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The Wess–Zumino model

The simplest four-dimensional quantum field theory with supersymmetry realized

linearly, i.e. where the transformed field is a linear function of the original fields,

was written down in 1974 by Julius Wess and Bruno Zumino.1 The Wess–Zumino

(WZ) model is interesting not only because it illustrates many of the characteristics

of more complicated supersymmetric models within a toy framework (this forms the

subject of this chapter), but also because Yukawa interactions of the supersymmetric

SM can be written as a straightforward extension of this model.

3.1 The Wess–Zumino Lagrangian

3.1.1 The field content

Let us consider a field theory with the Lagrangian given by

L = Lkin + Lmass. (3.1a)

1 J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974). This is not, however, the first paper on (relativistic)
spacetime supersymmetry. This distinction belongs to Y. Golfand and E. Likhtman, JETP Lett. 13, 323 (1971)
who introduced the supersymmetric extension of the Poincaré algebra. Motivated by the possibility that the
neutrino could be the Goldstone fermion (see Chapter 7) associated with the spontaneous breakdown of a
fermionic symmetry, D. Volkov and V. Akulov, JETP Lett. 16, 621 (1972) and Phys. Lett. B46, 109 (1973)
independently constructed a model with non-linearly realized supersymmetry. Local supersymmetry was first
considered by D. Volkov and V. Soroka, JETP, 18, 312 (1973). In this remarkable paper, they noticed the need for
dynamical spin 2 and spin 3

2 fields, noted the connection with gravity, and also what we now refer to as the super-
Higgs mechanism; see Chapter 10. Wess and Zumino wrote their seminal paper quite unaware of any of these
developments in what was formerly the Soviet Union. Two-dimensional world sheet supersymmetry (which
is conceptually distinct from the spacetime supersymmetry that is the subject of this book) was discovered in
1971 in string models by A. Neveu and J. Schwarz, Nucl. Phys. B31, 86, (1971), and by P. Ramond, Phys.
Rev. D3, 2415 (1971), and recognized as such by J. Gervais and B. Sakita, Nucl. Phys. B34, 632 (1971).
We refer the interested reader to SUSY 30, Proc. of the International Symposium Celebrating 30 Years of
Supersymmetry, K. Olive, S. Rudaz and M. Shifman, Editors, Nucl. Phys. B 101 (Proc. Suppl.) (2001), and
to The Supersymmetric World, G. Kane and M. Shifman, Editors (World Scientific, 2000) for a view of these
developments through the eyes of the pioneers of supersymmetry.
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24 The Wess–Zumino model

Lkin = 1

2
(∂μ A)2 + 1

2
(∂μ B)2 + i

2
ψ∂/ ψ + 1

2
(F2 + G2). (3.1b)

Lmass = −m[
1

2
ψ̄ψ − G A − F B]. (3.1c)

Here, A and B are real scalar fields with mass dimension [A] = [B] = 1, while

ψ is a 4-component Majorana spinor field with mass dimension [ψ] = 3/2. A

Majorana spinor is its own charge conjugate, so that

ψ = ψc = Cψ̄T , (3.2a)

where the charge conjugation matrix C satisfies

Cγ T
μ C−1 = −γμ (3.2b)

CT = C−1 = −C (3.2c)

and

[C, γ5] = 0. (3.2d)

Notice that (3.2a) is a constraint equation that says only two of the four components

of ψ are independent. For instance, projecting out the right chiral component of

(3.2a) yields

ψR ≡ 1 + γ5

2
ψ = Cγ 0 1 − γ5

2
ψ∗ = Cγ 0ψ∗

L (3.3)

which shows that ψR is completely determined by ψL.2

The fields F and G in (3.1b) and (3.1c) are also real scalar fields with mass

dimension [F] = [G] = 2. Since they have no kinetic energy term, these fields

do not propagate, and their Euler–Lagrange equations are purely algebraic. It is,

therefore, simple to write F and G in terms of the propagating fields, and eliminate

them from the Lagrangian altogether. For this reason, these fields are customarily

referred to as auxiliary fields. Explicitly, the Euler–Lagrange equations,

∂L
∂φi

− ∂μ

∂L
∂(∂μφi )

= 0, (3.4)

for the Lagrangian (3.1a), with φi = F and G, give

F = −m B, G = −m A. (3.5)

We thus see that F and G are not dynamically independent. The reason for intro-

ducing the auxiliary fields F and G, as we will soon see, is that it allows us to

2 Throughout this book we use the convention that γ5 is a real, symmetric matrix with γ 2
5 = 1.
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3.1 The Wess–Zumino Lagrangian 25

write supersymmetric variations as linear transformations on the fields, even in an

interacting theory. It is interesting to see that the number of bosonic and fermionic

degrees of freedom in the Lagrangian (3.1a) exactly balance, regardless of whether

the Euler–Lagrange equations are satisfied: without equations of motion, there are

four real components for the Majorana spinor field which are balanced by the four

real scalars, A, B, F , and G. We can, however, eliminate the auxiliary fields using

(3.5) to obtain the Lagrangian for the dynamically independent fields which then

takes the form,

L = 1

2
(∂μ A)2 + 1

2
(∂μ B)2 + i

2
ψ̄∂/ ψ − 1

2
m2(A2 + B2) − 1

2
mψ̄ψ. (3.6)

This is the Lagrangian for free fields A, B, and ψ . When these fields obey their

respective equations of motion, their quanta correspond to two spin zero particles

A and B, and a self-conjugate, spin 1
2

particle, all with the same mass. Once again,

we see that there is an exact match between the bosonic and fermionic degrees of

freedom.

3.1.2 SUSY transformations and invariance of the action

In quantum field theory, a symmetry transformation is a transformation which leaves

the equations of motion for the fields of the theory invariant. This is guaranteed if the

action S = ∫
d4xL is left invariant under the transformation. In particular, if the La-

grangian L is invariant, or if it changes by a total derivative L → L′ = L + ∂μ�μ,

the action remains invariant. This can be seen by applying the four-dimensional

version of Gauss’ theorem,
∫

V d4x∂μ�μ = ∫

∂V dσ�μnμ, to the transformed La-

grangian. The quantity �μ vanishes on the boundary ∂V as long as it is assumed

that the fields vanish at spatial infinity, and field variations are equal to zero at the

end points of the time integration.

Wess and Zumino noted that under the following set of infinitesimal field trans-

formations, where A → A + δA, etc., with

δA = iᾱγ5ψ, (3.7a)

δB = −ᾱψ, (3.7b)

δψ = −Fα + iGγ5α + ∂/ γ5 Aα + i∂/ Bα, (3.7c)

δF = iᾱ∂/ ψ, (3.7d)

δG = ᾱγ5∂/ ψ, (3.7e)

the Lagrangian (3.1a) changes by a total derivative. Here, α is a spacetime-

independent anticommuting Majorana spinor parameter with dimension [α] =
−1/2. The linear transformations (3.7a–3.7e), which clearly mix boson fields with

fermion fields, are known as supersymmetry transformations.
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26 The Wess–Zumino model

To verify the invariance of the action under the above transformations, we first

note that bilinears of Majorana spinors have special symmetry properties. For ex-

ample, for Majorana spinors ψ and χ ,

ψ̄χ = ψT Cχ = ψaCabχb = −χb(−Cba)ψa = χT Cψ = χψ, (3.8a)

where the first minus sign in step three is due to the anticommutativity of spinor

fields and the second is due to the antisymmetry of C .3 In a similar fashion, using

the properties γ T
5 = γ5 and C−1γ T

μ C = −γμ, it is straightforward to show that

ψ̄γ5χ = χ̄γ5ψ, (3.8b)

ψ̄γμχ = −χ̄γμψ, (3.8c)

ψ̄γμγ5χ = χ̄γμγ5ψ, (3.8d)

ψ̄σμνχ = −χ̄σμνψ. (3.8e)

Exercise As discussed in the previous footnote, when χ = ψ , we have to worry
that χ and ψ̄ do not perfectly anticommute. Except for the case μ = 0, in
(3.8c), the unwanted delta function term disappears because T r (γ 0�) = 0, for
� = γ5, γk, γ5γμ and σμν . This trace does not, however, vanish for � = γ0. Show
that (3.8c) still holds if we understand the field product to be normal ordered.

Now we apply the supersymmetry transformations to each term ofLkin, and make

use of the product rule ∂μ( f · g) = ∂μ f · g + f · ∂μg and the relations (3.8a–3.8e):

1

2
δ[(∂μ A)2] = (∂μ A)∂μδA = i∂μ Aᾱγ5∂μψ,

= ∂μ(i∂μ Aᾱγ5ψ) − i�Aᾱγ5ψ, (3.9a)

1

2
δ[(∂μ B)2] = −∂μ Bᾱ∂μψ,

= ∂μ(−∂μ Bᾱψ) + �Bᾱψ, (3.9b)

i

2
δ[ψ̄∂/ ψ] = i

2
[δψ̄∂/ ψ + ψ̄∂/ δψ]

= ∂μ(− i

2
F ᾱγμψ) + iᾱ∂/ Fψ + ∂μ(−1

2
Gᾱγ5γμψ)

− ᾱ∂/ Gγ5ψ + ∂μ(
−i

2
ᾱγ5∂/ Aγμψ) + iᾱγ5�Aψ

+ ∂μ(
1

2
ᾱ∂/ Bγμψ) − ᾱ�Bψ, (3.9c)

1

2
δ(F2) = iF ᾱ∂/ ψ

3 If χ = ψ , then the fields (at equal times) do not anticommute to zero but to a multiple of γ0 times a delta
function. Since γ0 is traceless, the result in (3.8a) still holds.
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3.1 The Wess–Zumino Lagrangian 27

= ∂μ(iF ᾱγμψ) − iᾱ∂/ Fψ, (3.9d)

1

2
δ(G2) = Gᾱγ5∂/ ψ

= ∂μ(Gᾱγ5γμψ) + ᾱ∂/ Gγ5ψ, (3.9e)

where � = ∂μ∂μ = ∂2/∂t2 − ∂2/∂x2 − ∂2/∂y2 − ∂2/∂z2 = ∂/ ∂/ . By combining

the terms contributing to Lkin in Eq. (3.9a–3.9e), we see that

δLkin = ∂μ(−1

2
ᾱγμ∂/ Bψ + i

2
ᾱγ5γμ∂/ Aψ + i

2
F ᾱγμψ + 1

2
Gᾱγ5γμψ), (3.10a)

so that Lkin changes by a total derivative under a SUSY transformation. The reader

can similarly check that δLmass is a total derivative.

Exercise Show that

δLmass = ∂μ(m Aᾱγ5γμψ + im Bᾱγμψ) (3.10b)

under the supersymmetry transformations (3.7a–3.7e).

We now recall Noether’s theorem which states that for every continuous sym-

metry transformation in a field theory, there is a corresponding current which is

conserved, as long as the field equations are satisfied. For the case at hand, where

δL = ∂μ�μ, the current is given by

ᾱ jμ(x) =
∑

fields φi

∂L
∂(∂μφi )

δφi − �μ, (3.11)

with φi = A, B, and ψ . The variations δφi as well as the quantity �μ depend

linearly on the transformation parameter ᾱ. The contributions to jμ from the A, B,

and ψ fields are

∂L
∂(∂μ A)

δA = ∂μ Aiᾱγ5ψ, (3.12a)

∂L
∂(∂μ B)

δB = ∂μ B(−ᾱψ), and (3.12b)

∂L
∂(∂μψ)

δψ = ᾱ[
1

2
(iF + Gγ5)γ μ + 1

2
∂/ (−iAγ5 − B)γ μ]ψ. (3.12c)

Combining the above with (3.10a) and (3.10b), we can explicitly construct the

current (known in this case as the supercurrent). Notice that the supercurrent itself

carries a spinorial index since its time component has to integrate to the spinor

generator of supersymmetry transformations. We find

jμ = ∂/ (−iAγ5 − B)γ μψ + im(iAγ5 − B)γ μψ. (3.13a)
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28 The Wess–Zumino model

For later use, notice that the supercurrent may also be written as,

jμ = ∂/ (−iAγ5 − B)γ μψ + (Gγ5 + iF)γ μψ. (3.13b)

Exercise Show that ∂μ jμ
a = 0 if the fields A and B satisfy the Klein–Gordon equa-

tion, and ψ satisfies the Dirac equation.

The conserved charges associated with the current jμ
a (x) are then given by

Qa =
∫

j0
a (x)d3x . (3.14)

In the next section, we will explicitly compute the super-charge Qa for the WZ

Model, and show that it indeed generates the SUSY transformations (3.7a–3.7e) as

long as the field equations hold.

Exercise Verify that if we substitute the solutions (3.5) to the Euler–Lagrange
equations for F and G into the SUSY transformation laws (3.7d–3.7e), the resulting
“on-shell” transformations are consistent with (3.7a) and (3.7b) as long as A, B,
and ψ satisfy their equations of motion.

3.1.3 The chiral multiplet

For the purposes of the development of superfield calculus, we remark that the

fields of the WZ model can be conveniently written in terms of complex fields,

S = 1√
2

(A + iB)

ψL = 1 − γ5

2
ψ (3.15)

F = 1√
2

(F + iG)

where S, ψL, and F transform into one another under the SUSY transformations

(3.7a–3.7e). It is straightforward to check that these transformations can be written

as,

δS = −i
√

2ᾱψL, (3.16a)

δψL = −
√

2FαL +
√

2∂/SαR, (3.16b)

δF = i
√

2ᾱ∂/ ψL . (3.16c)
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3.1 The Wess–Zumino Lagrangian 29

Since ψR is not independent of ψL, we only have to specify how ψL transforms.

Thus, S, ψL, and F together constitute an irreducible supermultiplet in much the

same way that the proton and neutron form a doublet of isospin. Further, analogous

to the isospin formalism that treats the nucleon doublet as a single entity, there is a

formalism known as the superfield formalism that combines all three components

of the supermultiplet into a superfield Ŝ. Since only one chiral component of the

Majorana spinor ψ enters the transformations, such superfields are referred to as

(left) chiral superfields. Because the lowest spin component of the multiplet has

spin zero, this superfield is known as a left-chiral scalar superfield. We will defer

detailed discussion of the superfield formalism until Chapter 5.

3.1.4 Algebra of the SUSY charges

We have already seen in Chapter 1 that a continuous symmetry transformation can be

written in terms of the corresponding generator. This is also true of supersymmetry

transformations, the difference being that the parameter of the transformation α is

a Majorana spinor whose components anticommute with themselves and also with

fermionic operators. Just as in (1.4), we may write the change of the field S under

an infinitesimal SUSY transformation as,

S → S ′ = eiᾱQSe−iᾱQ ≈ S + [iᾱQ,S] = S + δS ≡ (1 − iᾱQ)S . (3.17)

Here, Q is the (Majorana) spinor generator of the SUSY transformation except

in the last equality, where we have abused notation in that Q there denotes the

representation of the super-charge generator (explicitly worked out in Chapter 5),

in the same way that the translation generator Pμ is represented by i∂μ when we

write [Pμ,S] = −i∂μS. We thus write the change of the field S as δS = −iᾱQS.

We can now work out the algebra for the Q’s and their conjugates Q̄ by considering

the commutator of two successive SUSY transformations – the first by parameter

α1, and the second by parameter α2. For the case of the scalar field S, since δ1S =
−√

2iᾱ1ψL, then

(δ2δ1 − δ1δ2)S = −2i

{

−F ᾱ1

1 − γ5

2
α2 + ᾱ1γ

μ 1 + γ5

2
α2∂μS

}

+2i

{

−F ᾱ2

1 − γ5

2
α1 + ᾱ2γ

μ 1 + γ5

2
α1∂μS

}

= 2iᾱ2γ
μα1∂μS

= −2ᾱ2γ
μα1[Pμ,S]. (3.18)
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30 The Wess–Zumino model

We can work out the same commutator in terms of the SUSY generator Q using

δS = [iᾱQ,S] to obtain,

δ2δ1S = [iᾱ2 Q, δ1S] = [
iᾱ2 Q, [iQ̄α1,S]

]

= − [
iQ̄α1, [S, iᾱ2 Q]

] − [
S, [iᾱ2 Q, iQ̄α1]

]
, (3.19)

where in the last step we have used the Jacobi identity,

[[A, B], C] + [[B, C], A] + [[C, A], B] = 0,

that holds for any three bosonic operators, A, B, and C , as the reader may easily

verify. Applying (3.19) twice, we readily obtain

(δ2δ1 − δ1δ2)S = −ᾱ2aα1b[{Qa, Q̄b},S]. (3.20)

Finally, by equating the right-hand sides of (3.18) and (3.20) we can write the

algebra obeyed by the SUSY generators as,

{
Qa, Q̄b

} = 2(γ μ)ab Pμ (3.21)

where Pμ is the Poincaré group generator of spacetime translations.

A similar calculation can be performed for the commutator of SUSY transfor-

mations on the field ψL. It is straightforward to show

(δ2δ1 − δ1δ2)ψL = −2i[(ᾱ2∂/ ψL)α1L − (ᾱ1∂/ ψL)α2L ]

− 2i[(ᾱ2∂μψL)γ μα1R − (ᾱ1∂μψL)γ μα2R]. (3.22)

To proceed further, we need to apply a Fierz re-arrangement to the spinors, and

combine the two α’s into a bilinear.

Exercise The set of 16 matrices �i = {
1, γ5, γμ, iγμγ5, σμν

}
(withσμν = i

2
[γμ, γν]

for μ > ν), with �i defined the same way except with all the indices upstairs, have
the properties Tr�i = 0 (for �i �= 1) and Tr�i� j = 4δi

j . These matrices can be
used as a basis of expansion for any other 4 × 4 matrix. In particular, for the
combination of spinors

ψ̄(1)ψ(2)ψb(3) ≡ ψ̄a(1)ψa(2)ψb(3) = ψb(3)ψ̄a(1)ψa(2),

the quantity can be written as ψb(3)ψ̄a(1) = ∑

i ci�
i
ba. Multiplying both sides of

this expansion by � jab and summing over a and b, show that c j = − 1
4
ψ̄(1)� jψ(3),

so that

ψ̄(1)ψ(2)ψb(3) = −1

4

∑

j

ψ̄(1)� jψ(3)(� jψ(2))b. (3.23)
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3.1 The Wess–Zumino Lagrangian 31

Applying the Fierz re-arrangement to (3.22) yields

(δ2δ1 − δ1δ2)ψL = 2i

4

∑

i

(ᾱ2�
iα1 − ᾱ1�

iα2)PL�iγ
μ∂μψL

+ 2i

4

∑

i

(ᾱ2�
iα1 − ᾱ1�

iα2)PLγ μ�i∂μψL, (3.24)

where the chiral projection operators PL allow only the vector and axial-vector

forms of �i to contribute. Using relations (3.8c) and (3.8d) on the �A and �V terms,

we find

(δ2δ1 − δ1δ2)ψL = iᾱ2γμα1[γ μγ ν + γ νγ μ]∂νψL

= 2iᾱ2γ
μα1∂μψL. (3.25)

Comparison of this expression with the corresponding expression involving the Q
and Q̄ operators again verifies the relation (3.21).

Exercise Show that the commutator of two SUSY transformations applied to the
auxiliary field F again leads to the anticommutator (3.21).

We thus see that (3.21) is valid acting on each component of an arbitrary field, so

that it may be regarded as an operator relation.

The appearance of the translation generator in (3.21) shows that supersymmetry

is a spacetime symmetry. Conservation of supersymmetry implies

[Qa, P0] = 0, (3.26a)

or, from Lorentz covariance,

[Qa, Pμ] = 0. (3.26b)

The commutators of Q with the Lorentz group generators Jμν are fixed because we

have already declared Q to be a spin 1
2

Majorana spinor.

The supersymmetry algebra described above is not a Lie algebra since it includes

anticommutators. Such algebras are referred to as graded Lie algebras. Haag, Lo-

puszanski, and Sohnius have shown that (except for the possibility of neutral ele-

ments and of more than one spinorial charge Q) the algebra that we have obtained

above is the most general graded Lie algebra consistent with rather reasonable

physical assumptions. Models with more than one SUSY charge in the low energy

theory do not lead to chiral fermions and so are excluded for phenomenological

reasons. We will henceforth assume that there is just a single super-charge.
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32 The Wess–Zumino model

3.2 Quantization of the WZ model

The main purpose of this section is to review the implementation of the WZ model

as a quantum field theory. This provides us with an opportunity to set up our con-

ventions for the field expansions as well as for the (anti)commutators of the creation

and annihilation operators. In the process we will also see how the quantization of

the Majorana field differs from the more familiar quantization of the Dirac field.

We always use the four-component spinor notation that many particle physicists

are most familiar with.

We adopt the canonical quantization procedure, wherein the fields are regarded

as quantum operators acting upon a Fock space of particle states. For the scalar

fields A and B, the conjugate field momenta are A = ∂L/∂( ∂ A
∂t ) = ∂ A/∂t ≡ Ȧ

and B = Ḃ. The equal time commutators for the A and B fields are stipulated

to be

[A(x), Ȧ(y)] = iδ3(x − y), [A(x), A(y)] = [ Ȧ(x), Ȧ(y)] = 0, (3.27a)

[B(x), Ḃ(y)] = iδ3(x − y), [B(x), B(y)] = [Ḃ(x), Ḃ(y)] = 0. (3.27b)

The Hermitian field operators A and B can be Fourier expanded such that

A(x) =
∫

d3k

(2π )3

1

2Ek

(

ake−ikx + a†
keikx

)

, (3.28a)

B(x) =
∫

d3k

(2π )3

1

2Ek

(

bke−ikx + b†
keikx

)

, (3.28b)

where the a (a†) and b (b†) operators are annihilation (creation) operators satisfying

[ak, a†
l ] = (2π )32Ekδ

3(k − l), [ak, al] = [a†
k, a†

l ] = 0, (3.29a)

[bk, b†
l ] = (2π )32Ekδ

3(k − l), [bk, bl] = [b†
k, b†

l ] = 0. (3.29b)

The usual four-component Dirac spinor field ψD is quantized by stipulating the

equal-time anticommutators,

{ψDa(x), ψ
†
Db(y)} = δabδ

3(x − y),

{ψDa(x), ψDb(y)} = {ψ†
Da(x), ψ

†
Db(y)} = 0. (3.30)

The field is expanded using distinct creation and annihilation operators for particles

and antiparticles as,

ψD(x) =
∫

d3k

(2π )3

1

2Ek

∑

s

[ck,suk,se−ikx + d†
k,svk,seikx ]. (3.31)
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3.2 Quantization of the WZ model 33

These creation and annihilation operators satisfy the well-known anticommutation
relations which we will not write out here. Note that for a Dirac spinor,

〈0|T ψDa(x)ψ̄Db(y)|0〉 = SFab(x − y), and (3.32a)

〈0|T ψDa(x)ψDb(y)|0〉 = 〈0|T ψ̄Da(x)ψ̄Db(y)|0〉 = 0. (3.32b)

A similar procedure for quantizing a four-component Majorana field ψ cannot
be followed because the Majorana spinor is constrained by the Majorana condition

ψ = ψc = Cψ̄T , i.e. only two of the four components of the Majorana spinor are

independent. To proceed further, we evaluate the field expansion for the conjugate

Dirac field ψc
D. Using the spinor relations uc ≡ CūT = v and vc ≡ C v̄T = u, we

find

ψc
D(x) =

∫
d3k

(2π )3

1

2Ek

∑

s

[c†k,svk,seikx + dk,suk,se−ikx ]. (3.33)

Next, impose the constraint ψ = ψc. The constraint is respected if we require c = d
and c† = d†, so that the Majorana spinor field expansion is just

ψ(x) =
∫

d3k

(2π )3

1

2Ek

∑

s

[ck,suk,se−ikx + c†k,svk,seikx ], (3.34)

with

{ck,r , c†l,s} = (2π )32Ekδrsδ
3(k − l), {ck,r , cl,s} = {c†k,r , c†l,s} = 0. (3.35)

The condition ψ = ψc is the analogue of the reality condition for the scalar fields

A and B; the condition ck = dk implies the identity of the particle and antiparticle

quanta of this field. For a Majorana spinor field, we still have

〈0|T ψa(x)ψ̄b(y)|0〉 = SFab(x − y), (3.36)

but now, because ψ = Cψ̄T and ψ̄ = ψT C , 〈0|T ψa(x)ψb(y)|0〉 and

〈0|T ψ̄a(x)ψ̄b(y)|0〉 do not vanish as in the case of a Dirac field. It is easy to show

that

〈0|T ψa(x)ψb(y)|0〉 = SFac(x − y)CT
cb and (3.37a)

〈0|T ψ̄a(x)ψ̄b(y)|0〉 = CT
ac SFcb(x − y). (3.37b)

We must not forget to include these contractions when computing matrix elements

of operators involving products of Majorana spinor fields.

The four-momentum operator Pμ for the WZ model can now be explicitly con-

structed from the energy–momentum tensor T μν . Recall

T μν =
∑

fields φi

∂L
∂(∂μφi )

∂νφi − gμνL, (3.38)
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34 The Wess–Zumino model

where

Pμ =
∫

T 0μd3x . (3.39)

Substituting the field expansions (3.28a), (3.28b), and (3.34) into (3.39) and per-

forming a rather lengthy calculation leads to

Pμ =
∫

d3k

(2π )32Ek
kμ[a†

kak + 1

2
δ3(0) + b†

kbk + 1

2
δ3(0) (3.40)

+
∑

s

(c†k,sck,s − 1

2
δ3(0))]

=
∫

d3k

(2π )32Ek
kμ[a†

kak + b†
kbk +

∑

s

c†k,sck,s]. (3.40)

Thus, in the WZ model, we see that for the field four-momentum operator, the

zero-point energy terms exactly cancel due to equal and opposite bosonic and

fermionic contributions. This is the first of several examples of the cancellation

of infinities in supersymmetric models. Expressions for the rotation and boost

generators of the Poincaré group can be similarly constructed, but we will not do so

here.

It is, however, instructive to explicitly construct the super-charge from the su-

percurrent (3.13a) for the WZ model. We find,

Q =
∫

j0d3x (3.41)

=
∑

s

∫
d3k

(2π )32Ek

{

(akγ5 + ibk)c†k,svk,s − (a†
kγ5 + ib†

k)ck,suk,s

}

.

It should be apparent from this expression that the action of Q on a bosonic

(fermionic) state results in an admixture with a fermionic (bosonic) state.

Exercise Verify Eq. (3.41).

It is now possible to explicitly show that the generators Pμ and Q obtained above

commute with each other as indeed they should.

We can now use the expression (3.41) for the super-charge to work out the effect

on the dynamically independent field operators of the WZ model.
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Exercise Using the expression (3.41) for the super-charge in the WZ model, verify
that for an infinitesimal SUSY transformation,

δA = [iᾱQ, A] = iᾱγ5ψ,

δB = [iᾱQ, B] = −ᾱψ,

δψ = [iᾱQ, ψ] = ∂/ γ5 Aα + i∂/ Bα − im Aγ5α + m Bα.

The first two of these expressions are just the transformations of the A and B fields

in (3.7a) and (3.7b), whereas the last of these corresponds to the transformation

(3.7c) for δψ where the auxiliary fields are eliminated via their Euler–Lagrange

equations. The fact that F and G do not appear on the right-hand side could have

been anticipated since these do not appear in the form of the supercurrent.

3.3 Interactions in the WZ model

Up to this point we have been discussing free field theory which, despite being

supersymmetric, would not be of interest if interactions could not be incorporated.

Following Wess and Zumino, we add interaction terms given by

Lint = − g√
2

Aψ̄ψ + ig√
2

Bψ̄γ5ψ + g√
2

(A2 − B2)G + g
√

2AB F, (3.43)

to the Lagrangian (3.1a). It can be verified by brute force that Lint is separately

supersymmetric. The calculation is rather messy. We will demonstrate the super-

symmetry of this Lagrangian more elegantly in Chapter 5 using the superfield

formalism.

Once again we can eliminate the auxiliary fields F and G via their Euler–

Lagrange equations which get modified to,

F = −m B − g
√

2AB (3.44a)

G = −m A − g√
2

(A2 − B2), (3.44b)

and obtain the total Lagrangian in terms of the dynamical fields as,

L = 1

2
(∂μ A)2 + 1

2
(∂μ B)2 + i

2
ψ̄∂/ ψ − 1

2
m2(A2 + B2) − 1

2
mψ̄ψ

− g√
2

Aψ̄ψ + ig√
2

Bψ̄γ5ψ − gm
√

2AB2 − gm√
2

A(A2 − B2)

−g2 A2 B2 − 1

4
g2(A2 − B2)2. (3.45)

Several features of the Lagrangian in (3.45) are worth stressing.
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36 The Wess–Zumino model

1. It describes the interaction of two real spin zero fields and a Majorana field with

spin half. As before, the number of bosonic and fermionic degrees of freedom

match.

2. There is a single mass parameter m common to all the fields.

3. Although the interaction structure of the model is very rich and includes parity-

conserving scalar and pseudoscalar interactions of the scalar A and pseudoscalar

B with the fermion, as well as all possible (renormalizable) parity conserving

trilinear and quartic scalar interactions, there is just one single coupling constant

g. We thus see that supersymmetry is like other familiar symmetries in that it re-

lates the various interactions as well as masses. The mass and coupling constant

relationships inherent in (3.45) are completely analogous to the familiar (approx-

imate) equality of neutron and proton masses or the relationships between their

interactions with the various pions implied by (approximate) isospin invariance.

Before closing we remark that Iliopoulos and Zumino observed that unlike

(3.13a), the expression (3.13b) for the supercurrent holds also in the presence of

interactions, provided of course that the auxiliary fields satisfy (3.44a) and (3.44b).4

We will use this observation in Chapter 7 when we discuss the interactions of the

massless Goldstone fermion that appears as a result of spontaneous supersymmetry

breaking.

3.4 Cancellation of quadratic divergences

We have already mentioned that the existence of supersymmetric partners serves to

remove the quadratic divergences that destabilize the scalar sector of a generic field

theory. We will illustrate this cancellation of quadratic divergences for the simple

case of the WZ model. Consider the corrections to the “one-point function”

〈�|A(x)|�〉 = sum of all connected diagrams

with one external point

of the field A to first order in the coupling constant g in (3.45). Here |�〉 is the

ground state of the interacting theory. The relevant interaction Hamiltonian from

(3.45) is

Hint = −Lint � g√
2

Aψ̄ψ + g√
2

m AB2 + g√
2

m A3. (3.46)

The loop corrections to the one-point function are represented by the tad-

pole diagrams shown in Fig. 3.1. Expanding the matrix element 〈�|T A(x)|�〉

4 J. Iliopoulos and B. Zumino, Nucl. Phys. B76, 310 (1974).
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A

B

A A

Aψ

Figure 3.1 Lowest order diagrams contributing to quadratic divergences in the
one-point function of A.

perturbatively to order g gives,5

−i
g√
2

∫

d4 y D A
F (x − y)

[
(−1)TrSF (y − y) + m DB

F (y − y) + 3m D A
F (y − y)

]
,

where the factor 3 in the last term arises from three possible contractions involving

the A3 interaction term. The factor in the square brackets is proportional to

Tr

∫
d4 p

p/ − mψ

− m
∫

d4 p

p2 − m2
B

− 3m
∫

d4 p

p2 − m2
A

=
∫

d4 p

p2 − m2
ψ

4mψ − m
∫

d4 p

p2 − m2
B

− 3m
∫

d4 p

p2 − m2
A

. (3.47)

Here, we have deliberately denoted the masses that enter via the propagators by

m A, m B , and mψ , although these are exactly the same as the mass parameter m
that enters via the trilinear scalar couplings in (3.45). We first see that because all

these masses are exactly equal in a supersymmetric theory, the three contributions in

(3.47) add to zero. Thus although each diagram is separately quadratically divergent,

the divergence from the fermion loop exactly cancels the sum of divergences from

the boson loops. Two remarks are in order.

1. In order for this cancellation to occur, it is crucial that the A3, AB2, and Aψ̄ψ

couplings be exactly as given in (3.45).

2. The quadratic divergence in the expression (3.47) is independent of the scalar

masses, m A and m B . It is, however, crucial that the fermion mass mψ is exactly

equal to the mass m that enters via the trilinear scalar interactions in order

for the cancellation of the quadratic divergence to be maintained. If the boson

masses differ from the fermion mass mψ , the expression in (3.47) is at most

5 For a review, see Introduction to Quantum Field Theory, M. Peskin and D. Schroeder, Perseus Press (1995),
Chapter 4, where DF (x − y) is defined.
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A A

A A A A

ABψ

Figure 3.2 Lowest order diagrams contributing to quadratic divergences in the
two-point function of A.

logarithmically divergent. As we have discussed, logarithmic divergences do not

severely destabilize scalar masses.

It is also instructive to inspect the lowest order quadratic divergences in the two-

point function of A defined as 〈�|T A(x)A(y)|�〉. The one-loop contributions to

the quadratic divergences are shown in Fig. 3.2. 6 The first diagram of Fig. 3.2 gives

a contribution

−g2

2

∫

d4zd4z′ D A
F (x − z)D A

F (z′ − y)

× [
(−1)TrSF (z − z′)SF (z′ − z) + TrCT CT SF (z − z′)SF (z − z′)

]
,

where the second term in the square parenthesis arises because contractions of the

Majorana ψ (and ψ̄) field with itself do not vanish as noted in (3.37a) and (3.37b).

The integration over the intermediate points z and z′ can be performed by writing

the Fourier expansions of each of the propagators. One then finds that the correction

from the fermion loop in Fig. 3.2 is given by,

g2

∫
d4 p

(2π)4

1

p2 − m2
A

e−ip(x−y)

∫
d4q

(2π )4
Tr

[
1

(q/ − mψ )

1

(−p/ + q/ − mψ )

]
1

p2 − m2
A

.

From the second diagram where the fields A(x) and A(y) can be contracted in two

ways we get,

−i
g2

2
2

∫

d4zD A
F (x − z)D A

F (z − y)DB
F (z − z),

while the third diagram for which we have twelve possible contractions yields,

−i
g2

4
12

∫

d4zD A
F (x − z)D A

F (z − y)D A
F (z − z).

Once again, we can do the integration over z using the momentum expansion of the

propagators. By combining the contributions from the diagrams in Fig. 3.2, we see

that including the lowest order correction to the two-point function of A changes

6 There are additional quadratic divergences in the two-point function from the tadpoles of Fig. 3.1 which, as we
have just seen, separately cancel.
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the momentum space propagator as

i

p2 − m2
A

→ i

p2 − m2
A

+ i

p2 − m2
A

(−i(p))
i

p2 − m2
A

,

with the divergences all being contained in the function (p) given by

i(p) = g2

∫
d4q

(2π )4

[

Tr

(

(q/ + mψ )

q2 − m2
ψ

.
(−p/ + q/ + mψ )

(q − p)2 − m2
ψ

)

− 1

q2 − m2
B

− 3
1

q2 − m2
A

]

. (3.48)

It is now straightforward to see that once again the quadratic divergences cancel

between fermionic and bosonic loops. Moreover, this cancellation occurs for all val-

ues of particle masses. This is because trilinear scalar interactions do not contribute

to the quadratic divergence that we have just computed. It is, however, crucial that

the fermion Yukawa coupling (g/
√

2) is related to the quartic scalar couplings on

the last line of (3.45).

Exercise Verify Eq. (3.48) and check that the quadratic divergence cancels.

Exercise Verify that the quadratic divergence cancels in the one-loop tadpole and
mass corrections to the B field.

3.5 Soft supersymmetry breaking

The fact that the quadratic divergences continue to cancel even if the scalar boson

masses are not exactly equal to fermion masses (as implied by SUSY) is absolutely

critical for the construction of phenomenologically viable models. We know from

observation that SUSY cannot be an exact symmetry of nature. Otherwise, there

would have to exist a spin zero or spin one particle with exactly the mass and charge
of an electron. Such a particle could not have evaded experimental detection. The

only way out of this conundrum is to admit that supersymmetric partners cannot

be degenerate with the usual particles. Thus, supersymmetry must be a broken

symmetry.

Would the breaking of supersymmetry destroy the delicate cancellation of

quadratic divergences in field theoretic models? Fortunately, it does not. We have

just seen (by the two examples above) that if SUSY is explicitly broken be-

cause scalar masses differ from their fermion counterparts, no new quadratic di-

vergences occur. We state here (without proof) that this is true for all processes,
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and to all orders in perturbation theory. It is, therefore, possible to introduce new

terms such as independent additional masses for the scalars which break SUSY

without the reappearance of quadratic divergences. Such terms are said to break

SUSY softly. Not all SUSY breaking terms are soft. We have already seen that

if mψ �= m, the expression in (3.47) is quadratically divergent. Thus additional

contributions to the fermion mass in the Wess–Zumino model results in a hard
breaking of supersymmetry. Similarly, any additional contribution to just the quar-

tic scalar interactions will result in the reappearance of a quadratic divergence in

the correction to m2
A since these contributions only affect the last two diagrams in

Fig. 3.2.

Are there other soft SUSY breaking terms possible for the WZ model? Recall the

combinatorial factor 3 in the last term in (3.47). This tells us that the contribution

of the A loop from the trilinear A3 interaction is exactly three times bigger than the

contribution from the B loop from the AB2 interaction (the coupling constants for

these interactions are exactly equal). Thus, there will be no net quadratic divergence

in the expression (3.47) even if we add a term of the form,

Lsoft = k(A3 − 3AB2) (3.49)

to our model, where k is a dimensional coupling constant. Obviously, this interaction

does not give a quadratically divergent correction to the one-loop, contribution to

m2
A. It is an example of a soft supersymmetry breaking interaction term. We remark

that this term can be written in terms of S = A+iB√
2

as

Lsoft =
√

2k(S3 + h.c.) (3.50a)

while an arbitrary splitting in the masses of A and B can be incorporated by including

a term,

Lsoft = m ′2(S2 + h.c.) (3.50b)

into the Lagrangian. It will turn out that super-renormalizable terms that are analytic

in S are soft, while terms that involve products of S and S∗ (except supersymmetric

terms such as S∗S already present in (3.45)) result in a hard breaking of SUSY.

Exercise Check that an interaction proportional to (S2S∗ + h.c.) ∼ (A2 + B2)A
leads to a quadratically divergent contribution to the expression in (3.47).

Although we have illustrated the cancellation of quadratic divergences with just a

few examples, it is important to stress that this is a general feature of supersymmetric

theories. As we will elaborate upon in Section 6.7, this cancellation of quadratic

divergences occurs to all orders in perturbation theory.
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