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Abstract By using Lebesgue’s dominated convergence theorem and constructing a suitable Lyapunov
functional, we study the following almost-periodic Lotka—Volterra model with M predators and N prey
of the integro-differential equations
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Some sufficient conditions are obtained for the existence of a unique almost-periodic solution of this
model. Several examples show that the obtained criteria are new, general and easily verifiable.
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1. Introduction

The Lotka—Volterra system is a rudimentary model in mathematical ecology. The asymp-
totic behaviour of the Lotka—Volterra competition system with almost-periodic (periodic)
coefficients has been studied extensively in [1,2,5,6,8-11,14,15,18-20, 24,28|. Some
sufficient conditions are obtained for the uniform persistence, existence and uniqueness
of the asymptotic stable almost-periodic (periodic) solution for the Lotka—Volterra com-
petition system.
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The two-species predator—prey Lotka—Volterra system has been investigated exten-
sively in [3,16,17], and the references cited therein. Some results were obtained for
checking existence of the periodic solution and the asymptotic behaviour of these sys-
tems. However, few papers have considered the multi-species model. Yang and Xu [25]
studied the following periodic system with M predators and N prey:

di(t) =

N M
xi(t) [bi(t) - Z aik(t)wk(t) — Z Cil(t)yl(t)} ) i=1,2,...,N.
k=1 1=1
N o (1.1)
i (t) = y;(t) {—Tj(f) + ) dp(t)zR(t) = Y ejl(t)yl(t)], j=1,2,..., M.
k=1 =1

where ;(t) denotes the density of prey species X, at time ¢, and y;(t) denotes the
density of predator species Y; at time t. The coefficients b;, 75, ai, ca, djr and ey
(i,k=1,...,N; j,l=1,..., M) are non-negative continuous periodic functions defined
on R. If (1.1) is autonomous, that is, if these coefficient functions are constants, then b; is
the intrinsic growth rate of prey species X;, r; is the death rate of the predator species Y},
a;, measures the amount of competition between the prey species X; and Xy (k # 1,
i,k=1,...,N), ej; measures the amount of competition between the predator species Y;
and Yy (k # 4,4,k =1,..., M), and the constant Izij £ d;;/cij measures how many of the
prey species X; convert into predator species Y; (¢ =1,...,N; j=1,..., M). Sufficient
conditions for existence and global attractivity of a unique positive periodic solution of
system (1.1) were obtained in [25].

Recently, Zhao and Chen [27] have investigated system (1.1) again, allowing the intrin-
sic growth rate of the prey species to be negative while the total intrinsic growth rate
in a period is positive. By using differential inequalities and constructing a Lyapunov
function, some sufficient conditions were obtained for existence and global attractivity of
a unique positive periodic solution of (1.1). Recently, Xia et al. [23] studied (1.1) with
almost-periodic coefficients. Sufficient conditions were obtained for existence and global
attractivity of a unique positive almost-periodic solution of (1.1).

The system (1.1) with delay has not been studied so often. Wen [21] considered sys-
tem (1.1) with several delays, that is

- N M
() = 2i(t) [bi(t) — a;(t)wi(t) = Y aw(®)zp(t — 7ir) — > calt)y(t — o—”)} ,
L k=1 =1
i=1,2,...,N,
- N M
9 () =y (1) | =i (1) — e; Oy (1) + Y dir(Baw(t — &) = Y eyt — ﬁjl)} ;
L k=1 =1
j=1,2,...,M.
(1.2)

By means of the comparison theorem and the Lyapunov functional, some sufficient con-
ditions were obtained for existence of the global attractivity of a unique positive periodic
solution of system (1.2).
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Recently, Xia and Cao [22] have considered the almost-periodic Lotka—Volterra model
with M predators and N prey by ‘pure-delay type’, that is

N M
4(0) = ) () = S (Ot = 70 (0) = S calthu ()
k=1 =1

i=1,2,...,N,

N M
y;(t) = y;(t) [—Tj(t) + ) din(Owr(t — &) =Y eju(t)u(t — sz(t))] :
k=1 =1

i=12...,M.

(1.3)

By using the concept of eventually uniform M -matriz and constructing a suitable Lya-

punov functional, a set of sufficient conditions for the existence and global attractivity
of a unique positive almost-periodic (periodic) solution of system (1.3) were obtained.

To the best of the authors’ knowledge, though Burton and Hutson [4] consider a

similar system, there is no paper considering the almost-periodic solutions of the multiple-

species predator—prey model with infinite delays. Therefore, in this paper, we consider

the almost-periodic Lotka—Volterra model with M predators and N prey of the integro-

differential equations

N t
> aik(t)[ Hip(t — o)y (o) do

k=1,k#i

M t
_Zcil(t)/ Kil(t_o-)yl(o-)do-:|7 7;:1727"'7N7
=1 -

m@zmwh@—%wmw—

N t
Y;(t) = y;(t) {Tj () = €55 (y; (t) + Y dju(t) / Pji(t — o)ax(o) do
k=1 e

M t
- Z ejl(t)/_ le(t—U)yl(U)da], j=1,2,..., M.

I=1,#j

By using Lebesgue’s dominated convergence theorem and constructing a suitable Lya-
punov functional, some sufficient conditions are obtained for the existence of a unique
almost-periodic solution of system (E).

This paper is organized as follows. In §2 we use Lebesgue’s dominated convergence
theorem to show that there exists a bounded solution of system (E) on R. In § 3, by con-
structing a suitable Lyapunov functional, we shall prove that the solution of system (E)
is relatively totally stable. Then some sufficient conditions are obtained for the existence
of a unique almost-periodic solution of system (E). Finally, some suitable examples are
given to illustrate the main results of this paper.

Throughout this paper, we shall use the following notation.

We always use i,k =1,...,N; j,l =1,..., M, unless otherwise stated.
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If f is an almost-periodic function defined on R, we set

fr=if f(t),  f"=supf(t).

teR teR
Denote
"
bi=—»
Ay
N
1 "
QJ—Z § ikPk = T5 )
13 k=1
1 N M
C— Lo M _ M
o = o (bi E ;1. Dk E CﬂQl)v
it k=1 k#i =1
1 N M
— I L i
B = 6;.5(—% + E djrpo — E le(Jl>7
43 k=1 I=1,1#]
"= max{pzaQJ}v Ty = mln{awﬁj}
1,7 5

It is obvious that if ¢; > 0, then o; < p;, and if ¢g; > 0, o; > 0, then 8; < g;.

We denote by RN+ the (N + M)-dimensional real Euclidean space and by |z| the
norm of x € RN+M,

Let

B = {@ = (¢»1/1) ‘ P (—O0,0] = RN+M7

&(t) is a bounded and uniformly continuous function}

(see [12,13]). For & € B, we set ||®|| = sup,, [2(s)].
For any &,V € B, we set

Ppm(P,¥) = i P el
& pm (P, W)
p@0) =) 21+ pm (9, V)

m=1

Obviously, p(@,,®) — 0, as n — oo, if and only if &,,(s) — D(s) as n — oo uniformly

on each bounded subset of (—o0, 0].
For any function x : R — RY¥*M and t € R, we define a function z! : (—oc0, 0] —» RN+M

by zt(s) = z(t + s) for s < 0.
Throughout this paper, we suppose that the following conditions are satisfied.

(H1) bs, 75, @ik, ci, dji and e;; are non-negative almost-periodic functions defined on R
with inf;cr aii(t) > 0, infier €jj (t) > 0.
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(Hg) Hi, Ky, Py, and Qji(t) are non-negative functions, and

/ Hip(s)ds =1, / sHix(s)ds < oo;
0oo 0 .

/ K;(s)ds =1, / sKy(s)ds < oo;
0 0

/ Pjr(s)ds =1, / sPji(s)ds < oo;
0 0

/ Qiu(s)ds =1, / sQj1(s)ds < o0.
0 0

2. Existence of bounded solutions

In the following we will state some lemmas that will be used in the proof of Theorem 2.4.
Since we are interested in the positive solutions of the system, we assume that system (F)
is supplemented with initial conditions of the form

zi(s) = ¢i(s) 20, s<0; supepi(s) <oo; ¢;(0)>0.
s<0

yi(s) =;(s) 20, s<0; supy;(s) <oo; ¢;(0)>0.

s<0

(2.1)

Lemma 2.1. Both the positive and non-negative cones of RNTM are invariant with
respect to (E).

Proof. Since

24(t) = w2ty exp{ /t t [bi(s) — an(s)ai(s) — zNj ain(s) /_ OO Ha(s — 0)ap (o) do

k=1,k#i

— f: cil(s) /_éoo Ki(s — o)y (o) da} ds},

yj(t) = y;(to) eXp{/t: [—Tj(S) —eji(s)y;(s) + g:djk(S)/ Pji(s — o)ar(o) do

1 —0o0
M S
- Z ejl(s)/ Qji(s —o)yi(o) da] ds},
I=1,#] —oo
the assertion of Lemma 2.1 follows immediately, for all ¢ € [to, +00). 0

Lemma 2.2. Ifa > 0, b > 0 and dz(t)/dt < x(t)[b — ax(t)], for t > to, then

-1
x(t)éb{l—&—( b —1>e—bt} .t >to.

a az(tg)

Moreover, if 0 < x(tg) < b/a, then 0 < z(t) < b/a.
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Ifa>0,b>0 and dz(t)/dt > z(t)[b — az(t)], for t > to, then

b b -1
> =1 1)e t>to.
=(t) a“(az(to) ) } R

Moreover, if (tg) > b/a > 0, then x(t) > b/a > 0.

Proof. We give a proof for the first case. From dz(t)/dt < x(t)[b — az(t)], we have

dz~t(t) 1 d(e"z"" (1)) bt
>a—bx _ > .
T a—bx=(t), gr > qe
Hence, we have
Pt t) — a7 (to) = %(ebt -1

Moreover, we have

Therefore, we obtain

o o (1))

Then it is not difficult to derive that if 0 < z(tg) < b/a, then 0 < z(t) < b/a. This
completes the proof of Lemma 2.2. O

Lemma 2.3. Let & = (¢,¢) € B satisfy a; < ¢i(s) < pi, 85 < ¥;(s) < g forall s <0,
and F' = (x,y) be the solution of (E) through (to,®). If (E) satisfies a;; > 0, 3; > 0 and
g; > 0, then

a; < xi(t) <pi, By <y;t) <qy, forallt >ty

Proof. From the first equation of system (E), we have &; < x;(b' — al;2;), so if
0 < zi(to) < pis

then from Lemma 2.2 we have

From (2.2) and the second equation of system (FE), we obtain

{r +Zdjkpk/ Pj(t— o) doe;jyj}.

t oS}
/ Pjp(t —o)do = / Pji(s)ds =1,
—o00 0

N
Yj Kﬁ + d?kpk> - eéjyj} :
k=1

Since

we obtain
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Hence, if
0 <y;(to) < g,
then from Lemma 2.2 we have
yi(t) < gj- (2.3)
Now the first equation of (E), (2.2), (2.3) and (Hsy) lead to

o'ci>xi Z akpk/ H;,(t—o) do—chql/ K(t —o)do — a; x}
L k= 1k7éz
= Z azkpk/ Hix(s dS—ZC”QZ/ Ka(s ]
L k= lk;éz
=x; < Z alkpkfz ilql>a5xi:|7
- k=1,k#i

which implies that if z;(tg) > «; holds, from Lemma 2.2 we have
If a; > 0, then from (E), (2.2), (2.3) and (Hz), by a similar discussion to that above, we

obtain
N M
Ui 2 Ys [(_’"ﬁb ) djpor— Y e?lql) - e?jf’/j]’
k=1 1=1,1#j
which implies that if y;(t9) > §; holds, from Lemma 2.2 we obtain

y;(t) = B;. (2.5)

If a; > 0, 3; > 0 and g; > 0, it is obvious that 0 < a; < p;, 0 < §; < g;. Therefore,
we have o; < z;(t) < p;, B; <y;(t) <gj, for all t > ty,. This completes the proof of
Lemma 2.3. 0

We denote by S(FE) the set of all solutions F' = (z,y) of (E) on R satisfying a; <
z;(t) < ps, B <y;(t) <gj forallt e R

Theorem 2.4. If (E) satisfies
(Hg) a; >0, ﬁj >0, q; > 0,
then S(E) # 0.

Proof. By (H;), there exists a sequence {t,}, t,, — 00 as n — oo, such that

bi(t+tn) — bi(t),
() — ri(2),
aik(t+tn) = aun(t), as n — oo uniformly on R.
ci(t +tn) — cult),
djk(t +tn) — dji(t),
eii(t +tn) — ejult),
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Let F = (z,y) be a solution of (F) through (tg, ) € R x B satisfying a; < z;(¢t) < p;,
B; < y;(t) < g for all t > ty, whose existence was ensured by Lemma 2.3. Obviously, the
sequence {F(t + t,)} is uniformly bounded and equicontinuous on each bounded subset
of R. Therefore, by Ascoli’s theorem and a diagonalization procedure, we may assume
that the sequence {F(t +t,)} converges to a continuous function U(t) = (u(t),v(t)) =
(ur(t),...,un(t),v1(t),...,vp(t)) as n — oo uniformly on each bounded subset of R.
Let a 7 € R be given. We may assume that ¢, + 7 > ¢g for all n. For t > ¢y, we have

it +tn, +7) —xi(ty + 7)
tttn+T
= / xl(s){bz(s) —ai(s)zi(s) —

tn+T

aik(s) /j Hii(s — o)xp(o)do

k=1 ki
M s

- eals) [ Kuts - oulo)do as
=1 >

t+7
-/ mi<s+tn>{bi<s+tn>—aii<s+tn>xi<s+tn>

N 5+t,
— Z ai (84 tn) / Hi (84 t, —o)ag(o)do
I=1,1%i >
S+tn
_ Z ik (s) / Kir(5+ty, — o)yr(o) da} ds, (2.6)

yit+t, +7) —yi(tn +7)

:/”t"“yj<s>{—n<> OMIC +Zdak / Fi(s = o)ar(o) do

tntT
- i eji(s) /; Qji(s —o)yi(o) da} ds

I1=1,ii
t+7
:/ xi(s+tn){_7'j(s+tn) — i (5 +tn)y; (5 + tn)
N St
+Zdjk(§+tn)/ Pji(5+1t, —0)xp(o)do
k=1 —o0
M Sttn
- Z ejl(s)/ Qji(5+t, —o)yi(o) do’} ds.  (2.7)
I1=1,1#] —oo

We note that
S5+t [e'g)
/ Hyi(8+t, —o)xg(o)do = / H;,(0)xk(5+t, —7)do,
—00 0

Hip()xp(8+t, — ) = Hip(0)ur(s —7) asn — oo,
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and that
|Hix()xk (5 + t, — )| < Hip(G)p, for 6 > tg, 5§ € [1,t+ 7]

By (Hsz) and Lebesgue’s dominated convergence theorem, it follows that

lim Hip(0)xp(5+t, —0)do = / Hip(o)up(s—a)do = / Hi,(5—0)ug(o) do.
n—oo J 0 —o0
(2.8)
Similarly, by (Hs) and Lebesgue’s dominated convergence theorem, we obtain
S+tn fe%e)
lim Kil(=§+tn_0')yl(0)d0':/ Kil(5)vl(§—5)d5
n—oo J_ 0
5
= / K;(5—o)v(o)do, (2.9)
S5+tn _oo
lim ij(§+tn—0)$k(0)d02/ ij(ﬁ)uk(E—é)dr?
n—oo | _ 0
5
= ij(E—U)uk(U) do, (210)
— 0o
5+t, [e%e]
li_)m Qji(5+1t, —o)y(o)do = / Qji(d)n(5—0o)da
n o0 —00 0

:/ Qji(5 — o)u(o) do. (2.11)
— 00

From (2.8)—(2.11), and letting n — oo in (2.6) and (2.7), respectively, we have
ui(t+7) — u; (1)

= /THT ui(g){bi(g) —a;i(8)u;(5) — i\f: a;(5) /io Hi(5 — o)ur(o) do

k=1,k+#i
M 5
— cu(s K (5 —o)v(o)do p ds,
> (8 [ Kals - aJu(a)da
(2.12)
v;(t+71) —v;(7)

- [T ue{ e - eme + éws) | Puis— oyt do

— 00

M 5
— e;i1(3) Q;i(5 —o)u(o)do ¢ ds,
l_;ﬁ l [m l 1 }

(2.13)

for all ¢ > tg. Since 7 € R is arbitrarily given,

Ut) = (u(t),v(t)) = (u1(t),...,un(t),v1(t),...,vam(t))
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is a solution of system (E) on R. It is clear that o; < w;(t) < py, 85 < v;(t) < g for
all ¢ € R. Thus, U(t) € S(E). This completes the proof of the theorem. O

By repeating almost the same argument as in the proof of Theorem 2.4, we can also
prove the following theorem.

Theorem 2.5. Let U(t) € S(F), and let a sequence {t,}, t, > 0, be given. Suppose
that, for some functions b;, 7;, Gk, Ci, d;i and €;i,

(i) bi(t +tn) = bi(t), 75(t + tn) = 75(1), ain(t + tn) — aiw(t), cat +tn) — cu(t),

di(t +tn) = djr(t), ej(t +tn) — €;(t), as n — oo, uniformly on t € R;
(i) U(t+t,) — U(t) as n — oo uniformly on a subset of R.
Then U(t) € S(E), where S(E) is the set of solutions W = (w, z) of the system

N

wl(t) = wi(t) [bl(t) — dii(t)wi(t) — Z aik(t)‘/_ sz(t — J)wk(0'> do

k=1,ksi

- lﬁj;éil(t) /too Ky(t—o0)zi(o) dO':| ,

£4(0) = 50|70 ~ 25050+ S dao) [ Palt - ohuno)do
k=1 >

M

- > el / ;Qﬂ@a)zl(a)do]

1=1,1#j

(E)
on R satisfying o; < w;(t) < pi, B < z;(t) < ¢; for allt € R.

When (i) and (ii) hold, we write (U, E) € 2(U, E). Based on Theorems 2.4 and 2.5,
we will discuss the existence of the almost-periodic solution of system (FE) in § 3.

3. Existence of a unique almost-periodic solution

We now state some definitions and lemmas which will be used in the proof of our main
theorem (Theorem 3.8). The method is as follows: by using a series of definitions (espe-
cially the concept of asymptotic almost-periodicity), we prove first that system (E) has
an asymptotic almost-periodic solution and then that system (F) has a unique almost-
periodic solution.

Definition 3.1. A function U € S(FE) is said to be relatively uniformly stable (RUS)
in 2(F) if, for any € > 0, there exists a d(¢) > 0 with the property that, for any
to =0, any (U, E) € 2(U,E) and any W € S(E) satisfying p(U?, W) < §(¢), we have
p(UL, W) < e for all t > t.

Definition 3.2. A function U € S(E) is said to be relatively weakly uniformly asymp-
totically stable (RWUAS) in Q2(E) if U(t) is RUS in 2(E), and if p(U!, W) = 0 as
t — oo for all (U, E) € 2(U,E) and all W € S(E).
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Definition 3.3. A function U € S(F) is said to be relatively totally stable (RTS)
for (E) if, for any € > 0, there exists a d(¢) > 0 with the property that if t5 > 0,
p(Ft Ut) < §(e) and G = (f,g) : R — RY*M is any continuous function satisfying
sup;cgr |G(t)] < 6(¢), then we have p(F*,U") < §(¢) for all t > to, where F' = (z,y) is any
solution of the system

N t
> an(t) /_ Hix(t — 0)zi(o) do

k=1,k#i

M t
= calt) [ Kiu(t — o)y(o) da} + filt),

=1

N t
350 = 150) | 1500 e35005(0) + X0 [ Pt (o) ao
k=1 -

M t
=3 el [ Qult-luto)da] + st
I=1,#j -
(Ec)
on R satistying o; < @;(t) < pi, 8 < y;(t) < g, for allt € R.

Definition 3.4 (Fink [7]). A continuous function is asymptotic almost periodic if
and only if there is an almost-periodic function p and a continuous function ¢ defined
on RT with limy . q(t) = 0 such that

f(t) =p(t) +q(1).

Definition 3.5 (Fink [7]). For every sequence {hy}, where hy > 0 and hy — oo as
k — oo, if there exists a subsequence {hy;} such that f(¢ + hy;) is uniformly convergent
on [0, 400), then it is said that f has property L.

Lemma 3.6. If U € S(E) is RWUAS in 2(E), then it is RTS for (E).

Proof. We give the proof for completeness, although it is similar to the one for [18,
Lemma 4]. Suppose the contrary. There then exists an ¢ > 0, sequences {e,}, 0 <
en < €, and &, = 0 as n — oo, {sn}, {tn}, th = sn = 0, {G,} and {F™} such that
Gy : R — RN*M is a continuous function satisfying sup;cg |Gn(t)| < € and that

p(U™ (F")*) <en, p(U™, (F")")=¢, p(U",(F")') <e, t€[sn,tn), (3.1)

where F™ is a solution of (E¢, ) on R satistying a; < (2™);(t) < pi, 65 < (y™);(t) < ¢;
for all t € R.
Furthermore, by (3.1) we can choose a sequence {7,}, 8, < T, < tp, so that

p(UT™ (F")™) = 50(5¢) (3.2)

and
36(38) < p(U', (F™M)') <&, t€ [Tnstnl, (3.3)
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where §(-) is the number given in Definition 3.1. We may assume that U(t + 7,,) — U(t)
as n — oo on each bounded subset of R for a continuous function U(t) and that
(U, E) € 2(U, E). Moreover, we may assume that F"(r, +t) — W(t) as n — oo uni-
formly on any bounded subset of R for a continuous function W, since the sequence
{F™(1, +t)} is uniformly bounded and equicontinuous on R. Then, the same argument
as in the proof of Theorem 2.4 shows that W € S(E). Now, suppose that t,, — 7, — 00
as n — oo. Letting n — oo in (3.3), we have 16(1¢e) < p(U', W) < e for all t > 0. On
the other hand, p(U%, W) — 0 as t — oo, since U is RWUAS in £2(E). This is a contra-
diction. Thus, taking a subsequence if necessary, we may assume that t, — 7, = r < 0o
as n — o0. Let n — oo in (3.2). We obtain p(U°, W) = 16(3¢) < 6(3¢), and hence
p(U', W) < Leforallt > 0, because U is RUS in £2(E). On the other hand, from (3.1) we
have p(U", W") = ¢, which is a contradiction. This completes the proof of Lemma 3.6. O

Lemma 3.7 (see Chapter 1 in Fink [7] or Theorem 9.3 (1) in Burton and
Hutson [4]). The asymptotic almost-periodicity of f(t) is equivalent to f(t) having
property L.

We now state our main result on the existence of a unique almost-periodic solution of
system (E).

Theorem 3.8. If system (E) satisfies (H1)—(Hs) and

(Hy) there exist strictly positive constants s;, 0; such that

N M

L o o

siag; > E Spay,; + E 0ic;;,
1=1

k=1,k#i
N M
L I w
Hjejj > g skdkj + E 9;elj,
k=1 1=1,l#j

then system (E') has a unique almost-periodic solution Q(t) in 2(E).

Proof. Let U € S(E). First of all, we shall prove that U is RTS for system (F). By
Lemma 3.6, it suffices to show that U is RWUAS in 2(E). For arbitrary (U, E) € 2(U, E)
and W € S(E), let

+ é;i/ow Hik(S){ /t;aik(s + o)t (o) — wk(0)|da} ds
+§;/OOO Kiz(S){/t: ci(s + o)|u (o) Zl(o)|dg} ds}
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M
+3 0 [|ln77j(t) —Inz(t)|
j=1
+ Z [ rwo{ [ dte i) - ol arf o
s

s | auts {/ e(s + o)lao) ~ a(o)] do f s

1=1,l#j

We denote
A=min{s;,0;}, A =max{s;,0;}.
1,] ]

Calculating the right derivative DTV (¢) of V along system (E)—(2.1), we obtain

N

DYV (t) Z:sz{sgn{uz ) — w;(t)}
<[ - @@ - w0
N
— Y awd / Hit(t — o) (1p(0) — wp(0)) do
k=1,k#i
M
-3 el / Kalt - o)(@(o) - 2(0)) do
I=1 B
N )
+ ) / Hipo(8)air (s +t) ds|ug(t) — wp(t)]
k=1,ki"0
N t
+ ) azk(t)/ Hi(t — o)|un (o) — wi(o)|do
k=1,k#i -0
M o0
+§/O K(s)eu(s + 1) dsla(t) — 21(0)
M t
+)_ealt) Kyt —o)|u(0) — z(o)] da} }
=1 -0
M
—&—Z@{sgn{v](t) Zi(t)}
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By simplifying, one obtains

2

i=1

DTV (1) <

where

N
—_— N . L J—
Y = 1NN 544,
i,J

k=

M N
D) IR SR
j k=1

M
w H
E , SkQp; — E :el%v J ]J
=1

k=1k+#i

Y. Xia and J. Cao

M
S et / Qu(t — 0)(W(0) - 21(0)) do

I=1,1#]

=

+ Ooo P]k )djk(s+t)ds|uk( ) wk(t)|
k;l ) t
=S @ult) [ Palt - o)lmn(o) - wi(o)|do
k=1 >
M S
+ Qu(ei(s +Dlnt) — 7(0)
1_12,12#/0 ! l i 1

+ > et [ Quit-olule) - a)do

I=1,1#j

N
S sl 430k - s } au(t) - wi()]
Lk =1

0y | I~ 5 0)

1=1,1#]

|+Z|U]

M
w(0) - 0]+ 3 5,00 - 50

M
m
> el

1=1,1#j

Z skdk]

From (H4), we know that v > 0. Integrating (3.5) over [0, ¢], it follows that

N

V<t>+v/0t PCICE

=1

Consequently,

b

)

|+Z\v3 s)—Z;(s ]ds<V()<+oo for t > 0. (3.6)
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is uniformly continuous on [0, +00), we have
>l ()] + Z [5;(t) = 2 ()| = 0,
i=1

and thus p(U?, W*) — 0 as t — co. Moreover, from (3.4) and (3.6), it follows that

N
Z|1nul() In w; (¢ |—|—Z|lnvj —Inz;(t)]
i=1
Ve v
A A
9 n N Jo%s) M fe'e)
Z{ Z afk/ sHik(s)ds—i—ZcZ/ sKil(s)ds]
i=1 “k=1,k#1 L = L
233*/1 M e
\ Z[de/ sPji(s)ds + Z ]l/ sQji(s ]
j=1tk=1 L 1=1,#j
1 X
—I—)\Zsi{ﬂnﬁi(to)—lnwi(to)

1

7

+ Z zk/ sHy (s sup  |t(o) — (o)

k=1,k£i to—LSosto

(o)
+ Z c / sK;(s)ds sup |7(o0) — zl(a)|}
= "o to—L<o<to

%@mwmﬁ—m@m>

_|_
> =
\tvji

<
Il
Ja

+Zd;k/ sPu(s)ds  sup  |a(0) — wy(o)]

to—L<o<ty

+f§j / sQu(s) ds mpmwm@@
ey it ! to—L<o<to
(3.7)

forallt >ty > 0, and all L > 0. For each € > 0 we set

N
5(€)inf{2|lnul() In w; (¢ |+Z|lnv] —Inz(t)]: |[U-W|>¢

i=1

and a; < u(t), wi(t) < pi, G5 <v;(t), 2i(t) < qj}. (3.8)
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Obviously, §(¢) > 0. We select a number L > 0 so large that

{23:*/12[ Z zk/ sHix(s d3—|—z ”/ sKi(s }
k=1,k#1
+2x*AZ|:Zd?k/ sPji(s)ds + Z ]l/ sQji(s) ]} A6 (e),
j=1tk=1 I=1,1#j

which is possible by (Hz). Moreover, we select a d(g) € (0,¢) so that

> s I 0) - s (0)] + S L[ s ds sw [61(0) - (o)

i=1 k=1 k;éz to—LSo<to

+Zc§2 /OoosKm)ds sup |¢z(0)—m(0)]

to—L<o<to

o—L<o<to

M
+Zej[|ln¢j< (0 |+Zd / sPy(s)ds  sup  |én(o) — €(0)
=1 !

£ 3 [Tt o) - o] < e,

I=1,1#j to—L<osto

whenever p(®,¥) < §(g). Hence, if p(U?, W) < §(¢), we have

2:|lnuZ — Inw; (¢ |—|—Z|1nv] —Inz;(t)] < &(e).

j=1

By (3.7) and (3.8), consequently, |U(t) — W (t)| < ¢ for all t > to. Thus, if p(Uto, Wto) <
d(e), then

pn (Ut , W) + ¢
TH(L+ o 070, I70) 4

—n pn(UtO’ Wto)
S LY T e, W) /15 )

=1
<do(e)+e

< 2e,

p(U, W) <

Mg

n=1

oo

for all t > ty. Note that 6(-) is independent of the particular choice of U, W € S(E).
Therefore, each U € S(E) is RWUAS in 2(E).

Next, we shall prove that each U € S(E) is asymptotically almost periodic. Let {t,}
be any sequence satisfying ¢, — 0o as n — oo. We may assume that the sequence
{U(t+t,)}32, is uniformly convergent on each bounded subset of R and that the
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sequences

{bi(t""tn)}zc:lv {rj(t"_tn)}zo:h {aik(t""tn)}zo:lv
{eat +ta)tnly,  {duwt+ta)lnly,  {eut+t)ini,

are uniformly convergent on R. Set U™ (t) = U(t + t,,), t € R, for each positive integer m.
Clearly, U™ is a solution of the system

¢i<t>=xi(t>[bi<t+t )l 0~ Y el

M

X /_too Hl‘k(t— O')Z‘k((f) do — l:ZlCil(t—f—tm) /_too Kil(t—O')yl(O') dO':|7

y;(t) = y;(t) {—Tj (t+tm) — 5t + tm)y; (1) + > dji(t + tm)

k=1
¢ M
x/ Pji(t — 0)zi(0)do — Z eji(t+tm / Qi(t —o)y(o )dcr}
- I=1,l#j

(E™)
on R and it is RTS for system (E™) with the common number 4(-), since U is RTS for
system (E) with the common number §(-). For any positive integers m and n, we define
a continuous function G, : R — RVN1M by

Gmn(t) = (fmnl (t); ceey fmnN(t)7gmn1(t)7 cee 7gmnM(t))a

where

Jmni(t) = wi(t +ty,) [bi(t +tn) = bi(t +tm) — (aii(t +tn) — ai(t + tm))us (t + t)

N
Z (aik(t +tn) — air(t + tm / Hip(t — o)ug(oc +t,)do
k=1,k#i
M t
Z Czl Cil(t-i-tm))/ Kil(t—a)vl(a—i—tn) do|,
— — 00

Gmnj(t) = v;(t +tn) [_(Tj (t+tn) =it +tm)) — (65 (t + 1) — €j;(t +tm))v;(t +tn)

t

WE

+ (djk(t-i-tn) —djk(t—f—tm))/ ij(t—a)uk(g+tn) do
k=1 —00
M t
— Z (eji(t+ty) —ejl(t+tm))/ Qji(t —o)u(o+t,)do|.
1=1,i#j —o0

Now, for any € > 0 there exists a positive integer ny(e) such that sup,cp|Gmn(t)] <
5(e) and p((U™)°,(U™)°) < 6(e) if m,n = no(e). Then, the fact that U™ is RTS for
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system (E,,) implies that p((U™)!,(U™)!) < ¢ for all t > 0 if m,n > ng(e), since U™
is a solution of system (Eg ) on R and a; < (uf)(t) < pi, B < (v5)"(t) < g for
all t € R. Thus, the sequence {U(t + t,,)}2, is uniformly convergent on [0, 00), which
shows that U(t) is asymptotically almost-periodic, by Lemma 3.7, that is, U(¢) is the
sum of an almost-periodic function Q(¢) and a continuous function ~(¢) defined on R
such that U(t) = Q(¢t) +v(t), t € R, and v(t) — 0 as t — oo.

Finally, we show that @ is a unique almost-periodic solution in S(E). We choose a
sequence {s,}, s, — 00, as n — oo such that

bi(t 4 sn) = bi(t), rj(t+sp) = 71i(t), aixt+s,) = ain(t), cult+s,) — cult),
djk(t + Sn) — djk(t)v ejl(t + Sn) — ejl(t)v Q(t + Sn) — Q(t)a

as n — oo uniformly on R. Then, Q € S(E) by Theorem 2.4. Let @ be another almost-
periodic solution in S(E). Since Q € S(E) is RWUAS in 2(E), as was shown in the first
paragraph of the proof of the theorem, we obtain p(Q*, Q') — 0 as ¢t — oo and hence
|Q(t) — Q(t)| — 0 as t — oco. Hence, Q = Q on R, by the almost-periodicity of @ and Q.
Thus, system (E) has @ as a unique almost-periodic solution in S(E). This completes
the proof of Theorem 3.8. ([l

Corollary 3.9. Under the assumptions (H2)—(H4) and supposing that b, r;, ak, ci,
d;, and ej; are all w-periodic, system (E) then has a unique w-periodic solution in S(E).

Proof. By Theorem 3.8, let F' be the unique positive almost-periodic solution of
system (E), but in the periodic case, b;, 7;, @k, cit, djr and e;; are all w-periodic.
Therefore, F(t + w) is also an almost-periodic solution of system (F). By the uniqueness
of almost-periodic solutions, it follows that F(t) = F(t+w) for all t € R. This completes
the proof of Corollary 3.9. O

When M = 0, system (F) degenerates to the Lotka—Volterra competition system

N t
x;(t) = x;(t) [ bi(t) — au(t)zi(t) — Z aik(t)/ Hip(t — o)ag(o)do|, i=1,...,N,
k=1,k#i -
(3.9)
which was considered by Gopalsamy [11].

Corollary 3.10. If system (3.9) satisfies the conditions

(i) bs, a; are all periodic with bt > 0 and a%; > 0,

(ii) / Hi(s)ds =1, / sHi,(s)ds < 00, i # k,
0 0

N bL
iy > Y (k).

k=1,k+#i kk
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(iv) there exist strictly positive constants s; such that

N
s; min ag;(t) > (max s,a-t),
! te[0,w] ii(t) k_lz;# t€(0.0] " ki(t)

then system (3.9) has a unique w-periodic solution.

Remark 3.11. Gopalsamy [11] has studied system (3.9). It has been proved that if
(1)—(iii) hold and

N
min a;;(t) > ( max ag;(t ), 3.10
te(0,w] ( ) k%;éi te(0,w] k ( ) ( )

then system (3.9) has a unique w-periodic solution. Obviously, the results in [11] are a
special case of Corollary 3.10. In fact, we take s; = 1; the result in [11] follows. Therefore,
this result generalizes and improves the main results in [11]. In particular, when N = 1,
M = 0, we also generalize the results in [19].

4. Some examples

Example 4.1. We consider the following system:

(1) = 21 (1) {5 Fsin2t - 2m,(t) - K exp{—(t — u)}aa () du

t

— 11 +sin \/§t)/

— 00

exp{—(t — u)}y1(u) du} ,

Zo(t) = xa(t) [5 + cos 2t — % /_ exp{—(t — u)}x1(u) du — 2x2(t)

t

— (1 +sin \/Et)/

—0o0

exp{—(t — u)}y () du} ,

(1) = (1) [_H;gn?’t b1 [ ewf-t-wlnwd

— 00

+;/t exp{—(t—U)}x2(“)d“_y1(t)}

— 00

Corresponding to system (E), we have by (t) = 5 + sin2t, ba(t) = 5 4 cos2t, r(t) =
2*10(1 + sin3t), all(t) = a22(t) = 2, dll(t) = dlg(t) = %, Cll(t) = Clg(t) = i(l + sin \/gt)
and eq1(t) = 1. It is easy to verify that our result applies to (4.1). In fact,

(i) 051:Oé2:%>0,q1:3>0”31:%>07
(i) letting s; = s2 = 1, 61 = 3, we can obtain

siafy =1x2> spaby +01dfy =1x 3+ 3 x

Sathy =1 X 2> s1aly +01dfy =1x 1+ 3 x

%-i— X

Lo 3 H I
thel; = 5 x 1> 81 + s2¢]y = 1 X
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Thus, Theorem 3.8 applies, and shows that there is a unique almost-periodic solution
of (4.1).

Example 4.2. Consider the following system:

1(t) = x1(1) {5 +sint — 2z, () — 5(1+ Sint)/

— 00

exp{—(t — u)}za(u) du} ,
(4.2)

t

Zo(t) = xo(t) {9 + cost — 2/

— 00

exp{—(t — u)}z1(u) du — 2:1:2(15)] .

Corresponding to system (F), we have by (t) = 5+sint, ba(t) = 94-cost, a11(t) = axn(t) =
2, a12(t) = £(1+sint), ag (t) = 2 and Hyz(t) = Hay (t) = exp(—t).

Since infier a11(t) = 2 = sup,ep a21 = 2, we cannot apply [11, Theorem 2.1] to sys-
tem (4.2). However, it is easy to verify that our result applies to (4.2). In fact, putting
s1=1and sg = % yields

5105, (t) =1 x 2> soaby () = 3 x 2,
S2a4,(t) = 2 x 2> s1aly(t) =1 x 1.

Thus, from Corollary 3.10, the system (4.2) has a unique periodic solution.
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