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Abstract

The aggregation-decomposition method is used to derive a sufficient
condition for the equi-ultimate boundedness of large-scale systems governed
by nonlinear ordinary differential equations.

1. Introduction

The aggregation-decomposition method is an effective way of determin-
ing stability properties of certain classes of dynamical systems with non-
linearities and high dimensions (e.g. Grujic [1], [2]; Grujic and Siljak [3],
Michel [4]). Basically, it involves the decomposition of a complicated system
into several simpler subsystems,-each a function of different components of
the state vector, with interconnections between them. These subsystems may
have some physical meaning or may be just mathematical artifices. The sum
of their more easily found Lyapunov functions is tried as a Lyapunov function
for some desired stability property of the overall system. Its suitability is
however not tested directly, but rather, is determined by the negative
definiteness of an aggregation matrix, the elements of which are determined
by the interconnections and the Lyapunov functions of the subsystems.

So far this approach has been used to derive sufficient conditions for the
asymptotic, exponential and finite-time stabilities of the overall system. In
many situations, however, it is required only that the trajectories ultimately
satisfy some predetermined bound, rather than approach some equilibrium
state (e.g. Yoshizawa [6]). In this paper the aggregation-decomposition
approach is used to establish sufficient conditions for the equi-ultimate
boundedness of systems described by vector valued nonlinear ordinary
differential equations. The simpler subsystems considered are equi-ultimately
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bounded, exponen-tially stable or unbounded. Three examples illustrate the
application of these conditions and it is shown why similar conditions cannot
in general be derived for other types of boundedness properties.

2. System description

A system S to be considered is described by an w-dimensional ordinary
differential equation

and can be decomposed into s interconnected subsystems S, described by
n,-dimensional (2f=, n, = n) ordinary differential equations

^=g.(t,x,)+h,(t,x) i = l,2,--;s. (2)

The functions f i , : i * x R " - > M"' in (2) are called interconnections and the
state vectors JC, G R"1 of the s subsystems S, partition the state vector x G R"
of system S, that is, x = (xT, x\, • • -,xT)- Also, it is assumed that / : U+ x
R" —* R" and the g, : 55+ x M"' —» i" ' are smooth enough to ensure global
existence of solutions x(t;t0, xn) of system S and x,(t;t», x,0) of the s free
subsystems S* described by the n, -dimensional ordinary differential equa-
tions

-£=g,(t,x,) i = 1,2, •••,«. (3)

Further, when a free subsystem S* (3) is regarded as being exponentially
stable, it is assumed that x, = 0 is its unique equilibrium state.

For / = 1,2, • • •, s an arbitrary norm \\x, ||, will be used on M"; but for
convenience the max norm

||JC (I = max{||x, ||,- ; i = 1,2,---, s} (4)

will be used on K".
Following Yoshizawa [6], a free subsystem S* is called equi-ultimately

bounded with bound B, > 0 if for every a>0 and /»ER+ there is a
T, = T, (a, /„) g 0 such that

||JC.- (r ; /o, Jr.-o)||i S B ,

for all t g to+ T-, and all ||xl0||, S a. An analogous statement holds for the
overall system S (1).
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In the sequel it is supposed that associated with each free subsystem S*
(/ = 1,2, • • •, s) is a nonnegative, differentiate Lyapunov function V,(/, jr.-)
which is defined for all (f, x,)£ R+ x U"' and satisfies

a,(||x,||.)2iV1(r,x.) (5)

for all ( / ,x , )6i*x W- with ||x, ||, g B, g 0, where a,(r) is a continuous,
increasing, positive function of r g B, with a,(r)—>°° as r—>oo; and

J" V>(t>x>) = j;Vl(t,x,) + [grad V,(r,x.)]Tg,(f,x,)

for all (f, x,) £ R+x R"' with constants c, >0 and /u,, = + 1 or - 1.
When B, >0 and /A, = - 1, the above conditions are sufficient for the

equi-ultimate boundedness with bound B, of the free subsystem St. They are
also necessary provided the differentiability of V, is dropped and the
derivative in (6) replaced by the upper right-hand derivative (Yoshizawa [6],
theorem 11). With B, = 0 and /x, = - 1, they are satisfied by an exponentially
stable subsystem and with /LA, = + 1 by certain unstable or unbounded
subsystems.

Finally, it is assumed that the s interconnection functions h,(t, x) satisfy

t [grad V,(i, x,)]Th,(t,x)^2 «« V{V,(t,x.)V,(t, x,)} (7)
i-i ij-i

for all (f, x) G R+ x R". Here the a,, are real numbers with a,, = a,,. They may
be positive, negative or zero.

3. Main result

A constant, symmetric s x s aggregation matrix A = (a,,) and a bound
B g l are defined for system S (1) as

a,, = Hied,, + a,, i, j = 1,2, • • •, s (8)
and

B=max{l,B,,B2,---,B,} (9)

where 8/; is the Kronecker delta symbol.
The negative definiteness of this aggregation matrix A provides an easily

tested sufficient condition for the equi-ultimate boundedness with bound B of
system S (1) in terms of the equi-ultimate boundedness, exponential stability
or unboundedness of the free subsystems S* (3) and the interconnection
functions At,(r, x), i = 1,2, • • •, s.
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THEOREM. Suppose that
(a) the Lyapunov functions V, (t, x,) of the free subsystems S * (3) satisfy

( 5 ) and (6 ) for i = 1 ,2 , • • • , s ;
( b ) the interconnection functions h,(t,x), i — 1,2, • • •, s, satisfy (7);
(c) the aggregation matrix A = (a,,) defined by (8) is negative definite.

Then system S (1) is equi-ultimately bounded with bound B.

PROOF. The function V(t,x) = Sf-i V,(t,x,) is defined, nonnegative and
differentiable for all (t, x ) E B + x R". From the definition of B (9) and the
properties of the s functions a,(r), i = 1,2, • • -,s, the function

a (r) = min {a, ( r ) ; / = 1,2, • • •, s}

is a continuous, positive increasing function of r g B with a (r) —» oo as r —* oo.
By(4 )and (9 ) fo r any ( f , x )GR + xR" with ||JC | |g B, there is a / = 1,2, •••,

or s, which depends on x, such that ||x || = || JC, ||, g B g B;. Consequently

that is, for all (f, x)G K+x K" with ||x

a(||x||)

The derivative of V(t, x) along trajectories of system S (1) is for any
(t,

TtV(t,x) = {- V(t,x)+[gradV(t,x)]rf(t,x)

= t { Jt V. «,x,) + [grad V, (t, x. )]T (g, (r, x,) + h, (r, x))}

= 2 ^ V. it, x,)
i at

+ ± [grad V, (t, x, )f h, (t, x,)

t fi.C V, (t, x,) + 2 a,; VIV, (I, x,) V, (r, x,)}

( u , , v2, • • •, vs)A(vi, v2, • • -, vs)
r

V,(t,x.)

where i>, = VV;(r, x,) for i = 1,2, • • -,s and A m a x (A)<0 is the largest eigen-
value of the negative definite aggregation matrix A.
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Thus V(t, x) is a Lyapunov function satisfying sufficient conditions,
analogous to (5) and (6), for the equi-ultimate boundedness with bound B > 0
of the overall system S (1).

This completes the proof of the theorem.

4. Examples

The following three examples illustrate the application of the above
theorem. Each consists of two free subsystems which are, respectively, both
equi-ultimately bounded, equi-ultimately bounded and exponentially stable,
and equi-ultimately bounded and unbounded. The function T:R—*K+ is
defined as

f l fo r | x | ^ l
T(x) = I

I 1/|x | f o r | x | ^ l .

Example 1.

System S is composed of two interconnected first order subsystems
governed by

dxi _ x, , . .

(10)
~J7~ *2-*2+ h2(t,xl,x2)

where

and

h2(t,xux2)= T(x2)exp{\(x2- \){t + \)}.

Free subsystem S*

^r="7TT ( 1 1 >
is equi-ultimately bounded with bound B, = 1. (It is also asymptotically
stable, but not exponentially stable.) A suitable Lyapunov function is

for which
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for all (r, x,)GR+XR with | x , | s 1; and

— V<

for all (r, x,) G R+ x R.
Free subsystem S*

dt

r,x,)S - V,(r,x,)

(12)

is equi-ultimately bounded with bound B2 = 2. A suitable Lyapunov function
is

V2(t, x2) = V2(x2) = r for \x2\^2

(xl-4)2 for | x 2 | g 2

for which

for all x 2 e R with | x 2 | ^ 2 ; and

0

-b

= -16V2(x2)

for

for

for

for

for all

The bounds (7) for these Lyapunov functions and interconnections are
determined as follows

[grad V1(/lx1)]fc1(r,x) = 2

for all (f,x)EM+XR2; and
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0 for \x
=

4x2T(x2)(x2 - 4)exp {{• (x\ - l)(r + 1) otherwise

0 for

x\ — \)(t + 1)} otherwise

= 4V{V,(/,x,)V2(x2)}

for all (t,x)em+xm2. Hence

t [grad Vi(t,xi)]h,(t,x)S6V{Vl(t,xl)V2(x2)}

so atl = a22 = 0 and a,2 = a2, = 3. But Ci = 1, c2 = 16 and fix = /JL2 = — 1, so the
aggregation matrix defined by (8) is

This is negative definite with eigenvalues (— 17±V261)/2 < 0 .
Thus the overall system is equi-ultimately bounded with bound B =

max {1,1,2} = 2.

Example 2.

System S is composed of two interconnected subsystems, with n, = 1 and
n2 = 2, governed by

dx, _ _ x, , . .

A r 1 m (13)
dx2 I ~ 1 01 i, / \

where

h, (/, x ) = „ ' '^.sech (X21X22)

and

for / = 1 and 2.
Free subsystem S* is the same as in example 1, namely (11). It is

equi-ultimately bounded with B, = 1 and a suitable Lyapunov function is
again
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V,(l,x,) = exp{(x?-

Free subsystem S*

d (x
U 1 0] (x2Ao - i J U J

is exponentially stable. A suitable Lyapunov function is

V2(f,x2) = V2(x2) = xli + *22

for which a2(r)= r2 can be used with B2 = 0, and

1= -2V 2 (x 2 ) .

The above Lyapunov functions and interconnections satisfy
2

for all (t, x) e K+ x R3. Thus a,, = 5, a,2 = a21 = 1 and a22 = 0. But c, = 1, c2 = 2
and fi, = IJL2= — 1, so the aggregation matrix here is

A =

This is negative definite with eigenvalues ( -4±Vl3 ) /3 <0.
Thus system S (13) is equi-ultimately bounded with bound B =

max{l , l ,0}=l .

Example 3.

System 5 here is composed of two interconnected subsystems, with
n, = 2 and n2 = 1, governed by

where

h, ,( t ,x)= - x , , ( l + r)cosh(x12x2)

hl2(t, x)= - x,2(l + I x2|) cosh {T(x,,)}

and
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Free subsystem S\

d (xn\_\h 0] (xu\* U » H o i J l x J
is unbounded. A suitable Lyapunov function is

Vl(t,x1)= V,(x,)=x?, + x?2

for which

Here ax(r) = r2 and B, = 0.
Free subsystem 5* is the same as in example 1, namely (12). The same

Lyapunov function

for

can be used.
The Lyapunov functions and interconnections here satisfy

2 [grad V,(x,)]rh,(t,x)£ -2V,(xl) + 2V{Vl(xl)V2(x2)}
1 = 1

for all ( ( , J ) £ R * X R 3 . Thus a,, = - 2 , al2= a2, = 1 and a22 = 0. But c, = 1,
c2= 16, /Xi = 1 and /u.2= — 1, so the aggregation matrix here is

.1 -i]
This is negative definite with eigenvalues ( - 17±V229)/2<0.
Thus system S (15) is equi-ultimately bounded with bound

B = max{l,0,2} = 2.

Remark

Existence of solutions of the above composite systems is guaranteed by
theorem 3.4 in Yoshizawa [7], using V(t,JC) = 2?_, Vj(r, x,) as the required
Lyapunov functions. The nonlinear nature of (10), (13) and (15) may result in
nonuniqueness of solutions. The theorem proved in section 3 is still valid as
analogous necessary and sufficient conditions to (5) and (6) hold in such cases
(Stonier [5]).
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5. Concluding remarks

The aggregation-decomposition method has been used to derive a simple
algebraic criterion guaranteeing the equi-ultimate boundedness of a nonlinear
composite system, composed of equi-ultimate bounded, exponentially stable
or unbounded subsystems. It cannot in general be used for other types of
boundedness properties because of the nature of their necessary and sufficient
Lyapunov conditions. Example 8 of Yoshizawa [6] shows that the Lyapunov
functions for equi-boundedness need not be continuous, let alone differenti-
able. For uniform boundedness and uniform-ultimate boundedness the
Lyapunov functions need only be defined outside a possibly very large,
neighbourhood of the origin (Yoshizawa [6], theorems 4, 5, 7). Consequently,
the sum of Lyapunov functions of the free subsystems need not be defined
everywhere in the exterior of any neighbourhood of the origin and thus
cannot be used as a Lyapunov function for the composite system.
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