates
from the combination of contributions from the original potentials C and D
introduced in Passot et al. (2012) that are individually singular in the transverse
spectral plane. The non singular contributions C2 and D2 to these potentials take the
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Defining: behavior for b → 0

Λ1 = Γ0(b) − Γ1(b) 1 − 3b/2
Λ2 = bΛ1 b(1 − 3b/2)
Λ3 = 1 − Γ0(b) b(1 − 3b/4)

Bessel coefficients behavior for b → 0

A1 = 1 − Γ1/Λ2 − A2 1/2 − b/4
A2 = −Γ1/Γ0 −b/2
B1 = Λ1(Λ1/Λ3 + 2) − 1/b −1/4 − 17/48b
B2 = E3/b −3/4 + 13/48b
B3 = B2 − B1 −1/2
C1 = Λ1 − 1 −3b/2
C2 = Λ3/b 1 − 3b/4
C3 = C1/b −3/2
C4 = (C2 − 1)/b −3/4
D1 = Λ1/(Γ0 − Γ1/2 − Λ2) 1 + 3b/4
D2 = 1 − Λ1 − D1(Λ2 + Λ3) −b/2
D3 = D1/(1 + bD1) 1 − b/4
D4 = D2/(1 + bD1) −b/2
D5 = D4/b −1/2
D6 = D3Γ1 b/2
E1 = −Λ1E3 + 2Λ2 − Γ1 O(b2)
E3 = −1 + Λ2/Λ3 −3b/4
E4 = E1/b O(b)
E5 = E3/b −3/4
E6 = E4 − E5 3/4
F1 = Γ1/Λ2 + 2A2/b −1/2
G2 = (C2 − 1)/b −3/4
H1 = −2b + Γ1/Λ1 −3b/2
H2 = Γ0H1 + bΛ1 − Γ1 −b
H3 = Γ1 − 2)/Γ0 − 1 −3b/2
H4 = −Λ3/Λ2 + H3 −3b/2
R‖⊥ = Λ1 1
R1 = b(−4Λ2 + 3Γ0 − Γ1) 3b

R2 = b(−2Λ2 + Γ1) O(b2)
R3 = 2b2(Γ0 + Γ1) − 7bΓ1 −3b2/2

R
[1]
⊥ = −R2 − R3 O(b2)

R
[2]
⊥ = −R

[3]
⊥ + (R2Y − R3Γ0)/Λ2 7b/2

R
[3]
⊥ = −R1(b)/Γ0 − R2Z1 − R3(1 − A2) −3b

RNG
1 = 2Λ2 + Λ3 3b

RNG
2 = Λ1 1 − 3b/2

T1 = −Λ3 + E1 − E3 + b(B2 − B1) O(b2)
T2 = Γ0 + E1 − bB1 1 − 5b/4
Z1 = 1 + (Γ1 − 2)/Γ0 −1 − 5b/2
Z2 = Z1 + Λ3/Λ2 −7b/4

Table 1. Bessel coefficients and their asymptotic behavior for b → 0.

form

C2 =
T ⊥p

mpΩ2
p

(p⊥p − p‖p)Ĉ3 ∂‖
|B|
B0

+
p‖p

Ωp

Ĉ2

(cEH

B0

· b
)

− T ⊥p

mpΩ3
p

(p⊥p − 2p‖p)Ĉ4

c

B0

∂‖(n : ∇E) (5.10)
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and†

D2 = −
p⊥p

Ωp

[
D̂3 − β⊥

2(1 + β⊥)
D̂3T1

]
(up · b) +

vth‖p

Ωp

H√
π

[
p⊥pD̂3 −

p‖p

2
D̂6Z1

] T⊥p

T ⊥p

+
vth‖p

Ωp

H√
π

[
p⊥p

(T ⊥p

T ‖p

− 1
)
D̂3Γ0 −

p‖e

2

(T ⊥e

T ‖e

− 1
)
D̂6

] |B|
B0

−
vth‖p

Ω2
p

H√
π

[
p⊥pD̂3 −

p‖p

2
D̂6Z2

]
(∇∧up) · b +

p⊥p

Ω2
p

[
v2

�p(D̂3 + D̂5)

− (v2
A + v2

�e)
̂(T2 − 1)D3 +

(
v2

A +
p⊥e

ρ0

+ v2
�e

)
D̂3T1

1 + β⊥

](
∇∧ B

B0

)
· b

−
vth‖pp‖p

2Ωp

H√
π

D̂6

[ p‖e

p‖p

+
ρp

ρ0

]
+

p⊥p

Ωpρ0v
2
A

D̂3T1

1 + β⊥
(q⊥p + q⊥e)

+
p⊥p

Ω3
p

(
v2

�p −
p‖p

ρ0

)
D̂3∂‖

[(
∇∧cE

B0

)
· b

]
, (5.11)

where v2
�r = (p⊥r − p‖r )/ρ0 and β⊥ = 8π(p⊥p + p⊥e)/B

2
0 . It may furthermore be

useful in (5.10) and (5.11) to make the same replacements for c
B0

n : ∇E and ∇∧ cE
B0

· b
as described just before (5.7).

As already mentioned, when addressing questions such as plasma heating (Laveder

et al. 2013), all the terms involving Π (and then also S‖
⊥r and S⊥

⊥r ), are in contrast
to be retained in the gyrotropic pressure equations. In this case, we write Π =

Π⊥ + b ⊗ Π‖ + Π‖ ⊗ b where the tensor Π⊥ is given by (D 4), with here −�−1
⊥ = 1̂

k·n·k ,
and the condition that, in Fourier space, Π⊥ vanishes when k · n · k = 0.

5.1.3. Non-gyrotropic heat fluxes

We write

S⊥
⊥r = −(n · ∇Er + b ∧ ∇Fr ), (5.12)

where (again isolating the Hall electric field contribution)

Ep = −
p⊥pT ⊥p

mpΩ2
p

[
Ê4

(
∇∧cEH

B0

)
· b + Ê6 n : ∇up

]
(5.13)

Fp =
2p⊥pT ⊥p

mpΩp

[
− ( ̂1 + A2)

T ′
⊥p

T ⊥p

+
1

2Ωp

F̂1(∇∧up) · b
]
, (5.14)

together with Ee = 0 and Fe = 2 p⊥e

mpΩp
T ′

⊥e. Similarly,

S‖
⊥p = −

v2
th‖p

Ωp

(p⊥p − p‖p)b ∧ ∂‖b − n · ∇G2p − b ∧ ∇H2p, (5.15)

† Note a misprint in (B9) of Passot et al. (2012) that should read T
〉‖‡

= p⊥p{T1(b)
ik⊥ ·u⊥p

ikz
+

[T2(b)(1 +
v2
�e

v2
A

) − (1 +
v2
�p

v2
A

+
v2
�e

v2
A

)] jz

n0e
}. Furthermore, the term (1/ikz)(eEz/T ‖p) arising in (B8)

of this reference is determined through linearization of the electric field in the form 1
ikz

eEz

T ‖p
≈

−
p′

‖e

p‖p
+

(p‖e−p⊥e )

p‖p

B ′
z

B0
.
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where again the first term originates from a combination of the singular terms in the
potentials G and H defined in Passot et al. (2012). Note that, in order to ensure a
better matching with the large-scale asymptotic theory, we use here an expression of
H2p , derived in Appendix C, which is different from that given in Passot et al. (2012).
We have

G2p =
v2

th‖pT ⊥p

mpΩ3
p

(p⊥p − p‖p) Ĝ2 ∂‖

[
b ·

(
∇ ∧ B

B0

)]
(5.16)

H2p = −
p⊥p

mpΩp

T ′
‖p −

r̃‖⊥p

Ωp

+
p⊥p

Ωp

v2
th‖p

2

{
Ĥ1

T‖p

T ‖p

+ Ĥ2

[( p‖e

p‖p

−
(p‖e − p⊥e)

p‖p

|B|
B0

)
+

ρ

ρ0

+ Ĥ3

T⊥p

T ⊥p

− 1

Ωp

Ĥ4(∇∧up) · b
]}

. (5.17)

For the electrons, the formula simplifies into

S‖
⊥e =

v2
th‖p

Ωp

T ‖e

T ‖p

(p⊥e − p‖e)b ∧ ∂‖b −
v2

th‖p

2Ωp

p⊥eb ∧ ∇
(

T‖e

T ‖p

)
. (5.18)

Note that, as the present description of the kinetic effects is only linearly accurate,
one can consistently neglect the contributions of terms of the form ∇· (b ∧ ∇f ) arising

in ∇ · S‖
⊥r and ∇ · S⊥

⊥r .

5.1.4. Non-gyrotropic 4th-rank cumulants

For the non-gyrotropic contributions to the fourth-rank cumulants, we have RNG
‖r

=

0, together with†

p⊥p

ρp

∇ · (n · Π) + RNG
⊥p ≈ T ⊥p

mp

(∇⊥ · Π⊥) + RNG
⊥p

= − T ⊥p

mp

(p⊥p − p‖p)
[
R̂NG

1 ∂‖
|B|
B0

− 1

Ωp

̂RNG
2 k2

⊥
cEH · b

B0

]
− T ⊥p

mpΩp

(p⊥p − 2p‖p)R̂NG
2 b ·

[
∇

(
∇ · cE

B0

)
− �

cE
B0

]
(5.19)

and

RNG
⊥e =

T ⊥e

mpΩp

(p⊥e − p‖e)
̂(−k2

⊥)
[ 3T ⊥e

mpΩp

∂‖
|B|
B0

+
c(EH · b)

B0

]
+

T ⊥e

mpΩp

(p⊥e − 2p‖e)b ·
[
∇

(
∇ · cE

B0

)
− �

cE
B0

]
. (5.20)

As previously, it may be convenient to rewrite the last terms of the two above
equations by isolating the contribution of the Hall electric field and simplifing the
resulting expressions in a way consistent with the linear kinetic theory. This leads to
replace b · [∇(∇ · cE

B0
) − �cE

B0
] by −∂‖[b · (∇ ∧ up)] + ∂‖(∇ · cEH

B0
) − �(b · cEH

B0
), which

appears preferable at the level of numerical coding.

† The present definition of RNG
2 (b) differs from that given Passot and Sulem (2007) and Passot

et al. (2012) where an additional factor b is included.
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5.1.5. A simplified closure for the electrons

It turns out that the simplified model where, instead of obeying dynamical equations,
the electron gyrotropic fluxes are given by equations (3.17) and (3.19), leads to results
that are essentially identical to those obtained by closing at the level of the fourth-
rank moments for both particle species. An advantage of this description is that the
terms involving the ion-electron mass ratio become purely dissipative. In numerical
simulations, the linear contribution of these terms can then be easily handled implicitly
(thus permitting a significant increase of the time step), after replacing, for the
electrons, pressure by temperature equations.

5.2. Matching large-scale asymptotics and sub-ion-scale kinetic closure

In Sec. 3, we presented expressions of the non-gyrotropic moments (hereafter indicated
by the superscripts LS), derived in a large-scale fully-nonlinear asymptotics, while
the corresponding formulas given in Sec. 5.1 are closure relations based on the linear
low-frequency kinetic theory. One easily checks that the two descriptions overlap,
when linearized about a homogeneous equilibrium plasma with a uniform ambient
field and taken to leading-order in a large-scale expansion. This suggests to isolate,
in the kinetic-based closures, the leading order large-scale contributions to the non-
gyrotropic pressure and heat fluxes, and replace them by the fully nonlinear large-scale
expressions given in Sec. 3. This results in formulas which are asymptotically exact
to leading order in a large-scale asymptotics, but also reproduce at all the scales the
linear properties of the low-frequency modes. Such a model provides in particular
a relatively accurate description of the work of the non-gyrotropic pressure force.
At the linear level, it identifies with the model discussed in Sec. 5.1, which was
extensively tested in Passot et al. (2012) and Hunana et al. (2013a,b). The closure
of the hierarchy equations for the gyrotropic moments is indeed done as in Sec. 5.1,
either at the level of the fourth order cumulants for both the ions and the electrons
or, more conveniently, by closing the electron hierarchy at the level of the heat fluxes,
as previously discussed. The non-gyrotropic moments then take the form described
below.

5.2.1. Ion non-gyrotropic pressure tensor

We write

∇ · Π = ∇ · ΠLS + ∇ · [−ASSn + BSSε · b + b⊗ΠSS
‖ + ΠSS

‖ ⊗b]. (5.21)

Here ΠLS is given by (3.1)–(3.5) where, in spite of the fluid hierarchy closure performed
at the level of the fourth-rank moments, the perpendicular heat flux q⊥p is given by
equation (3.18), in order to ensure a correct matching with the small-scale formula.
Furthermore,

ASS = p⊥p

[ 1

Ωp

̂(
A1 − 1

2

)
b · (∇∧up) + Â2

T⊥p

T ⊥p

]
(5.22)

BSS =
p⊥p

Ωp

[
− B̂1b ·

(
∇∧cEH

B0

)
+

̂(
B3 +

1

2

)
n : ∇up

]
, (5.23)

and

Π‖
SS = −n · ∇C2 − b ∧ ∇DSS

2 (5.24)
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where

DSS
2 = −

p⊥p

Ωp

[ ̂(D3 − 1) − β⊥

2(1 + β⊥)
D̂3T1

]
(up · b)

+
vth‖p

Ωp

H√
π

[
p⊥p

̂(D3 − 1) −
p‖p

2
D̂6Z1

] T⊥p

T ⊥p

+
vth‖p

Ωp

H√
π

[
p⊥p

(T ⊥p

T ‖p

− 1
) ̂(D3Γ0 − 1) −

p‖e

2

(T ⊥e

T ‖e

− 1
)
D̂6

] |B|
B0

−
vth‖p

Ω2
p

H√
π

[
p⊥p

̂(D3 − 1) −
p‖p

2
D̂6Z2

]
(∇∧up) · b

+
p⊥p

Ω2
p

[
v2

�p( ̂D3 − 1 + D5) − (v2
A + v2

�e)(
̂T2 − 1)D3

+ (v2
A +

p⊥e

ρ0

+ v2
�e)

D̂3T1

1 + β⊥

](
∇∧ B

B0

)
· b −

vth‖pp‖p

2Ωp

H√
π

D̂6

[ p‖e

p‖p

+
ρp

ρ0

]
+

p⊥p

Ωpρ0v
2
A

D̂3T1

1 + β⊥
(q⊥p + q⊥e) +

p⊥p

Ω3
p

(
v2

�p −
p‖p

ρ0

)
D̂3∂‖

[(
∇∧cE

B0

)
· b

]
. (5.25)

Again in the last term (∇∧ cE
B0

) · b can be replaced as indicated before (5.7).

Similarly, the full gyroviscous tensor is rewritten Π = ΠLS + ΠSS , where

ΠSS = ΠSS
⊥ + b ⊗ ΠSS

‖ + ΠSS
‖ ⊗ b. (5.26)

Defining the tensor r = b · ε, we have

ΠSS
⊥ij = [nipnjq − riprjq]∂p∂q(−�−1ASS) + (niprjq + njpriq)∂p∂q(−�−1BSS), (5.27)

with

− �−1ASS =
p⊥pT ⊥p

mpΩ2
p

[ 1

Ωp

̂[1

b

(
A1 − 1

2

)]
b · (∇∧up) +

̂[A2

b

] T ′
⊥p

T ⊥p

]
(5.28)

− �−1BSS =
p⊥pT ⊥p

mpΩ3
p

[
−

̂[1

b
B1

]
b ·

(
∇∧cEH

B0

)
+

[ ̂1

b

(
B3 +

1

2

)]
n : ∇up

]
. (5.29)

5.2.2. Non-gyrotropic heat fluxes

As previously we write S⊥
⊥p = S⊥LS

⊥p + S⊥SS
⊥p and S

‖
⊥p = S

‖LS

⊥p + S
‖SS

⊥p , where S⊥LS
⊥p and

S
‖LS

⊥p are given by equations (3.6) and (3.7), and

S⊥SS
⊥p = −n · ∇E2p − b ∧ ∇FSS

2 (5.30)

S‖SS

⊥p = −n · ∇G2p − b ∧ ∇HSS
2 , (5.31)

with

FSS
p =

2T ⊥pp⊥p

mpΩp

[
− Â2

T⊥p

T ⊥p

+
1

2Ωp

F̂1(∇∧up) · b
]

(5.32)
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H2p =
p⊥p

Ωp

v2
th‖p

2

{
Ĥ1

T‖p

T ‖p

+ Ĥ2

[( p‖e

p‖p

−
(p‖e − p⊥e)

p‖p

|B|
B0

)
+

ρ

ρ0

+ Ĥ3

T⊥p

T ⊥p

− 1

Ωp

Ĥ4(∇∧up) · b
]}

. (5.33)

In this linear description of the small scales, the contributions of FSS
2p and HSS

2p

can be neglected in evaluating ∇ · S‖SS

⊥p and ∇ · S⊥SS
⊥p . Furthermore, in the present

model, the contribution of σp to the ion heat flux tensor identifies with its large-scale

expression. The electron non-gyrotropic heat flux vectors S‖
⊥e and S⊥

⊥e also reduce to
the large-scale contributions.

6. Conclusion
We have presented kinetic-based closures of the fluid hierarchy, together with

various possible descriptions of the ion FLR corrections. A model including a fully
nonlinear description of the non-gyrotropic moments, computed to leading order in
a large-scale asymptotics, and involving a closure of the fluid hierarchy at the level
of the ion and electron heat fluxes, was in particular found to provide unexpectedly
good results. It indeed leads to an accurate description of collisionless plasmas with
weak temperature anisotropy, when concentrating on the dispersion and damping
of kinetic Alfvén waves, even at scales that may be smaller than the ion gyroscale,
thus significantly beyond the supposed validity range of the asymptotics. A main
observation concerning this approach is the need of consistently including the first
order corrections for all the retained moments, in order to prevent spurious instabilities
in the presence of Landau damping. Large-scale models nevertheless fail to provide
a satisfactory description of the mirror instability that develops in the presence of a
temperature anisotropy. This micro-instability is in contrast well reproduced by the
FLR-Landau fluid model (Passot and Sulem 2007; Passot et al. 2012), which involves
a linear description of the FLR corrections based on the low-frequency kinetic theory.
This approach is here revisited in order to take into account the local distortion of the
magnetic field lines in the expressions of the kinetic quantities, a procedure needed to
ensure well-posedness in the nonlinear regime. Such a model was used in Passot et al.
(2014) to perform the first fluid simulations of the ion dissipation range. We also
propose a new approach where a linearly accurate modeling of the small-scale FLR
corrections is supplemented to their fully nonlinear description at large scales. It is also
of interest to point out that both with the previously developed FLR-Landau fluid
model and the present matching procedure, a satisfactory accuracy is obtained when
the fluid hierarchy for the ions is closed at the level of the fourth-rank moments, and
that for the electrons at the level of the heat fluxes. Numerically, this description has
the main advantage of permitting an easy implementation of a semi-implicit scheme
for the contributions associated with electron Landau damping, which significantly
reduces the constraint on the time step prescribed in a purely explicit scheme by the
large value of the proton-electron mass ratio.

Finally, we note that, except for the Landau damping term, the large-scale model
is local in physical space, which is a convenient feature in the perspective of finite-
difference numerical simulations on computers with a massively parallel architecture.
In this context, the possibility of designing a satisfactory local approximation of the
Landau operator appears an interesting challenge, in particular when planning to
retain nontrivial boundary conditions. Differently, the FLR-Landau fluid and the
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model based on the matching procedure involve non-local operators in Fourier space
and require the use of a pseudo-spectral method in a periodic domain.
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Appendix A. Large-scale closure for the gyrotropic heat fluxes
In order to estimate q‖r , we start from the kinetic expression given by (B12) of

Passot and Sulem (2007), taken in the large-scale limit. Combining with the kinetic
expression (B7) of the same reference for the parallel temperature fluctuations T ′

‖r

given in the same reference, we are led to

q‖r = p‖rvth‖r

ζr [1 − 3R(ζr ) + 2ζ 2
r R(ζr )]

1 − R(ζr ) + 2ζ 2
r R(ζr )

T ′
‖r

T ‖r

. (A 1)

Replacing the plasma response function R(ζr ) [where ζr = ω/(|k‖|vth‖r )] by the three-
pole Padé approximant

R(ζr ) ≈ −ζr/2 − a0

ζ 3
r − a2ζ 2

r − a1ζr − a0

, (A 2)

where a0 = i sgn(kz)/
√

π , a1 = 3/2 and a2 = −2i sgn(kz)/
√

π , we get

q‖r = −p⊥rvth‖r

2i√
π

sgn(kz)
T ′

‖r

T ‖r

. (A 3)

Similarly, we start from the kinetic expression for q⊥r given by (B13) of Passot and
Sulem (2007) again taken in the large-scale limit. Here we resorted to replace the
plasma response function by a one-pole Padé approximant, thus writing ζrR(ζr ) ≈

i√
π
sgn(kz)(1 − R(ζr )). Using also (24) and (A5) of Passot and Sulem (2007), we finally

get

q⊥p = −
p⊥p

Ωp

(p⊥p − p‖p)

ρ0

(
∇⊥ ∧ B⊥

B0

)
z

− p⊥pvth‖p

i sgn(kz)√
π

×
[ T⊥p

T ⊥p

− 1

Ωp

(∇⊥ ∧ u⊥p)z +
(T ⊥p

T ‖p

− 1
)Bz

B0

]
(A 4)

and, at scales large relatively to the electron gyroscale,

q⊥e =
p⊥e

Ωp

(T ⊥e − T ‖e)

mp

(
∇ ∧ B⊥

B0

)
z

− p⊥evth‖e

i sgn(kz)√
π

[ T⊥e

T ⊥e

+
(T ⊥e

T ‖e

− 1
) |B|

B0

]
. (A 5)

Appendix B. The ‘Bessel coefficients’
The kinetic-based closures described in Sec. 5 involve various functions, we refer

to as Bessel coefficients, which are constructed from the functions Γ0(b) and Γ1(b).
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They are listed in Table 1, together with their asymptotic behavior in the large-
scale limit b → 0, based on the expansion Γ0(b) = 1 − b + 3

4
b2 − 5

12
b3 + O(b4) and

Γ1(b) = b
2

− b2

2
+ 5

16
b3 + O(b4).

Appendix C. An alternative modeling of the Hp potential
We present here an alternative to the computation of the potential Hp given in

Passot et al. (2012), more appropriate for matching with the large-scale asymptotics.
For this purpose, we start from the expression of Hp obtained from the low-
frequency linear kinetic theory given by (B11) of Passot and Sulem (2007), that we
rewrite Hp = H1p + H2p with (in Fourier space)

H1p = − 2

Ωp

T ⊥p − T ‖p

mp

k2
z

k2
⊥

Bz

B0

(C 1)

and

H2p =
p‖p

Ωp

T ⊥p

mp

T ⊥p

T ‖p

(Γ0 − Γ1)(1 − R(ζp) + 2ζ 2
pR(ζp))

( eΨ

T ⊥p

+ 2
Bz

B0

)
, (C 2)

where Ψ denotes the electric potential defined by Ez = −∂zΨ . Using the kinetic
formula for the parallel temperature fluctuations given by (B7) of Passot and Sulem
(2007), we write

H2p =
p‖p

Ωp

T ⊥p

mp

{
−

T ′
‖p

T ‖p

+
T ⊥p

T ‖p

(1 − R + 2ζ 2
pR)

[
(Γ0 − Γ1)

Bz

B0

− Γ1

eΨ

T ⊥p

]}
(C 3)

or, with the kinetic formula of r̃‖⊥p given by (B18) of Passot and Sulem (2007),

H2p = −
p⊥p

mpΩp

T ′
‖p −

r̃‖⊥p

Ωp

+
p⊥p

Ωp

T ⊥p

mp

(1 − R + 2ζ 2
pR)

×
{

[2b(Γ0 − Γ1) − Γ1]
Bz

B0

+ [b(Γ0 − Γ1) − Γ1]
T ‖p

T ⊥p

eΨ

T ‖p

}
. (C 4)

Using again (B7) of Passot and Sulem (2007) to express

(1 − R + 2ζ 2
pR)

Bz

B0

=
T ‖p

T ⊥p

1

Γ0 − Γ1

(
T ′

‖p

T ‖p

+ Γ0(1 − R + 2ζ 2
pR)

eΨ

T ‖p

)
, (C 5)

we get

H2p = −
p⊥p

mpΩp

T ′
‖p −

r̃‖⊥p

Ωp

+
p⊥p

Ωp

v2
th‖p

2

{
2b(Γ0 − Γ1) − Γ1

Γ1 − Γ0

T ′
‖p

T ‖p

+
[
Γ0

2b(Γ0 − Γ1) − Γ1

Γ1 − Γ0

+ b(Γ0 − Γ1) − Γ1

]
(1 + R + 2ζ 2

pR)
eΨ

T ‖p

}
, (C 6)

where it is easily checked that (Γ1 − Γ0) does not vanish.
At this stage, defining Z1 = ζpR eΨ

T ‖p
, we are resorted to rewrite

(1 − R + 2ζ 2
pR)

eΨ

T ‖p

=
1 − R + 2ζ 2

pR

ζpR
Z1 (C 7)
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where, using a one-pole Padé approximant for R, the first factor in the right-hand
side is replaced by −

√
πH and the second one is given by (8) of Passot et al. (2012)

in the form

Z1 =
H√
π

{
− 1

ikz

eEz

T ‖p

+
ρ ′

p

ρ0

+
(Γ1 − 2

Γ0

+ 1
) T ′

⊥p

T ⊥p

− 1

Ωp

(
1 − Γ0

b(Γ0 − Γ1)
+

Γ1 − 2

Γ0

+ 1

)
(i�k⊥ ×�u⊥p)z

}
, (C 8)

with

1

ikz

eEz

T ‖p

≈ −
(

p′
‖e

p‖p

−
(p‖e − p⊥e)

p‖p

B ′
z

B0

)
. (C 9)

We then easily get (5.17).

Appendix D. Intrinsic form of the non-gyrotropic pressure tensor
Let us consider the tensor Π⊥ that in the linear description is characterized in

Fourier space by the elements (Passot et al. 2012)

Πxx = −Πyy = −
k2

x − k2
y

k2
⊥

A + 2
kxky

k2
⊥

B (D 1)

Πyx = Πxy = −2
kxky

k2
⊥

A −
k2

x − k2
y

k2
⊥

B, (D 2)

with respect to an orthonormal basis (e1, e2, e3) where e3 is taken along the ambient

magnetic field. We define k̂⊥ = k⊥/|k⊥| = cos ψ e1 + sinψ e2 and k̂
⊥
⊥ = k̂⊥∧e3 =

sin ψ e1 − cos ψ e2. The transverse basis vectors then read e1 = cosψ k̂⊥ + sinψ k̂
⊥
⊥

and e2 = sinψ k̂⊥ − cosψ k̂
⊥
⊥. This leads to

Π⊥ = (− cos 2ψ A + sin 2ψ B)(e1⊗e1 − e2⊗e2)

− (sin 2ψ A + cos 2ψ B)(e1⊗e2 + e2⊗e1)

= −A (k̂⊥⊗k̂⊥ − k̂
⊥
⊥⊗k̂

⊥
⊥) + B (k̂⊥⊗k̂

⊥
⊥ + k̂

⊥
⊥⊗k̂⊥). (D 3)

In physical space,

Π⊥ = −[∇⊥⊗∇⊥ − (b∧∇)⊗(b∧∇)]�−1
⊥ A + [∇⊥⊗(b∧∇) + (b∧∇)⊗∇⊥]�−1

⊥ B, (D 4)

whose components are given by (defining the tensor r = b · ε)

Π⊥i,j = [nipnjq − riprjq]∂p∂q(−�−1
⊥ A) + (niprjq + njpriq)∂p∂q(−�−1

⊥ B). (D 5)
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