
J. Fluid Mech. (2020), vol. 894, A18. c© The Author(s), 2020.
Published by Cambridge University Press.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
doi:10.1017/jfm.2020.283

894 A18-1
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Gravity-driven liquid film flows laden with a soluble surfactant are considered, and
aqueous solutions of sodium dodecyl sulphate (SDS) are taken as a case-study.
Literature measurements of the critical Reynolds number for the onset of instability
are set in perspective with predictions of linear stability theory. The theory is based
on a Frumkin model of adsorption equilibrium, modified by the inclusion of finite
compressibility of the adsorbed monolayer. Quantitative comparison between data
and theory is first attempted in the limit of infinite wavelength. Though wave
characteristics are satisfactorily predicted, the theoretical critical Reynolds number
is an order of magnitude below measurements. This discrepancy is understood in
terms of the large difference between momentum and mass diffusivities and indicates
that the assumption of infinite wavelength is far more restrictive for the mass transfer
than for the flow problem. Finite-wavelength effects are taken into account by
numerical solution of the Orr–Sommerfeld eigenvalue problem, leading to predictions
of maximum stabilization in good agreement with the measurements. Introduction of
realistic values of monolayer compressibility improves further the agreement at high
surfactant loadings. Finally, a strong stabilizing effect of salinity is confirmed.

Key words: capillary flows, thin films

1. Introduction

The primary instability and nonlinear evolution of gravity-driven liquid film flow
along inclined planes has been extensively studied because of the occurrence of liquid
films in a broad range of engineering, environmental and biological applications.
Comprehensive reviews of the rich dynamics of this flow and of our improved
understanding over the years are offered by Chang (1994), Oron, Davies & Bankoff
(1997), Craster & Matar (2009) and Kalliadasis et al. (2012).

It is well known that interfacial instabilities can be significantly affected by the
presence of surface-active molecules (surfactants), see for example Conroy et al.
(2011), Kalogirou & Papageorgiou (2016). Wave formation in falling films is no
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exception, and early experimental studies (Emmert & Pigford 1954; Tailby & Portalski
1961) showed that the addition of even small amounts of non-volatile surfactants can
have a stabilizing influence on the flow, dampening the waves that would otherwise
arise.

The primary instability of liquid films doped with insoluble surfactants (that is
surfactants that are assumed to reside only on the interface) was first considered by
Whittaker (1964) and Benjamin (1964). They both predicted that insoluble surfactants
delay the instability because of the elasticity they attribute to the interface through
Marangoni stresses. For example, dilatation of the interface leads to a local decrease
in surface concentration of surfactant due to mass conservation, and the ensuing
Marangoni stresses act to oppose the deformation.

The role of surface elasticity was confirmed repeatedly in the literature (Anshus
& Acrivos 1967; Lin 1970; Blyth & Pozrikidis 2004; Pereira & Kalliadasis 2008a),
and the mechanism responsible for stabilization was investigated (Wei 2005). The
role of Marangoni stresses in triggering transverse variations in film thickness at the
channel entrance that result in rivulets has also been documented recently (Bobylev
et al. 2019).

Soluble surfactants exhibit more complex behaviour because the interfacial dynamics
is influenced by surfactant exchange with the bulk. In particular, high transfer
rates smooth out surface gradients and thus mitigate or even eliminate Marangoni
stresses. For example, there is experimental evidence (Georgantaki, Vlachogiannis
& Bontozoglou 2012) of a striking difference in interfacial film dynamics when
switching from a moderately soluble surfactant (sodium dodecyl sulphate (SDS)) to
a highly soluble one (isopropanol).

The linear stability analysis of gravity-driven films laden with soluble surfactant
was undertaken by Karapetsas & Bontozoglou (2013, 2014) using a simple Langmuir
model to describe adsorption equilibrium and interface elasticity. By invoking the
longwave assumption, an analytic expression was derived for the critical Reynolds
number, Recr, and the mechanism of stabilization was described in this limit. More
specifically, it was shown that velocity perturbations caused by travelling disturbances
create variations in surface concentration that are in-phase with the interfacial
deformation. The ensuing Marangoni stresses move fluid away from the crests and
towards the troughs, thus attenuating the disturbances and stabilizing the flow.

The effect on the stability analysis from the use of alternative adsorption models
was recently considered theoretically (Bontozoglou 2018), always in the longwave
limit. An interesting prediction of all the above analyses is that the dependence
of Recr on surfactant concentration is not monotonic, with maximum stabilization
occurring at relatively small loadings.

Georgantaki, Vlachogiannis & Bontozoglou (2016) performed experiments with
aqueous solutions of SDS and recorded the onset of the primary instability and the
characteristics of travelling waves. With the addition of surfactant, strong attenuation
of nonlinear growth was observed, and the waves remained of small amplitude and
near-sinusoidal form over an extensive parametric range. The value of Recr was
found to increase by an order of magnitude, attaining maximum value for solution
surface tensions around 60 mN m−1 and gradually declining with further addition of
surfactant.

The aim of the present work is to set in perspective the predictions of linear
stability analysis with the data of Georgantaki et al. (2016). Attention is focused on
two key issues: the quantitatively accurate prediction of maximum stabilization and
the behaviour at high surfactant loadings. The former issue questions the validity of
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FIGURE 1. Sketch of the flow with the main parameters.

the longwave assumption, and a satisfactory answer is provided only by including
finite wavelength effects. The latter issue motivates the introduction of the notion
of intrinsic compressibility of the adsorbed monolayer (Kovalchuk et al. 2004). The
complete theory proves to be in good quantitative agreement with the data over the
entire range of surfactant loadings.

2. Problem formulation and analysis
A liquid film laden with soluble surfactant SDS is considered to flow along a flat

wall at inclination ϕ with respect to the horizontal (figure 1). The surface tension
of the clear liquid is Σ , whereas that of the solution, designated as σ , varies along
the interface because it is related to the local surface excess concentration, Γ , of
adsorbed surfactant. Alternatively, the surface pressure is defined as Π = Σ − σ .
Surface excess concentration is defined according to Gibbs theory (Adamson & Gast
1997) as the amount of surfactant per unit surface area that is needed to close the
mass balance, when considering that the bulk concentration extends right up to the
surface. The liquid density, ρ, viscosity, µ, (and kinematic viscosity, ν = µ/ρ) are
taken as independent of the amount of surfactant, an assumption that is reasonable
for concentrations below the critical for the formation of micelles.

2.1. The flow problem
Two-dimensional dynamics is described by a Cartesian coordinate system (X, Z), with
X pointing in the streamwise direction and Z normal to the wall. Film flow along a
wall at inclination, ϕ, with an undisturbed free surface and uniform thickness, H, has
the classical semiparabolic velocity profile with surface velocity

U =
g sin ϕH2

2ν
. (2.1)
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Accordingly, the Reynolds number is presently defined as

Re=
UH
ν
=

g sin ϕH3

2ν2
. (2.2)

Lengths are non-dimensionalized with H (x = X/H, etc.), velocities with U, time
with H/U and pressure with ρgH sinϕ. The dimensionless velocity and pressure fields
are u(x, z, t)= (u,w) and p(x, z, t), the location of the interface is z=h(x, t) and that of
the wall z= 0. With this scaling, the continuity and momentum conservation equations
become

ux +wz = 0, (2.3)
Re(ut + uux +wuz)=−2px + uxx + uzz + 2, (2.4)

Re(wt + uwx +wwz)=−2pz +wxx +wzz − 2 cot ϕ, (2.5)

where, unless stated otherwise, the subscripts x, z, t denote partial differentiation.
The boundary conditions are zero velocity at the wall, and the kinematic condition

and the balance of forces on the interface, z= h(x, t). Thus,

ht + uhx =w (2.6)

and

−4uxhx + (uz +wx)(1− h2
x) = 2 We

(σx

Σ

)√
1+ h2

x, (2.7)

p+
ux(1− h2

x)+ (uz +wx)hx

1+ h2
x

=−We
( σ
Σ

) hxx

(1+ h2
x)

3/2
, (2.8)

where (2.7) and (2.8) are respectively the components of the force balance tangential
and normal to the interface and the Weber number is defined as

We=
Σ

ρg sin ϕH2
. (2.9)

2.2. The mass-transfer problem
The surfactant has molar concentration in the bulk C(X, Z, T) and surface excess
concentration Γ (X, T); the latter is the concentration at the free-surface location
corresponding to X at time T . Under equilibrium conditions, the bulk concentration
is uniform and related to the surface excess concentration according to the respective
adsorption model, Γeq=Γ (Ceq). Details of adsorption modelling are given in the next
section.

Departure from equilibrium may cause spatial variation in the surface concentration
of surfactant. This spatial variation attributes an elasticity, E, to the interface through
the dependence of surface tension on surface concentration. More precisely, Gibbs
elasticity is defined as

E=−
(

dσ
d ln Γ

)
eq

=−(Γ σΓ )eq, (2.10)
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where the derivatives are taken in the equilibrium adsorption model. The spatial
variation of surface tension that appears in (2.7) may be expressed by the Gibbs
elasticity as follows

σx = σΓΓx =−

(
E
Γ

)
Γx. (2.11)

Equation (2.11) couples the flow to the mass-transfer problem. At the same time,
the departure from equilibrium drives a net flux, J(X, T), of surfactant between the
interface and the bulk.

In order to non-dimensionalize the above variables, surface concentration is
scaled with Γ0 = 1/Ω0, where Ω0[=]m2 mol−1 is the area covered by an isolated
molecule multiplied by the Avogadro number. If the surfactant monolayer is taken as
incompressible (hard-sphere model), then Γ0 is equal to Γ∞, the surface concentration
at interfacial saturation. However, for a compressible monolayer Γ∞>Γ0 and Γ∞ is an
increasing function of surface pressure, Π . Using Γ0, the dimensionless concentrations,
Gibbs elasticity and interfacial flux are defined respectively as γ (x, t)= Γ (X, T)/Γ0,
c(x, z, t)=C(X, Z, T)H/Γ0, e= E/Σ =−γ (σ/Σ)γ and j(x, t)= J(X, T)Γ0U/H.

Mass conservation of adsorbed and dissolved surfactant is imposed by the following
two advection–diffusion equations (Pereira & Kalliadasis 2008b), equation (2.12) for
the bulk and (2.13) for the interface:

ct + ucx +wcz = Pe−1
b (cxx + czz), (2.12)

γt + uγx + γ (∇s · u)= Pe−1
s ∇

2
s γ + j. (2.13)

Here, Peb = Re Scb = UH/Db and Pes = Re Scs = UH/Ds are the Péclet numbers of
the bulk and the interface, Db, Ds are the bulk and surface diffusivities and j is the
dimensionless interfacial flux. The surface gradient, ∇s, is defined as ∇s= (I−nn) ·∇
in terms of the local unit normal to the interface, n.

The no-penetration condition is applied at the wall, where z= 0

cz = 0 (2.14)

and two concentration boundary conditions are imposed at the interface, z = h(x, t).
One expresses the net flux of surfactant in terms of the bulk concentration gradient

j=−Pe−1
b (∇ · n)z=h, (2.15)

and the other assumes equilibrium between subsurface and adsorbed concentrations,

c(z= h)= ceq(γ ). (2.16)

The assumption of interfacial equilibrium could be relaxed by taking the net flux
which results from an imbalance between kinetic rates of adsorption and desorption
(Borwankar & Wasan 1988). However, this phenomenological generalization that
takes into account kinetic resistance to adsorption, would not make any difference
below frequencies f ∼ 100 Hz (Wantke & Fruhner 2001). This value is two orders of
magnitude above the maximum wave frequency of the experiments to be considered.
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2.3. Linear stability analysis
A base state for the present problem corresponds to Nusselt flow with flat interface
and uniform bulk concentration of surfactant in equilibrium with the adsorbed
monolayer. For small departures from this base state, the equations and boundary
conditions may be linearized and the travelling disturbances expressed as normal
modes in terms of the wavelength, L, or the wavenumber, k= 2π/L, and the complex
phase velocity, V , of the interface deformation.

The relevant Orr–Sommerfeld eigenvalue problem has been formulated and solved
numerically by a Galerkin finite-element method (Karapetsas & Bontozoglou 2013),
the main outcome being the critical Reynolds number for the primary instability,
Recr, as a function of the disturbance wavenumber. The same procedure is used
for the predictions reported in the present work. It is recalled that the above
temporal stability analysis provides the correct critical Reynolds number for the
general initial-value problem (Charru 2011), so it is also appropriate for the presently
considered experiment, where periodic disturbances are introduced at a fixed upstream
location and are convected by the flow.

Film flow is known to be susceptible to a longwave instability, so analysis of
the stability problem in the limit k → 0 may be very relevant. This analysis has
been performed (Wei 2005; Karapetsas & Bontozoglou 2014; Bontozoglou 2018)
and provides insights on the mechanism of the instability. More specifically, it has
been shown that disturbance of the adsorbed monolayer is initiated by the velocity
perturbation imposed on the base flow by the travelling interfacial disturbance. The
interface deformation does not by itself trigger any change in concentration because
surface dilatation is second-order in the deformation amplitude, i.e. it is linearly
negligible.

The main result of the longwave analysis is the following prediction of Recr:

Rec =
5
4

cot ϕ +
15
4

We e
(

3
3+ 4Λ

)
, (2.17)

which corresponds to waves with zero growth rate, kVi = 0, and dimensionless
travelling speed, Vr = 2. Term e = E/Σ is the dimensionless Gibbs elasticity, as
defined by equation (2.10), and Λ is a solubility parameter, defined according to the
relation

Λ=

(
dc
dγ

)
eq

=H
(

dC
dΓ

)
eq

. (2.18)

It is zero for an insoluble surfactant and increases with solubility. As with Gibbs
elasticity, Λ is calculated at the equilibrium conditions of the base flow.

An important consequence of the longwave assumption is that mass exchange
between the interface and the bulk is at leading order negligible, i.e. local equilibrium
with the interface is established at every streamwise location because of the slow
variation along the wavelength. In this limit, the bulk concentration varies only in the
flow direction, and the amplitudes of concentration perturbations in the bulk and at
the monolayer are in a ratio equal to Λ.

3. Modelling of adsorption
The Frumkin isotherm is used to describe adsorption equilibrium. Thus, interface

and bulk concentrations are related by

C=
1

Ke2aθ

(
Γ

Γ∞ − Γ

)
=

1
Ke2aθ

(
θ

1− θ

)
, (3.1)
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and the corresponding equation of state is

Σ − σ

RTΓ∞
=

Π

RTΓ∞
=− ln(1− θ)− aθ 2. (3.2)

(All the equations of this section refer to equilibrium conditions, i.e. Ceq, Γeq, but
the subscript ‘eq’ is omitted for simplicity.) Here, K is the adsorption constant, a is
the interaction constant for adsorbed molecules and Γ∞ is the surface concentration
at interfacial saturation. Term θ = Γ /Γ∞ is the monolayer coverage, which may be
expressed as θ = ΓΩ in terms of Ω = 1/Γ∞, the molar area of adsorbed surfactant
in the state of saturation.

If the adsorbed monolayer is taken as incompressible, then Γ∞≡Γ0, θ ≡γ , and both
e and Λ tend to infinity in the limit of high surface coverage. Thus, application of
(2.17) to predict Recr becomes questionable. What is worse, the predicted high values
of e and Λ when θ → 1 are in order-of-magnitude disagreement with data (Wantke
et al. 1998). As zero compressibility is equivalent to infinite elasticity, Kovalchuk
et al. (2004) have proposed that the adsorbed monolayer be characterized by a linear
compressibility, ε, according to the relation

Ω =Ω0(1− εΠ). (3.3)

As discussed in Fainerman, Miller & Kovalchuk (2002), the dependence of
molecular area on surface pressure has been demonstrated by synchrotron X-ray
diffraction (grazing incidence X-ray diffraction) for the case of insoluble amphiphilic
molecules in the condensed state. Extending the notion to saturated monolayers in the
liquid state, it can be hypothesized that surface compressibility, ε, is related to the
tilt angle of the adsorbed molecules with respect to the normal. During compression
of the monolayer, the tilt angle decreases; therefore, the area per molecule becomes
smaller. The value of surface compressibility, ε, depends on the specific surfactant
molecule and varies in the range ε= 4–10 m N−1 (Fainerman et al. 2002).

Using (3.2) and the concept of Gibbs dividing surface on the interface, it may be
shown (Kovalchuk et al. 2004) that the isotherm, equation (2.18), remains invariant,
but the equation of state (former (3.1)) becomes

ΠΩ0

RT

(
1−

εΠ

2

)
=− ln(1− θ)− aθ 2. (3.4)

However, note that Γ in (2.18) is now given by

Γ =
θ

Ω0(1− εΠ)
. (3.5)

Combining (2.18), (3.3) and (3.4), Gibbs elasticity is found equal to

e=

ΣΩ0

RT
(1− εΠ)(
θ

1− θ
− 2aθ 2

) + Σε

1− εΠ


−1

. (3.6)

According to Gibbs theory for an ideal solution, elasticity and solubility are related
by

dΓ
dC
=

RTΓ 2

CE
or Λ=

ΣΩ0

RT
ce
γ 2
. (3.7a,b)
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894 A18-8 A. Katsiavria and V. Bontozoglou

The expression for Gibbs elasticity, equation (3.5), represents two elasticity
mechanisms in series, the first on the right-hand side is compositional, i.e. related to
spatial variations in surface concentration, and the second on the right-hand side is
intrinsic, i.e. related to the surface compressibility of the monolayer. Upon saturation,
i.e. when θ→ 1, the interface retains finite elasticity due to the intrinsic contribution.

4. Key characteristics of the experimental set-up
Experiments by Georgantaki et al. (2016) were done in a 3000 mm long by

450 mm wide inclined channel. The liquid film formed at the entrance by overflow
from a manifold open to the atmosphere. Liquid exiting at the bottom of the channel
was collected in a large tank and was recirculated to the inlet manifold with the help
of a submersible pump.

The above set-up avoids two potential problems related to SDS properties. The first
has to do with deviations from equilibrium surfactant concentration at the inlet. If,
for example, the film were formed by extrusion through a thin slot, the newly created
interface would be temporarily clean and would thus trigger Marangoni stresses
pulling the surface towards the upstream direction. In the presently considered
experiment, the inlet manifold with its free surface provides enough residence time
for equilibrium to be established.

The second potential problem has to do with the slow hydrolysis of SDS to
dodecanol, a surfactant that is stronger than SDS and is practically insoluble. This
reaction results in a distinct ageing effect, which starts to affect surface tension
roughly 100–500 s after formation of a new interface and grows in significance with
time (Fainerman et al. 2010).

Complications resulting from this process are avoided in the experiment of
Georgantaki et al. (2016) because of the use of a large collection tank and of a
submersible pump for recirculating the liquid. The tank provides enough residence
time for the dodecanol to separate from the bulk and gather at the surface, while the
submersible pump has its suction port near the bottom of the tank and thus delivers
pure solution of SDS to the channel inlet. The sum of the residence time in the
entrance manifold and the fly time along the channel is at maximum 120 s, which is
too short for dodecanol to have any noticeable effect.

Measurements of the surface tension of samples taken from the flowing liquid film
were used by Georgantaki et al. (2016) to characterize the experimental conditions.
According to the above argument, these measurements were not affected by the
formation of dodecanol. It is noted that surface tension – and not bulk surfactant
concentration – is the most reliably determined independent variable in those
experiments. Though the quantity of SDS added each time to the flow loop is
known, additional amounts remain in pockets of liquid trapped in the piping and
connections during emptying and refilling of the facility. Thus, all the data from the
experimental paper are reported below in terms of the measured surface tension.

5. Comparisons at the longwave limit
The Frumkin isotherm, when applied to an ionic surfactant such as SDS, is a

pseudo non-ionic model. Thus, the values of parameters K and a vary strongly with
the solution salinity, Cs. For the present purposes, use is made of the systematic
best-fit results for SDS by Prosser & Franses (2001) for salinities Cs= 0, 10, 100 and
500 mM. This variation in the model parameters may be physically understood by
considering that high salinity weakens electrostatic repulsions and facilitates surface
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Stability of liquid film flow with soluble surfactant 894 A18-9

adsorption. Thus, the same reduction in surface tension is achieved at lower monomer
concentrations in the bulk.

The measurements by Georgantaki et al. (2016) were taken using brackish water,
which was characterized by its electric conductivity. For most of the experimental
campaign, the conductivity was around 3000 µS cm−1 (corresponding to a salinity
Cs = 26 mM), while for some runs the conductivity was somewhat lower (minimum
value measured 2400 µS cm−1, Cs=21 mM). Based on these experimental conditions,
interpolated values of the adsorption constant are used in the stability computations,
spanning the interval from K = 11.0 m3 mol−1 for Cs= 26 mM to K = 8.0 m3 mol−1

for Cs= 21 mM, while the interaction constant is taken as a= 0.4. The molar area of
adsorbed molecules varies little with salinity, so it is expressed by the constant value
Γ0 = 4.15 mol m−2, which is consistent with the size of the SDS molecule (Prosser
& Franses 2001).

Georgantaki et al. (2016) have reported measurements of wave properties for
channel inclination ϕ = 5o and surface tension ranging from 38 to 68 mN m−1.
Small-amplitude propagating surface waves were created by introduction of inlet
disturbances with frequencies in the range f = 0.1–1.0 Hz. The streamwise evolution
of the wave amplitude was recorded by conductance probes and the critical Reynolds
number, Recr, corresponding to zero amplification, was determined. The phase speed
and wavelength of propagating waves were determined from the time-lag, 1tl, of the
signals of two probes, separated by a small distance, 1x, in the streamwise direction.
Then, V =1x/1tl and L= V/f .

The relevance of these data to the longwave limit is examined first by considering
the phase speed and wavelength of travelling disturbances. To this end, the
experimental dimensionless wavenumber, k̂exp = 2πH/L, is plotted in figure 2 as
a function of Re (points), and is compared to the theoretical prediction, k̂long =

2πH/L= 2πHf /Vr≈πHf /U (lines). Based on the results plotted in figure 2, the data
are classified in three categories. For f = 1 Hz, there is clear disagreement, pointing
to a finite-wavelength effect. On the contrary, data and theory are in satisfactory
agreement for f = 0.75 and 0.50 Hz, indicating that the longwave limit has been
reached.

For smaller inlet frequencies, f = 0.125–0.25 Hz, there is again disagreement,
but this is known to occur because of three-dimensional (sidewall) effects. More
specifically, it has been shown (Leontidis et al. 2010; Georgantaki et al. 2011) that
when the wavelength exceeds twice the channel width (L > 2W), sidewalls start to
affect the characteristics of travelling disturbances, reducing their phase speed and
rendering them more stable. Thus, in the following, we neglect the very long waves,
which correspond to f = 0.125–0.25 Hz and deviate from two-dimensionality.

Following the agreement in wave characteristics for f = 0.50–0.75 Hz, the measured
critical Reynolds number, Recr,exp, for the primary instability is compared to the
longwave prediction, equation (2.17), in figure 3. Here, the x-axis is the equilibrium
surface tension for the undisturbed aqueous SDS solution and the y-axis is the critical
Reynolds number. It is readily observed that the data for the two frequencies differ
from each other, an indication that there is still a wavelength effect. What is worse,
the longwave prediction fails by almost an order of magnitude.

The above contradictory results are reconciled if it is realized that the flow and
mass-transfer problems have transport properties that differ by orders of magnitude.
Kinematic viscosity (taken equal to that of pure water) is ν ≈ 0.9× 10−6 m2 s−1 and
diffusivity of SDS molecules is estimated as Db ≈ 5 × 10−10 m2 s−1 (Weinheimer,
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FIGURE 2. Dimensionless wavenumbers as determined from the data for frequencies
f = 1 Hz (@), 0.75 Hz (A), 0.5 Hz (E), 0.25 Hz (-) and 0.125 Hz (–) compared to
predictions of longwave theory. The dashed curve is the prediction for f = 1 Hz, taking
into account finite-wavelength effects.

Evans & Cussler 1981; Barhoum & Yethiraj 2010), resulting in a Schmidt number
Scb ≈ 1800.

With these values of molecular transport, flow perturbations with typical period
τ = 1–10 s – as in the experiments presently considered – have penetration
depth, zflow ∼

√
ντ ≈ 1000–3000 µm, i.e. larger than the liquid film thickness,

H ∼ 500–1000 µm. On the contrary, perturbations in surface concentration have
penetration depth zmass ∼

√
Dbτ ≈ 20–75 µm, which is an order of magnitude smaller

than the film thickness. Thus, a major assumption of the longwave analysis, i.e. that
local equilibrium is established at every streamwise location between the interface
and the bulk concentrations, is not valid for the data of Georgantaki et al. (2016).
It is interesting to note that longwave theory fails despite the fact that the formal
criterion, the ratio of film thickness to wavelength, is as low as H/L∼ 10−3.

An equivalent explanation can be provided by scaling the dimensional governing
equations according to longwave theory, i.e. using L for the x- and H for the
z-direction. Then the convective terms in the x-momentum, equation (2.4), and the
scalar transport, equation (2.12), are multiplied respectively by Re(H/L) and Peb(H/L).
Given that Peb = ReScb � Re, scalar transport is expected to converge to the zero
wavenumber limit (H/L→ 0) at a much smaller rate than momentum transport.

6. Incorporation of finite-wavelength effects

Next, predictions of linear stability theory are produced that take into account
the wavelength of the disturbance. The question to be investigated is whether
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FIGURE 3. Measurements of the critical Reynolds number for inlet frequencies f =
0.75 Hz (A) and 0.5 Hz (E), compared to the prediction of longwave theory. The lowest
open circle corresponds to experiments without surfactant.

finite-wavelength effects suffice to explain the behaviour observed in the experiment.
The procedure followed is the numerical solution of the relevant Orr–Sommerfeld
eigenvalue problem by a Galerkin finite-element method, as described in detail by
Karapetsas & Bontozoglou (2013).

Given that temporal stability is formulated in terms of the wavenumber, whereas
data are taken for specific frequencies, f , an iteration is necessary during application
of the numerical solver. An initial guess for the wavenumber is made using the
longwave result, k̂long = 2πHf /Vr ≈ πHf /U, and the wave speed, V , for the specific
Re considered is computed. Whereas the imaginary part of V gives the growth rate
of the disturbance, the real part, in combination with the frequency, f , provides an
updated value for the wavenumber. The improved prediction of wave properties for
the highest inlet frequency, f = 1.0 Hz, for which finite-wavelength effects were
shown to be important, is demonstrated in figure 2 as a dashed line.

The comparison between predictions of the stability threshold, using the above
procedure, and measurements is shown in figure 4. Data (points) are included for all
three frequencies that obey two-dimensional dynamics, i.e. f = 0.5, 0.75 and 1.0 Hz.
Molecular transport in the bulk is expressed by Scb = 1800, and surface transport
by Scs = 10 000, which turns out to have a negligible effect. Compressibility of the
adsorbed monolayer is taken as ε = 6 m N−1, whereas its neglect (ε = 0 m N−1)
gives the results shown by dotted lines.

The data points for σ = 51.0, 55.4 and 58.0 mN m−1 were taken with water of
lower conductivity than 3000 µS cm−1 (2600, 2400 and 2850 µS cm−1, respectively),
and should be compared to an accordingly modified prediction. In order not to
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FIGURE 4. Measurements of the critical Reynolds number for inlet frequencies
f = 1 Hz (p), 0.75 Hz (a) and 0.5 Hz (u), compared to predictions of linear theory,
with monolayer compressibility ε= 6 m N−1 (continuous lines) and ε= 0 (dotted lines).

overcrowd figure 4 with additional stability curves corresponding to the lower
salinities, these data are ‘regularized’ by the expression

Reexp,reg = Reexp,orig(Repred,3000/Repred,conductiviy).

As is demonstrated by figure 4, predictions improve dramatically with the inclusion
of finite-wavelength effects. In particular, Recr at maximum stabilization is now
close to the data, and the agreement holds for all three frequencies tested. Thus, it
is concluded that the slow molecular diffusion of surfactant is responsible for the
deviation from local equilibrium in the normal direction and the ensuing enhanced
stability of the film compared to the longwave limit.

The significance of monolayer compressibility is very notable. Its inclusion in
the prediction leads to distinctively slower decline of Recr with increasing surface
coverage (decreasing surface tension). The actual value used, ε = 6 m N−1, is a
realistic estimate confirmed by independent measurements (Fainerman et al. 2002)
and is observed to result in quantitative agreement with the data.

The effect of salinity on the prediction of Recr for the primary instability enters
the problem through the parameters K and a of the adsorption isotherm (2.18) and is
examined more systematically in figure 5. The results shown correspond to Cs=10,26
and 100 mM and indicate significant stabilization. This trend is explained when it
is considered that SDS is actually an ionic surfactant and the adsorbed ions create
an electric double-layer. With increasing salinity, the thickness of the double-layer
decreases and the addition of ions to the surface becomes easier. As a result, lower
bulk concentrations are needed to create a specific surface concentration. Lower bulk
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FIGURE 5. Prediction of the effect of solution salinity on the critical Reynolds number of
the primary instability for disturbances with frequency f = 0.5 Hz. The case Cs= 26 mM
corresponds to the experiments of Georgantaki et al. (2016).

concentrations lead to slower mass exchange with the interface, and thus to stronger
stabilizing Marangoni stresses.

7. Concluding remarks
Linear stability theory of gravity-driven film flow laden with a soluble surfactant

is set in perspective with literature measurements taken with aqueous solutions of
SDS. This flow is characterized by a non-monotonic variation of the critical Reynolds
number with surfactant loading. A drastic increase in Recr occurs with the addition of
small amounts of SDS, but then a maximum is reached and subsequently Recr declines
slowly. This behaviour is understood as the outcome of two competing effects: with
the addition of surfactant, the surface coverage (and thus the potential for Marangoni
stresses) increases. However, the concomitant increase in bulk concentration intensifies
mass exchange with the interface, which mitigates surface-tension gradients.

Quantitative comparison with the zero wavenumber version of linear stability is
satisfactory for wave properties but fails in the prediction of Recr by roughly an
order of magnitude. This discrepancy is understood in terms of the large difference
between momentum and mass diffusivities (high Schmidt number) and indicates that
the assumption of infinite wavelength is far more restrictive for the mass transfer
than for the flow problem. As the values of molecular diffusivity of most surfactants
are in the same order (Kovalchuk et al. 2004), this conclusion holds in general.
Thus, longwave analysis of the behaviour of soluble surfactants needs always to be
approached with caution.

Consideration of finite-wavelength effects and inclusion of finite compressibility
of the adsorbed monolayer brings predictions to quantitative agreement with the
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experimental data for all disturbance frequencies tested. It also demonstrates a strong
stabilizing effect of salinity of the aqueous solution. High salinity facilitates surface
adsorption by weakening electrostatic repulsions, and thus achieves the same reduction
in surface tension at lower monomer concentrations in the bulk.

As was presently shown, the role of a soluble surfactant on the linear stability of
liquid film flow has mainly to do with the creation of Marangoni stresses, while the
direct effect of lowering (the mean) surface tension appears negligible. Though this
may come as no surprise for a longwave instability, it is noted that three-dimensional
effects, imposed by the sidewalls, may make the actual value of surface tension
relevant. For example, Georgantaki et al. (2011) showed that for narrow enough
channels the primary instability of film flow becomes also a function of Kapitza
number.

Finally, even if the lowering of surface tension does not have a direct effect on
the primary instability, it may eventually affect the evolution of an unstable film.
A relevant case is the formation of precursor ripples in front of solitary humps of
low-viscosity fluids, where capillary forces balance the gravity-induced inertia of the
fluid. Indeed, it was observed by Georgantaki et al. (2012) that the addition of the
highly soluble surfactant isopropanol resulted in strong amplification of the precursor
ripples.
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