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1. Introduction. Consider the classes of positive, primitive binary quadratic 
forms ax2 + bxy + cy2 of discriminant — A = d = b2 — 4ac < 0. Dickson 
(2, p. 89) lists 101 values of A such that —A is a discriminant having a single 
class in each genus. The largest value given is 7392, and Swift (7) has shown 
that there are no more up to 107. Sixty-five of these values are divisible by 4. 
For these values, A/4 is called an idoneal number; its properties were inves­
tigated by Euler. 

We write as usual 

L*(s) = Ë x(n)rT\ dt(s) > 0, 
i 

where throughout x W is a real non-principal character modulo k; also f (s) 
is the Riemann zeta function defined for R(s) > 1 by 

oo 

tts) = E n~\ 
1 

We prove the two theorems: 

THEOREM I. If A > 1060, there is at most one fundamental discriminant — A 
with a single class in each genus. 

THEOREM II. 7/Z*(53/54) > 0 for k > 1014, there are for A > 1014 no fun­
damental discriminants — A with a single class in each genus. 

Chowla (1 ) proved that as d approaches — o°, the number of classes in 
each genus tends to °o, so that after some indeterminate point, there are 
no discriminants with a single class in each genus. This also follows 
from the well-known inequality of Siegel (6) which states that Lk(l) > k~€, 
k > jfeo(e). 

If h{d) is the class number, then for fundamental discriminants d < — 4, 

since the Kronecker symbol is a real non-principal character modulo A. The 
number of genera into which these classes are divided is either 2l~l or 2\ 
where / is the number of distinct prime factors of d. 
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2. Some lemmas. 

LEMMA 1. |f($ + it)\ < 2(|/| + 1). 

Since (8, p. 14) 

*•(*) - jzn -s X " ^ ^ dx> *(*) > °-

m + it)\ + ih + \t\) £x~mdx - 1 + 2(i + |*|). 
-h + u 

LEMMA 2. |L*(! + #)| < (2|/| + 1 ) V * log &. 

Let 

5(*) = Z x(«). 
Then, for 8t(s) > 0, 

(j) = g 5(n)-5(n- l ) _ g _ . 
1 W 1 

= iL 5(») 5 I -i+î = 5 I — FFÏ <&. 
1 « /n X «7 1 X 

But \S(x)\ < V& log k (5, Satz 494), hence, 

\Lk($ + it)\ < (J + |/|) V ^ l o g f e J V 3 / 2 ^ » 2V"fe(è + M) logé. 

We define for complex 5 ^ 1, 

F(s) = f (5) L*(s). 
For $R(s) > 1, we write 

00 

Ç(s)Lk(s) = X) ^n^"S. 
1 

Then a,\ = 1, a* > 0, and an > 1 if n =* r2 (3, p. 428). Let 

G(x) = Ë <*»*"**, « > 0. 
1 

By a theorem of Mellin (5, Satz 231), 
1 p 2+ ioo 

e'x = ^—. T(s)x~sds, x>0. 
A-KI «/2-feo 

Therefore 

G(«) - 5 ^ f+k°T(s)x-'F(s) ds. 
ZTTt •/2-ioo 

This integral can be evaluated by applying Cauchy's Theorem to the rectangle 
with vertices 2 ± Ti, % db Ti, T > 0. On the horizontal paths, the integral 
has the order (5, Satz 229, Satz 407) 
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( 7-5/2 \ 

Letting T —» œ, we obtain, because of the singularity at 5 = 1, 

(1) 

LEMMA 3. 

G(x) = ^f11 + ^ f ~r(s)x-'F(5) * . 
X Z7TZ J ^ - ï œ 

|r(J + a)| = 
\ / cosh irt 

This follows from T(s) T(l — 5) =» 7r/sin S7r. 
From Lemma 3, 

(2) | r ( i+ «*)|< V^e~ilU\ 
LEMMA 4. 7/Z4(53/54) > 0/or fe > 1014, iftew 

^(D>à f e l /27-
From (1), (2), Lemmas 1 and 2, we obtain 

G(«) - ^ < ^ Ç°° V 2 T e"|Tl<,2 V k(2\t\2 + 3|*| + 1) log k il 

= 2V2*logfe f V + 3< + 1) e-*" A 
Jo 

7TX 

2^J 2k 

•\J 7TX 

\k log £/ 32 . 12 . 2 \ 
V 3 1 2 i / < 

5 y/ k log fe 

-\/ x 

and 

(3) 
*ï JfeLt(l) < 

5k log & 

y/ x 

Next for $R($) > 1, 

ksT(s) F(s) = f ̂ " ^ ( f ) <&• 

Therefore 

(4) „WFW_ « £ £ . jy.{G(f)_ ̂ + p - ^ ) „ 
= 7i + /,. 

From now on suppose 53/54 < 5 < 1. Then (4) still holds on noting (3). 
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Now set / = 1/k. Then, for k > 1014, 

I2 = I xs XG( - ) dx = ks I xs 1G(x) dx > ks I G(x) dx 
*)k~l \K/ «/A;~a *Jk~* 

J
i l co 100 -, 

* - » r«=l r = l P 

>4^-10-][l-10-]-i:Ç-97Ç} 
>§*• 

7 l | < f>^log.^ = 5^ l og , . 
V * 

Hence 
. KT, (3 /2) - S 

Te 5 2 

and it is easily seen that for k > 1014 

Ii + h> k'. 

To complete the proof of Lemma 4, take 5 = 53/54. Then f (5) < 0 and 
£*(s) > 0- Hence the first term of (4) is non-positive and so 

kLk(l)t
s~l

 > k, 
1 — s 

or 
(5) Lk(l) > ( 1 - *)**<*-». 

This is the result, since (5) holds at 53/54. 

LEMMA 5. If -d = A > 1014 then 2l < A0*3, and if -d = A > 1060 /Aen 
2< < A0'2. 

The smallest positive integer with r prime factors is the product of the first 
r primes. Let this product be P r . Then the lemma follows easily by induction, 
since if 

2 r < (P r)
m , 

2T+1 < 2(Pr)
m < (P r+1)m , pr+1 > 21 M , 

and r = 13 is the smallest value of r such that Pr > 1014, and r = 37 is the 
smallest value of r such that PT > 1060. 

3. Proof of the theorems. We first prove Theorem II. From 

h(d) = ^ - ^ L A ( l ) , 
7T 
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and Lemma 4, we have for A > 1014, 

V~A~ 1 A 2 5 / 5 4 

h(d) > 
54 A1/27 " 54 

By Lemma 5, the number of genera is less than A0*3 for A > 1014. Therefore 
the theorem is true whenever 

A25/54 

V - > A°-3 

54 7T 
which holds for A > 1014. 

We now prove Theorem I. We assume there are two such discriminants 
di, d2 with Ai > A2 > 1060 and show that this leads to a contradiction. The 
tests given by Swift (7) for a discriminant to have more than a single class in 
each genus show that if d has a single class in each genus, then d, d/4, or d/16 
is a fundamental discriminant. From this Theorem 1 can be extended to all 
discriminants without difficulty but with tedium. 

Landau (4, p. 281) proved 

( 6 ) Hdi) + Hd2) > 1 

V ^ tog" At V ^ l o g 2 A 2
 6 k * * < A i A . ) ' 

By assumption 

(7) h(di) < 2U < A / ; h(d2) < 2U < A2\ Ô < 1/5, 

where the upper bound for 8 follows from Lemma 4. From (6) 

_ _ 2 1 _ 1 
A!*-5 log2 Ai 5 log6 (Af ) 160 log5 A2 ' 

or 
(8) log A2 > A l

( 1 - 2 { ) / 1 ° . 

Next define 

P(s) = f (s) Lkl(s) Lk,(s) Lkl.k,(s), 

where xi> X2> the characters in 
Lkl(s), Lk,(s), 

are real primitive non-principal characters modulo &i and &2, ki ^ k2. Also 

Xi(w) X2(w) 
Lki,k,(s)=Z n. 

Write for Vt(s) > 1 

P(s) = Z bn-n~\ 
1 

Again bi = 1, bn > 0, and bn > 1 if n = r2. Let 

H(x) = Ë bne~n\ x > 0. 
i 

https://doi.org/10.4153/CJM-1954-048-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-048-6


468 S. CHOWLA AND W. E. BRIGGS 

As we obtained (l) , we now obtain 

(9) H(x) = v + 5 ^ f i + t o r (5 ) x~sP(s) ds, 

where 

L* = L^il) Lh,(l) Lkl,k.(D. 

From (9), (2), Lemmas 1 and 2, results, 

H(x)-—\ 
x I 

< — ^ f™ V r2»«~** , ' r2(|/ | + 1)(2|*| + l)3£iiMogfeilog£2log (*i*,) <ft 
2 T T V ^ 

= 2V2fe1fe1logfe1logfe1log(M») f V ^ ' ( & 4 + 20*3 + 18*2 + 7/ + 1) <fc 
Jo 

TTX 

2^~2kik2\ogki\ogk2\og{kik2)(bU± , 1920 , 288 , 28 , 2\ 
= 1 — g - H 4 - H 3- H — 2 H — / 

\ T 7T 7T 7T 7T/ 

100 &i&2 log ki log &2 log (&1&2) 

Therefore 

'** ' ' 100(feife2)
3/2 log ki log k2 log(feife2) (10) l /fe) ~ ^ ^ 

I \klk2/ X 
< _ 

As we obtained (4), we now obtain, for 9?(s) > 1, 

(ii) WrwfM-^f 

Suppose now 53/54 < 5 < 1. Then (11) still holds by (10). Put q = {kik2)~\ 
As before, we obtain 

and 

5 
^ 2 > T ( ^ 1 ^ 2 ) S , 

| / i | < 100(£i&2)
3/2 log ki log £2 ïog(£ifc2)

 J L - Ï . 

Hence for s > 53/54 
J1 + J2 > (kik2)

s, ki,k2 > 1060. 

Therefore from (11) follows 
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LEMMA 6. IfP(s0) < 0, 53/54 < s0 < 1, then 

^ ( 1 ) ^ . ( 1 ) Z t l l 4 i ( l ) > ( 1 - so)(k1k2)
z{s°-1) 

for ki, k2 > 1060. 

From (7), 
(12) L A l ( l ) < ™ ; Z ; A a ( l ) < ™ . 

Ai A2 
But 

T - 1 

A H ^ n A 1/27 > 
Ax > 1060, 

and therefore by Lemma 4, 
LAl (53/54) < 0 , 

which means that 

LAl(so) = 0, 

and that P(s0) = 0. Furthermore 

(13) ZAl(l) = ( l - J o î Z i » , 

Let 53/54 < 5 < 1 and S(x) = L i x xW« Then 

P M = y x 0 0 log» v < ? M [ 1 O & * log(x + 1)1 

so that 

53/54 < 5o < 1, 

50 < V < 1. 

|££(OI< Z * 
logx _ log(x + 1) 
xs ~~ (x + iy *+l 

logx _ log(x + 1) 
xs (x + l ) s 

< z 1 — s logjx + c») 
(* + cxy

+1 
, log k 

< 1 + 1 + 2-, x „«+i—r ,s-j 

< 2 + 54 log k[kuu - 21/M] + 1(T24 log'*, 

< 55 £1/54 log k. 

0 < cx< 1, 

k> 10' 

Also 

£ A , ( D 

Therefore from (13), we obtain 

(14) 1 - 5o > 

By (8), 

•Hdi) 
y/Ai 

55At4/J7 log Ai * 

A2 > exp Alm > Ax5, Ai > 1060, 

or 
(15) A, < A 1/5 
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As is well known (4, p. 281), 

£A. .A.(1) <31og(A!A2). 

Applying this, (12), (14), (15) to Lemma 6, gives 

/ ^ e/5%-1/18 

L A ' ( 1 ) > m{A^)m/5i\og(A2
1/5) log(A2

67Z) 

. _ 1 . 1 . _JL 
> 4ÔÂ7 ï / ï 7 ) + , / ï log2A2

 > 40A2°-2 > A,1"5 ' 

which contradicts (12). 
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