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The linear and nonlinear stability of two concentric jets separated by a duct wall is analysed
by means of global linear stability and weakly nonlinear analysis. Three governing
parameters are considered, the Reynolds number based on the inner jet, the inner-to-outer
jet velocity ratio (δu) and the length of the duct wall (L) separating the jet streams.
Global linear stability analysis demonstrates the existence of unsteady modes of inherent
convective nature, and symmetry-breaking modes that lead to a new non-axisymmetric
steady state with a single or double helix. Additionally, we highlight the existence of
multiple steady states, as a result of a series of saddle-node bifurcations and its connection
to the changes in the topology of the flow. The neutral lines of stability have been computed
for inner-to-outer velocity ratios within the range 0 < δu < 2 and duct wall distances in
the interval 0.5 < L < 4. They reveal the existence of hysteresis, and mode switching
between two symmetry-breaking modes with azimuthal wavenumbers 1 : 2. Finally, the
mode interaction is analysed, highlighting the presence of travelling waves emerging from
the resonant interaction of the two steady states, and the existence of robust heteroclinic
cycles that are asymptotically stable.

Key words: instability

1. Introduction

Double concentric jets is a configuration enhancing the turbulent mixing of two jets,
which is used in several industrial applications where the breakup of the jet into droplets
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Figure 1. Sketch representing the three flow regimes in the near field of double concentric jets. Figure based
on the sketches presented in Ko & Kwan (1976) and Talamelli & Gavarini (2006).

due to flow instabilities is presented as the key technology. Combustion (i.e. combustion
chamber of rocket engines, gas turbine combustion, internal combustion engines, etc.) and
noise reduction (e.g. in turbofan engines) are the two main applications of this geometry,
although the annular jets can also be found in some other relevant applications such as
ink-jet printers or spray coating (Mata et al. 2023).

The qualitative picture emerging from this type of flow divides the inner field of
concentric jets in three different regions: (i) initial merging zone, (ii) transitional zone
and (iii) merged zone, as presented in figure 1, that follows the initial sketch presented
by Ko & Kwan (1976). In the initial merging zone (i), just at the exit of the two jets, two
axisymmetric shear layers (inner and outer boundary layer) develop and start to merge. In
this region, we distinguish the inner and outer shear layers, related to the inner and outer
jet streams. Then, most of the mixing occurs in the transitional zone (ii), that extends until
the external shear layer reaches the centreline. Finally, in the merged zone (iii), the two
jets are totally merged, modelling a single jet flow.

Several parameters define the characteristic of this flow: the inner and outer jet
velocities, the jet diameters, the shape and thickness of the wall separating both
jets, the Reynolds number, the boundary layer state and thickness at the jet exit
and the free-stream turbulence. Based on these parameters, it is possible to identify
several types of flow behaviour, which can be related to the presence of flow
instabilities.

Numerous studies have investigated the interaction between the inner and outer shear
layers of the jet and their effect on the flow instability. Starting with Ko & Kwan (1976),
they postulated that the double concentric jet configuration could be considered as a
combination of single jets. Nevertheless, Dahm, Frieler & Tryggvason (1992) revealed,
by means of flow visualisations, diverse topology patterns as function of the outer/inner
jet velocity ratio, reflecting that the dynamics of the inner and outer jet shear layers was
different from that in a single jet. Moreover, this study exhibited a complex interaction
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Mode selection in concentric jets

between vortices identified in both shear layers, affecting the instability mechanism
of the flow. Subsequently, different flow regimes are recognised as a function of the
outer/inner velocity ratio. For cases in which the outer velocity is much larger than the
inner velocity, the outer shear layer dominates the flow dynamics (Buresti, Talamelli &
Petagna 1994), and a low frequency recirculation bubble can be spotted at the jet outlet
(Rehab, Villermaux & Hopfinger 1997). For still high outer/inner velocity ratios, the outer
jet drives the flow dynamics, exciting the inner jet which ends up oscillating at the same
frequency as the external jet. This trend is known as the lock-in phenomenon, identified
by several authors (Dahm et al. 1992; Rehab et al. 1997; da Silva, Balarac & Métais 2003;
Segalini & Talamelli 2011). Moreover, the oscillation frequency detected was similar to the
one defined by a Kelvin–Helmholtz flow instability, generally encountered in single jets.
When the outer/inner velocity ratio is similar, a von Kármán vortex street is detected near
the separating wall, depicted in various investigations (Olsen & Karchmer 1976; Dahm
et al. 1992; Buresti et al. 1994; Segalini & Talamelli 2011). A wake instability affected
the inner and outer shear layers, reversing the lock-in phenomenon. Finally, for small
outer/inner velocity ratios, the inner jet presents its own flow instability in the shear layer,
while a different flow instability was identified in the outer jet, as shown by Segalini &
Talamelli (2011).

The velocity ratio between jets has also an influence on noise attenuation, which was
analysed experimentally by Williams, Ali & Anderson (1969). It was observed that, for
some given configurations, more noise attenuation was present than for the others, with a
maximum between 12 and 15 dB.

Regarding the geometric configuration of the concentric jets, Buresti et al. (1994)
detected the presence of an alternate vortex shedding when the separation wall thickness
between the two jets was sufficiently large, also recognised by Dahm et al. (1992) and
Olsen & Karchmer (1976). This finding was as well presented by Wallace & Redekopp
(1992), including the influence of the wall thickness and sharpness on the characteristics
of the jet.

This vortex shedding has been theoretically analysed (Talamelli & Gavarini 2006) by
means of linear stability analysis, and experimentally tested (Örlü et al. 2008). These
investigations agree on the vortex shedding driving the evolution of both outer and
inner shear layers. Consequently, a global absolute instability can be triggered by this
mechanism with no external energy input. The vortex shedding can be therefore considered
as a potential tool for passive flow control, delaying the transition to turbulence by means
of controlling the near field of the jet.

The study performed in Talamelli & Gavarini (2006) constituted an entry point for
subsequent research (although ignoring the effect of the duct wall separating the two
streams). A similar procedure was employed to investigate the local linear spatial stability
of compressible, inviscid coaxial jets (Perrault-Joncas & Maslowe 2008), and lately
accounting for the effects of heat conduction and viscosity (Gloor, Obrist & Kleiser 2013).
Both investigations found two modes of instability, one being associated with the primary
and the other with the secondary stream, showing an independence between modes, the
effect of velocity ratio mainly affects the first mode, while the second mode was primarily
influenced by the diameter ratio between jets. Gloor et al. (2013) also identified parameter
regimes in which the stability of the two layers is not independent anymore, and pointed
that viscous effects are essential only below a specific Reynolds number. Subsequently,
this work was expanded in Balestra, Gloor & Kleiser (2015) to investigate the local inviscid
spatio-temporal instability characteristics of heated coaxial jet flows, where the presence
of an absolutely unstable outer mode was identified.
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Recently, Canton, Auteri & Carini (2017) performed a global linear stability analysis to
study more in detail this vortex-shedding mechanism behind the wall. They examined a
concentric jet configuration with a very small wall thickness (0.1D, with D the inner jet
diameter), but the authors selected an outer/inner velocity ratios where it was known that
the alternate vortex shedding behind the wall was driving the flow. A global unstable mode
(absolute instability) with azimuthal wavenumber m = 0 was found, confirming that the
primary instability was axisymmetric (the modes with m = 1, 2 were stable at the flow
conditions at which the study was carried out). The highest intensity of the global mode
was located in the wake of the jet, composed of an array of counter-rotating vortex rings.
The shape of the mode changes when moving along its neutral curve, revealing through
the numerical simulations a Kelvin–Helmholtz instability over the shear layer between the
two jets and in the outer jet at high Reynolds numbers. Nevertheless, the authors showed
that the wavemaker was located in the bubble formed upstream the separating wall, in
good agreement with the results presented by Tammisola (2012), who performed a similar
stability analysis in a two-dimensional configuration (wakes with co-flow).

The stability of annular jets, a limit case where the inner jets have zero velocity, has
also been investigated. In different analyses of annular jets (Michalke 1999; Bogulawski &
Wawrzak 2020), it has been illustrated that this type of axisymmetric configuration does
not behave as it appears. The m = 0 modes studied have been shown to be stable, and the
dominant mode found by both studies is helical (m = 1). In addition, to characterise the
annular jet, these investigations analyse the behaviour of the case by adding an azimuthal
component to the inflow velocity, making the discharge of the annular jet eddy like,
comparing the evolution of the frequency and growth rate of this m = 1 mode.

The convective stability of weakly swirling coaxial jets has also been studied, as done in
Montagnani & Auteri (2019), where the optimal response modes are determined from
an external forcing. The impact of the velocity ratio between jets, effect of swirl and
influence of Reynolds number are presented by means of non-modal analysis. They
showed that small transient perturbations rapidly grow, experiencing a considerable spatial
amplification, where nonlinear interactions come into play being capable of triggering
turbulence and large oscillations. For non-swirling coaxial jets, the stability characteristics
are found to be dominated by the axisymmetric and sinuous optimal modes.

The current study aims to expand the investigations of Canton et al. (2017), who used a
specific geometry and varied the outer-to-inner velocity ratio. Herein, we aim to provide
a complete characterisation of the leading global modes, and to demonstrate the effect
of three parameters on the linear stability properties (Martín et al. 2021). These three
parameters are: the duct wall thickness separating the two jets, which is explored in the
interval L ∈ [0.5, 4], the inner-to-outer velocity δu, within the range δu ∈ [0, 2], and the
Reynolds numbers based on the inner jet. We find unstable global modes with azimuthal
wavenumbers m = 0 (axisymmetric modes), m = 1 and m = 2.

This work also performs a study of the mode interaction between two steady modes
with azimuthal wavenumbers m = 1 and m = 2. Different analyses have been done to
determine the attracting coherent structures when there is an interaction between modes.
Some of these flow structures are non-axisymmetric steady states, travelling waves or,
most remarkably, robust heteroclinic cycles.

The article is organised as follows. Section 2 defines the problem and the governing
equations for the coaxial jet configuration, as well as the linear stability equations and the
methodology for mode selection. A characterisation of the axisymmetric steady state is
done in § 3. In particular, we show the existence of multiple steady states, as a result of
a series of saddle-node bifurcations. Section 4 is devoted to the discussion of the global
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Figure 2. Computational domain of the configuration of two concentric jets used in StabFem.

linear stability results. Section 4.1 is intended to illustrate the basic features of the most
unstable global modes, such as their spatial distribution and frequency content, as well as,
a brief discussion about the instability physical mechanism. In the following subsections,
we perform a parametric exploration in terms of the inner-to-outer velocity ratio, and the
duct wall length between the jet streams in order to determine the neutral curves of global
stability. Section 5 undertakes a detailed study of the unfolding of the codimension-two
bifurcation between two steady modes with azimuthal wavenumbers m = 1 and m = 2.
Therein, we discuss the consequences of 1 : 2 resonance, which lead to the emergence
of unsteady flow structures, such as travelling waves or robust heteroclinic cycles, among
others. Finally, § 6 summarises the main conclusions of the current study.

2. Problem formulation

2.1. Computational domain and general equations
The computational domain, represented in figure 2, models a coaxial flow configuration,
which is composed of two inlet regions, an inner and outer pipe, both having a distance
D between walls and length 5D, i.e. zmin = −5D. The computational domain has an
extension of zmax = 50D and rmax = 25D. The distance between the pipes is equal to L,
measured from the inner face of the outer tube to the face of the inner jet.

The governing equations of the flow within the domain are the incompressible
Navier–Stokes equations. These are written in cylindrical coordinates (r, θ, z), which are
made dimensionless by considering D as the reference length scale and Wo,max as the
reference velocity scale, which is the maximum velocity in the outer pipe at z = zmin

∂U
∂t

+ U · ∇U = −∇P + ∇ · τ(U), ∇ · U = 0, (2.1a)

with τ(U) = 1
Re

(∇U + ∇UT), Re = Wo,maxD
ν

. (2.1b)

Here, the dimensionless velocity vector U = (U, V, W) is composed of the radial,
azimuthal and axial components, P is the dimensionless reduced pressure, the dynamic
viscosity ν and the viscous stress tensor τ(U).
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The incompressible Navier–Stokes equations (2.1) are complemented with the following
boundary conditions:

U = (0, 0, Wi) on Γin,i and U = (0, 0, Wo) on Γin,o, (2.2a,b)

where

Wi = δu tanh (bi(1 − 2r)) and Wo = tanh
[

bo

(
1 −

∣∣∣∣2r − (Router,1 + Router,2)

D

∣∣∣∣
)]

.

(2.3a,b)

The parameter δu corresponds to the velocity ratio between the two jets, defined as
δu = Wi,max/Wo,max, the volumetric flow rates of the inner and outer jets are defined as

V̇i = 2π
∫ Rinner

0 rWi dr and V̇o = 2π
∫ Router,2

Router,1
rWo dr, respectively. The parameters bo and

bi represent the boundary layer thickness within the nozzle, which is fixed equal to 5 (as in
Canton et al. 2017). With this choice of parameters, the volumetric flow rate of the inner
jet is a function of the inner-to-outer velocity V̇i = 3.73δu, whereas the flow rate of the
outer jet is a function of the duct wall length separating the two jets V̇o = 5.41L. There
is a weak influence of the boundary layer thickness on the stability properties of the jet,
and it is related to the vortex-shedding regime developed upstream the separation wall
(more details may be found in Talamelli & Gavarini (2006)). Finally, a no-slip boundary
condition is set on Γwall and a stress-free (((1/Re)τ (U) − P) · n = 0) boundary condition
is set on Γtop and Γout, as shown in figure 2. In the following, the Navier–Stokes equations
(2.1) and the associated boundary conditions will be written symbolically under the form

B
∂Q
∂t

= F (Q, η) ≡ LQ + N(Q, Q) + G(Q, η), (2.4)

with the flow state vector Q = [U, P]T, η = [Re, δu]T and the entries of the matrix B
arise from rearranging (2.1). Such a form of the governing equations takes into account a
linear dependency on the state variable Q through L. And a quadratic dependency on the
parameters and the state variable through operators G(·, ·) and N(·, ·).

2.2. Asymptotic stability

2.2.1. Linear stability analysis
In this study, the authors attempt to characterise the stable asymptotic state from the
spectral properties of the Navier–Stokes equations (2.1). First, let us consider the stability
of an axisymmetric steady-state solution named Q0, which will be also referred to
as the trivial steady state. For that purpose, let us evaluate a solution of (2.1) in the
neighbourhood of the trivial steady state, i.e. a perturbed state, as follows:

Q(x, t) = Q0(x, t) + εq̂(r, z) exp(−i(ωt − mθ)), (2.5)

where ε � 1, q̂ = [û, p̂]T is the perturbed state, ω is the complex frequency and m is the
azimuthal wavenumber. The next step consists of the characterisation of the dynamics of
small-amplitude perturbations around this base flow by expanding it over the basis of linear
eigenmodes (2.5). If there is a pair [iω
, q̂
] with Im(ω
) > 0 (respectively the spectrum
is contained in the half of the complex plane with negative real part) there exists a basin
of attraction in the phase space where the trivial steady state Q0 is unstable (respectively
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stable) (Kapitula & Promislow 2013). The eigenpair [iω
, q̂
] is determined as a solution
of the following eigenvalue problem:

J (ω
,m
)q̂(z
) ≡
(

iω
B − ∂F
∂q

∣∣∣∣
q=Q0,η=0

)
q̂(z
) = 0, (2.6)

where the linear operator J is the Jacobian of (2.1), and (∂F/∂q|q=Q0,η=0)q̂(z
) =
Lm


q̂(z
) + Nm

(Q0, q̂(z
)) + Nm


(q̂(z
), Q0). The subscript m
 indicates the azimuthal
wavenumber used for the evaluation of the operator. In the following, we account for
eigenmodes q̂(z
)(r, z) that have been normalised in such a way 〈û(z
), û(z
)〉L2 = 1.

The identification of the core region of the self-excited instability mechanism (Gianneti
& Luchini 2007) is evaluated by means of the structural sensitivity tensor

Ss = (û†)∗ ⊗ û. (2.7)

2.2.2. Methodology for the study of mode selection
In the following, we briefly outline the main aspects of the methodology employed in
the study of mode interaction or unfolding of a bifurcation with codimension-two, a
comprehensive explanation is left to Appendix A. Herein, we use the concept of mode
interaction as a synonym of the analysis of a bifurcation with codimension-two, that
is, a bifurcation satisfying two conditions, e.g. a bifurcation where two modes become
at the same time unstable. The determination of the attractor or coherent structure is
explored within the framework of equivariant bifurcation theory. The trivial steady state is
axisymmetric, i.e. the symmetry group is the orthogonal group O(2). Near the onset of the
instability, the dynamics can be reduced to that of the centre manifold. Particularly, due
to the non-uniqueness of the manifold, one can always look for its simplest polynomial
expression, which is known as the normal form of the bifurcation. The reduction to the
normal form is carried out via a multiple scales expansion of the solution Q of (2.4). The
expansion considers a two scale development of the original time t 	→ t + ε2τ , here, ε is
the order of magnitude of the flow disturbances, assumed to be small ε � 1. In this study
we carry out a normal form reduction via a weakly nonlinear expansion, where the small
parameters are

ε2
δu

= δu,c − δu ∼ ε2 and ε2
ν = (νc − ν) = (Re−1

c − Re−1) ∼ ε2. (2.8a,b)

A fast time scale t of the self-sustained instability and a slow time scale of the evolution
of the amplitudes zi(τ ) are also considered in (2.13), for i = 1, 2, 3. The ansatz of the
expansion is as follows:

Q(t, τ ) = Q0 + εq(ε)(t, τ ) + ε2q(ε2)(t, τ ) + O(ε3). (2.9)

Herein, we evaluate the mode interaction between two steady symmetry-breaking states
with azimuthal wavenumbers m1 = 1 and m2 = 2, that is,

q(ε)(t, τ ) = (z1(τ )q̂(z1)
(r, z) exp(−im1θ) + c.c.)

+ (z2(τ )q̂(z2)
(r, z) exp(−im2θ) + c.c.), (2.10)

where z1 and z2 are the complex amplitudes of the two symmetric modes q̂(z1)
and q̂(z1)

.
Note that the expansion of the left-hand side of (2.4) up to third order is as follows:

εB
∂q(ε)

∂t
+ ε2B

∂q(ε2)

∂t
+ ε3

[
B

∂q(ε3)

∂t

]
+ O(ε4), (2.11)
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and the right-hand side, respectively,

F (q, η) = F (0) + εF (ε) + ε2F (ε2) + ε3F (ε3) + O(ε4). (2.12)

Then, the problem up to third order in z1 and z2 can be reduced to (Armbruster,
Guckenheimer & Holmes 1988)

ż1 = λ1z1 + e3z̄1z2 + z1(c(1,1)|z1|2 + c(1,2)|z2|2),
ż2 = λ2z2 + e4z2

1 + z2(c(2,1)|z1|2 + c(2,2)|z2|2).

}
(2.13)

where λ1 and λ2 are the unfolding parameters of the normal form. The procedure followed
for the determination of the coefficients c(i,j) for i, j = 1, 2 and e3 and e4 is left to
Appendix A. An exhaustive analysis of the nonlinear implications of this normal form
on the dynamics is left to § 5.

2.2.3. Numerical methodology for stability tools
Results presented herein follow the same numerical approach adopted by Fabre et al.
(2019), Sierra, Fabre & Citro (2020a), Sierra et al. (2020b) and Sierra et al. (2021),
Sierra-Ausin et al. (2022a,b), where a comparison with direct numerical simulation can
be found. The calculation of the steady state, the eigenvalue problem and the normal
form expansion are implemented in the open-source software FreeFem++. Parametric
studies and generation of figures are collected by StabFem drivers, an open-source project
available in https://gitlab.com/stabfem/StabFem. For steady state, stability and normal
form computations, we set the stress-free boundary condition at the outlet, which is the
natural boundary condition in the variational formulation.

The resolution of the steady nonlinear Navier–Stokes equations is tackled by means of
the Newton method. While the generalised eigenvalue problem (2.6) is solved following
the Arnoldi method with spectral transformations. The normal form reduction procedure
of § 2.2.2 only requires us to solve a set of linear systems, which is also carried out within
StabFem. On a standard laptop, every computation considered below can be attained
within a few hours.

3. Characterisation of the axisymmetric steady state

The base flow is briefly described as a function of the inner-to-outer velocity ratio δu, the
Reynolds number and the length L of the duct wall separating the two jet streams. We
begin by characterising the development of the axisymmetric steady state with varying
δu at a constant Reynolds number fixed to Re = 400 and distance between the jets L = 1.
The axial velocity component of the steady state is illustrated in figure 3 for three values
of the velocity ratio. The most remarkable difference between them is the modification
of the topology of the flow near the duct separating the two coaxial jet streams. The
annular jet case (δu = 0), represented in figure 3(a), displays a large recirculation bubble.
On the other hand, for the velocity ratios δu = 1 and δu = 2 there is no longer a large
recirculation bubble, but two closed regions of recirculating fluid near the duct separating
the two coaxial jets. These last two cases are illustrated in figure 3(b,c).

Figure 4 displays the evolution of the recirculation length (Lr) associated with the large
recirculating bubble, which characterises the configurations of coaxial jets with a low
value of the velocity ratio δu. Figure 4(a) shows that the recirculation length is nearly
constant for values of the velocity ratio δu smaller than the magnitude of the velocity vector
in the recirculation region. The value of the plateau, for a constant duct wall distance

971 A30-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://gitlab.com/stabfem/StabFem
https://doi.org/10.1017/jfm.2023.445


Mode selection in concentric jets

0 2 4
z

0 2 4
z

0 2 4
z

0

1

2

3

4

5

r

–0.5 10

0

1

2

3

4

5

0

1

2

3

4

5

–0.5 10 –0.5 10

(b)(a) (c)
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black line; (a) δu = 0, (b) δu = 1, (c) δu = 2.
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Figure 4. Evolution of the recirculation length (Lr) of the recirculating bubble with respect to the velocity
ratio δu between the inner and outer jets. Solid lines are computed for a fixed Reynolds number Re = 400,
while dashed lines are computed for a fixed distance L = 1. Panel (b) magnifies the region near the saddle-node
bifurcation for L = 1, while (c) corresponds to an enlargement of the region near the saddle node for L = 2.

L, increases with the Reynolds number. Reciprocally, at constant Reynolds number, the
recirculation length increases with the duct wall length L separating the jet streams. For
configurations of coaxial jets operated within this interval of the velocity ratio δu, we
can say that the inner jet is trapped by the large recirculation region. Instead, when the
velocity ratio δu is of similar magnitude to the axial velocity in the recirculating region,
the inner jet is sufficiently energetic to break the recirculating region. For those values
of the velocity ratio, the recirculation length is a rapidly decreasing function of δu. From
figure 4(a) we may conclude that larger distances between the jets, respectively a smaller
value of the Reynolds number, lead to the existence of the recirculation region for larger
velocity ratios. In addition, figure 4 demonstrates the existence of multiple steady states
for the same velocity ratio. An enlargement of the region with multiple steady states is
displayed in figure 4(b) for the case of L = 1. It shows the existence of three steady states
in the interval of 0.265 � δu � 0.275, where the extreme points correspond to the location
of the saddle nodes. Figure 5 depicts the base flows associated with the circle markers in
figure 4(b). Particularly, it demonstrates that the saddle-node bifurcations are, in some
cases, associated with changes in the topology of the flow. From figures 5(a) to 5(b), one
may appreciate the formation of a recirculating region along the duct wall separating the
jet streams. While from (b) to (c) we observe the formation of an additional region of
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Figure 5. (Re = 400, L = 1) Meridional projections of the axisymmetric streamfunction isolines and the axial
velocity contour in a range of (z, r) ∈ [−1, 5] × [0, 5]. Each panel is associated with a marker of figure 4 (b).
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Figure 6. (Re = 400, L = 2) Meridional projections of the axisymmetric streamfunction isolines and the axial
velocity contour in a range of (z, r) ∈ [−1, 8] × [0, 5]. Each panel is associated with a marker of figure 4 (c).

recirculating flow near the upper corner of the duct wall. The large recirculation bubble is
displaced downstream due to the formation of the two additional recirculation regions.

Figure 4(c) corresponds to an enlargement of the region with multiple steady states
for a distance L = 2 between the jet streams. The base flows associated with the circle
markers are illustrated in figure 6. It demonstrates that changes in the flow topology do
not always occur through saddle-node bifurcations. The base flow depicted in figure 6(a)
already features a small region of a recirculating flow near the lower corner of the thick
wall duct. Furthermore, from (a) to (b) we observe a stretching of the recirculation region
attached to the duct wall, but without any change in the topology of the flow. On the
contrary, the transitions from (b) to (c) and (c) to (d) are associated with changes in the
topology of the flow. The passage from (b) to (c) is characterised by the formation of a
vortex ring near the upper corner of the duct wall. Likewise, from (c) to (d) we appreciate
a reconnection between the large recirculation bubble and the new vortex ring. Finally, the
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Figure 7. (Re = 200) Meridional projections of the axisymmetric streamfunction isolines and the axial
velocity contour in a range of (z, r) ∈ [−1, 5] × [0, 8]. (a) (L = 1, δu = 1). (b) Duct wall length L = 3 and
with the same flow rate of the outer jet (V̇o) as case (a); (c) (L = 3, δu = 2) with the same ratio of the flow rate
(V̇o/V̇i) between the inner and outer jet as cases (a,b).

flow topology of the fifth steady state, the circle marker without any text annotation, is
identical to (d). In addition, it is worth noting that in the interval 0 < δu < 2 no further
fold bifurcations are observed. Leading to the conclusion that the saddle-node bifurcations
are tightly connected to changes in the topology of the flow, leading to the disappearance
of the large recirculation bubble and the formation of the two regions of recirculating fluid.
Nonetheless, they are not neither the cause nor the effect of the modifications in the flow
topology.

Lastly, the influence on the flow rate has been analysed, as the change of the distance
between jets L, maintaining the same velocity profile on the outer jet, affects the value
of the outer flow rate V̇o ≈ 5.4L. On the other hand, the flow rate of the inner jet only
depends on the inner-to-outer velocity ratio V̇i ≈ 3.7δu. As seen on figure 7, there are no
significant changes on the recirculation bubble when the flow rate is changed. Figures 7(b)
and 7(c) show that similar cases with different flow rates but same ratio (V̇o/V̇i) between
the inner and outer jet, present similar recirculation bubble.

4. Linear stability analysis

4.1. Spectrum
Herein, we analyse the asymptotic linear stability of the steady state in four distinct
configurations. The first spectrum, depicted in figure 8(a), has been computed for a
velocity ratio δu = 1. Similarly, the second spectrum corresponds to a velocity ratio δu =
0.28, which represents the middle branch after the saddle node, that is, the equivalent of
the marker (b) in figure 4(b) for Re = 250. These two configurations have been determined
for a duct wall length L = 1. The remaining two spectra have been computed for duct wall
distances of L = 0.5 and L = 2, which are illustrated in figures 8(c) and 8(d), respectively.
The computation of the spectrum reveals the existence of eigenmodes, with azimuthal
wavenumbers m = 0, m = 1 and m = 2, that become unstable.

First, the four spectra display three types of continuous branches, referred to as bi (i =
1, 2, 3), as was the case in the configuration of coaxial jets described by Canton et al.
(2017). The branch b3 is composed of spurious modes. The branch b2 is constituted of
modes localised within the jet shear layers. While the branch b1 is composed by nearly
steady modes with support in the fluid region surrounding the jets.

Second, in the four configurations we find two non-oscillating unstable modes (or nearly
neutral, as is the case in figure 8c) with azimuthal wavenumbers m = 1 and m = 2,
hereinafter referred to as modes S1 and S2, respectively. These two modes are depicted
in figure 9, which illustrates their axial velocity components for the four configurations.
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Figure 8. Spectrum computed at four different configurations of (Re, L, δu) for m = 0, 1, 2. The inset inside
each panel magnifies the region near the origin. Stationary or low frequency modes are designated S, while
oscillating/flapping modes are designated F, with the azimuthal wavenumber as the subscript: (a) Re = 250,
L = 1, δu = 1; (b) Re = 250, L = 1, δu = 0.28; (c) Re = 800, L = 0.5, δu = 1; (d) Re = 250, L = 2, δu = 1.

Their spatial distribution is mostly localised inside the recirculating region of the flow, but
they are also supported along the shear layer of the jets. Evaluating both the direct and
adjoint modes, we can identify the core of the global instability from the maximum values
of the function ||Ss(r, z)||F, which has been defined in (2.7).

Figure 10 illustrates the sensitivity maps for the modes displayed in figure 9(a,c,d).
The sensitivity maps ||Ss(r, z)||F are compact supported within the region of recirculating
fluid, featuring negligible values elsewhere. The maximum values of the sensitivity maps,
displayed in figure 10(a,c,e) for the mode S1, are found within the inner vortex ring, in
particular near the downstream part of the inner vortical region, and on the interface
between the two vortical rings. By increasing the wall length separating the jet streams,
the wavemaker moves downstream towards the right end of the inner vortical region. A
similar observation is drawn from figure 10(b,d, f ), where the core of the instability is also
found within the inner vortex ring. Similar observations were drawn in the case of the
wake behind rotating spheres (Sierra-Ausín et al. 2022), where the core of the instability
was also found near the downstream part of the recirculating flow region. Therein, it was
concluded that the instability is supported by the recirculating flow region.

Figure 8(d) illustrates the existence of two oscillating/flapping modes with azimuthal
wavenumbers m = 1 and m = 2, hereinafter referred to as F1 and F2, respectively. The
axial velocity component of these two modes is displayed in figure 11, together with their
associated structural sensitivity map. The unsteady modes F1 and F2 possess a much larger
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Figure 9. Axial velocity component of the non-oscillating global modes S1 (bottom half of each panel) and
S2 (top half of each panel). The label of the panels coincides with the label of figure 8: (a) Re = 250, L = 1,
δu = 1; (b) Re = 250, L = 1, δu = 0.28; (c) Re = 800, L = 0.5, δu = 1; (d) Re = 250, L = 2, δu = 1.

spatial support than S1 and S2. They are formed by an array of counter-rotating vortex
spirals sustained along the shear layer of the base flow. For the mode F2 the amplitude of
these structures grows downstream of the nozzle, in the axial direction, with a maximum
around z ≈ 70, after which they slowly decay. The mode F1 grows further downstream,
with a maximum around z ≈ 300. The spatial structure of these eigenmodes resembles the
axisymmetric mode of figure 9 in Canton et al. (2017) or the optimal response modes
determined by Montagnani & Auteri (2019). As was the case for the non-oscillating
modes, the core of the instability is found near the downstream part of the inner vortex
ring. Tentatively, one may conclude that vortical perturbations are produced within the
recirculating flow region and convected downstream while experiencing a considerable
spatial amplification, which in turn justifies the resemblance to the optimal response modes
determined by Montagnani & Auteri (2019).

There is an unstable m = 0 mode, hereinafter referred to as S0, in the spectrum displayed
in figure 8(b). Such a mode, which is illustrated figure 12(a), is the result of a saddle-node
bifurcation leading to the existence of multiple steady states, a feature that has been
discussed in § 3. It is a mode that promotes the formation of a recirculating flow region
attached to the duct wall. In § 3 we have remarked that the S0 modes can be related
to changes in the topology of the flow, and to a downstream shift of the recirculation
bubble. Thus, it is not surprising that the core of the instability, shown in figure 12(b), is
found on the interface between the recirculating region attached to the wall and the large
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Figure 10. Structural sensitivity map ||Ss(r, z)||F . White lines are employed to represent the steady-state
streamlines: (a) S1 (Re = 250, L = 1, δu = 1); (b) S2 (Re = 250, L = 1, δu = 1); (c) S1 (Re = 800, L =
0.5, δu = 1); (d) S2 (Re = 800, L = 0.5, δu = 1); (e) S1 (Re = 250, L = 2, δu = 1); ( f ) S2 (Re = 250, L =
2, δu = 1).
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Im(ûz)
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Figure 11. Axial velocity component of the oscillating global modes F1 (a) and F2 (b). Structural sensitivity
map ||Ss(r, z)||F of mode F1 (c) and F2 (d). White lines are employed to represent the steady-state streamlines.

971 A30-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.445


Mode selection in concentric jets

–1 0 1 2 3
–3

–2

–1

0

1

2

3

r
ûz
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Figure 12. (a) Global mode S0 for the configuration (Re = 250, L = 1, δu = 0.28). The top half of (a)
represents the axial velocity, while the bottom half depicts the radial velocity component. Structural sensitivity
map ||Ss(r, z)||F of the modes S0 (b), S1 (c) and S2 (d). White lines are employed to represent the steady-state
streamlines.

recirculation bubble, and mostly in a region close to the axis found near the leftmost end
of the recirculation bubble. The changes in the base flow due to the S0 mode have an
impact on the instability core of the S1 and S2 modes, which are depicted in figures 12(c)
and 12(d), respectively. The maximum values of the structural sensitivity are found on the
leftmost end of the recirculation bubble near the axis of revolution, while it is found in the
centre of the recirculation bubble for the mode S2.

4.2. Annular jet configuration δu = 0
Herein, we investigate the effect of the duct wall length (0.5 < L < 4) on the linear
stability of the annular jet (δu = 0).

The linear stability findings are summarised in figure 13, which displays the evolution
of the critical Reynolds number with respect to the duct wall distance (L) for the four
most unstable modes: two non-oscillating S1 and S2, and two oscillating F1 and F2. A
cross-section view at z = 1 is displayed in figure 14. Please note that, for the chosen set
of parameters, the axisymmetric unsteady mode F0 is always found at larger Reynolds
numbers than the aforementioned modes, that is why, in the following, we only include
the results for the S1, S2, F1 and F2 modes. This is one of the major differences from the
case studied by Canton et al. (2017). For small values of the duct wall length (L ≈ 0.1)
separating the jet streams, the dominant instability is a vortex-shedding mode, which in
our nomenclature is referred to as F0. On the contrary, for duct wall lengths in the interval
0.5 < L < 4, the primary instability of the annular jet is a steady symmetry-breaking
bifurcation that leads to a jet flow with a single symmetry plane, displayed in figure 14(a).
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Figure 13. Linear stability boundaries for the annular jet (δu = 0). (b) Frequency evolution of the unsteady
modes. Legend: S1 mode is displayed with a solid black line, S2 with a solid red line and the F1 and F2 modes
are depicted with dashed black and red lines, respectively.
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Figure 14. Cross-sectional view at z = 1 of the four unstable modes at criticality for the annular jet case
(δu = 0). The streamwise component of the vorticity vector �z is visualised by colour. (a) Mode S1 for L = 0.5.
(b) Mode S2 for L = 0.5. (c) Mode F1 for L = 3. (d) Mode F2 for L = 3.

In contrast, bifurcations that lead to the mode S2 possess two orthogonal symmetry planes,
see figure 14(b). In § 4.1 it has been established that non-oscillating modes S1 and S2 for
δu = 1 display the highest intensity within the region of recirculating fluid. Likewise, in
the annular jet configuration, figure 15 demonstrates that the spatial distribution of these
two stationary modes S1 and S2 is found inside the recirculation bubble. For jet distances
L < 2, the second mode that bifurcates is F1 mode, depicted in figure 16(a). This situation
corresponds to a bifurcation scenario similar to other axisymmetric flow configurations,
such as the flow past a sphere or a disk (Meliga, Chomaz & Sipp 2009; Auguste, Fabre
& Magnaudet 2010). For larger distances between jets, the scenario changes. The second
bifurcation from the axisymmetric steady state is the F2, displayed in figure 16(b). Other
configurations where the primary or secondary instability involves modes with azimuthal
component m = 2 are swirling jets (Meliga, Gallaire & Chomaz 2012) and the wake flow
past a rotating sphere (Sierra-Ausín et al. 2022). The unsteady modes F1 and F2 display
a similar structure to the unsteady modes discussed in § 4.1. They are formed by an array
of counter-rotating vortex spirals developing in the wake of the separating duct wall and
convected downstream, while experiencing an important spatial amplification until they
eventually decay after reaching a maximum amplitude.
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Figure 15. Global modes S1 (a) and S2 (b) at criticality for L = 0.5 and δu = 0. The top halves of each panel
represent the axial velocity, while the bottom halves depict the radial velocity component. Black lines represent
the streamlines of the base flow.
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Im(ûz)
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Figure 16. Axial velocity component of the neutral modes for L = 3 and δu = 0; (a) F1, (b) F2.

4.3. Fixed distance between jets and variable velocity ratio δu

In the following, we focus on the influence of the velocity ratio δu between jets for fixed jet
distances L. Figure 17 displays the neutral curve of stability for jet distances (a) L = 0.5
and (b) L = 1. One may observe that the primary bifurcation is not always associated with
the mode S1 as is the case for δu = 0. For sufficiently large velocity ratios, the primary
instability leads to a non-axisymmetric steady state with a double helix, corresponding
to the unstable mode S2. As can be appreciated in figure 9(b), for small values of δu, the
mode S1 expands downstream over a relatively large area, having a higher activity than
mode S2, which is confined to the recirculation region. As the ratio between velocities is
increased, as observed in figure 9(a), mode S2 enlarges and resembles mode S1, controlling
the instability mechanism for large values of δu. Another interesting feature, which could
motivate a control strategy, is the occurrence of vertical asymptotes. This sudden change
in the critical Reynolds number is due to the retraction, disappearance of the recirculation
bubble and the formation of a new recirculating flow region, aspects that have been covered
in § 3. For L = 0.5, this sudden change occurs for δu ≈ 0.25, and for higher values of
δu the critical Reynolds number is around twice larger than the one of the annular jet
(δu = 0). The case of jet distance L = 1 was discussed in § 3. The sudden change in the
stability of the branch S1 occurs in the range δu ∈ [0.25, 0.5]. Within this narrow interval,
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Figure 17. Linear stability boundaries for the concentric jets (a) L = 0.5 and (b) L = 1. Same legend as
figure 13.

the primary branch of instability is the F1. At around δu = 0.4, the primary bifurcation is
again the branch S1, which becomes secondary at around δu ≈ 0.8 in favour of the branch
S2. In figure 17 we have highlighted the codimension two point interaction between the
S1 − S2 modes, which will be analysed in detail in § 5. Around this point, we can observe
the largest ratio (Rec|δu /= 0/Rec|δu=0) between the value of the critical Reynolds number
of the primary instability for a concentric jet configuration (δu /= 0) and the annular jet
problem (δu = 0).

4.4. Fixed velocity ratio δu and variable distance between jets
Figure 18 compares the results obtained for a constant velocity ratio when varying the
distance between jets. As observed before, the increase of the distance between the jets
has a de-stabilising effect. The largest critical Reynolds number is found at δu = 0, and the
critical Reynolds number decreases with the duct wall length L between the jet streams.
The points of codimension two are highlighted in figure 18. We can appreciate that the
interaction between the branch S1 and S2 happens for every velocity ratio δu explored, and
it is the mode interaction associated with the smallest distance between jets. Additionally,
for a velocity ratio δu = 0.5 there exist two points where the branches of the linear modes
S1 and F1 intersect. Another feature of the neutral curves is the existence of turning points,
which are associated with the existence of saddle-node bifurcations of the axisymmetric
steady state, addressed in § 3. The saddle-node bifurcations of the steady state induce
the existence of regions in the neutral curves with a tongue shape. These saddle-node
bifurcations are also responsible for the formation of the vertical asymptotes observed in
figure 17. Finally, it is of interest the transition of the modes S1 and S2, which induce
the symmetry breaking of the axisymmetric steady state to slow low frequency spiralling
structures. These modes have been identified for δu = 0.5 for m = 1, δu = 1 for m = 2
and δu = 2 for both m = 1 and m = 2. As it will be clarified in § 5, these oscillations
issue from the nonlinear interaction of modes, emerging simultaneously for a specific
Reynolds number, and changing their position as the most unstable global mode of
the flow.
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Figure 18. Neutral lines of the four modes found by studying the configuration of two concentric jets and fixing
the velocity ratio; (a,b) δu = 0.5, (c,d) δu = 1, (e, f ) δu = 2. Black lines: modes with m = 1, red lines: modes
with m = 2. Straight lines: steady modes, dashed lines: unsteady modes. The discontinuity points, i.e. the points
where the second most unstable mode (of a given type) becomes the most unstable, are highlighted with square
markers.
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5. Mode interaction between two steady states. Resonance 1 : 2

5.1. Normal form, basic solutions and their properties
The linear diagrams of § 4 have shown the existence of the mode interaction between the
modes S1 and S2. It corresponds roughly to the mode interaction that occurs at the largest
critical Reynolds number for any value of L herein explored. In this section, we analyse the
dynamics near the S1 : S2 organising centre. We perform a normal form reduction, which
allows us to predict non-axisymmetric steady, periodic, quasiperiodic and heteroclinic
cycles between non-axisymmetric states.

The mode interaction that is herein analysed corresponds to a steady–steady bifurcation
with O(2) symmetry and with strong resonance 1 : 2. Such a bifurcation scenario has been
extensively studied in the past by Dangelmayr (1986), Jones & Proctor (1987), Porter &
Knobloch (2001), Armbruster et al. (1988) and for the reflection symmetry-breaking case
(SO(2)) by Porter & Knobloch (2005). In order to unravel the existence and the stability
of the nonlinear states near the codimension two point, let us write the flow field as

q = Q0 + Re[r1(τ )eiφ1(τ )e−iθ q̂s,1] + Re[r2(τ )eiφ2(τ )e−2iθ q̂s,2], (5.1)

in polar coordinates for the complex amplitudes z1 = r1eiφ1 and z2 = r2eiφ2 where rj and
φj for j = 1, 2 are the amplitude and phase of the symmetry-breaking modes m = 1 and
m = 2, respectively. The complex-amplitude normal form (2.13) is expressed in this
reduced polar notation as follows:

ṙ1 = e3r1r2 cos(χ) + r1(λ(s,1) + c(1,1)r2
1 + c(1,2)r2

2), (5.2a)

ṙ2 = e4r2
1 cos(χ) + r2(λ(s,2) + c(2,1)r2

1 + c(2,2)r2
2), (5.2b)

χ̇ = −
(

2e3r2 + e4
r2

1
r2

)
sin(χ), (5.2c)

where the phase χ = φ2 − 2φ1 is coupled to the amplitudes r1 and r2 because of the
existence of the 1 : 2 resonance. The individual phases evolve as

φ̇1 = e3r2 sin(χ),

φ̇2 = −e4
r2

1
r2

sin(χ).

⎫⎪⎬
⎪⎭ (5.3)

Before proceeding to the analysis of the basic solutions of (5.2), we can simplify these
equations by the rescaling (

r1

|e3e4|1/2 ,
r2

e3

)
→ (r1, r2), (5.4)

which yields the following equivalent system:

ṙ1 = r1r2 cos(χ) + r1(λ(s,1) + c11r2
1 + c12r2

2), (5.5a)

ṙ2 = sr2
1 cos(χ) + r2(λ(s,2) + c21r2

1 + c22r2
2), (5.5b)

χ̇ = − 1
r2

(2r2
2 + sr2

1) sin(χ), (5.5c)
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Name Definition Bifurcations Comments

O r1,O = r2,O = 0 — Steady axisymmetric state

P r2
2,P = −λ(s,2)

c22
, r1,P = 0 λ(s,2) = 0 Bifurcation from O

r1,MM = −λ(s,1) ± r2,MM + c12r2
2,MM

c11
λ(s,1) = 0 Bifurcation from O

MM PMM(r2,MM cos(χMM)) = 0 σ± = 0 Bifurcation from P

cos(χMM) = ±1 — —

cos(χTW ) = (2c11 + c12)λ(s,2) − (2c21 + c22)λ(s,1)

ΣTW (2λ(s,1) + λ(s,2))
— —

TW r2
2,TW = −(2λ(s,1) + λ(s,2))

ΣTW
cos(χTW ) = ±1 Bifurcation from MM

r2
1,TW = 2r2

2,TW — —

Table 1. Definition of the fixed points of the reduced polar normal form (5.5); σ± is defined in (5.8), the
polynomial PMM is defined in (5.10) and ΣTW ≡ 4c11 + 2(c12 + c21) + c22.

where the coefficients

s = sign(e3e4), c11 = c(1,1)

|e3e4| , c12 = c(1,2)

e2
3

, c21 = c(2,1)

|e3e4| , c22 = c(2,2)

e2
3

.

(5.6a–e)

Finally, we consider a third normal form equivalent to the previous ones but which removes
the singularity of (5.2) and (5.5) when r2 = 0. Standing waves (sin χ = 0) naturally
encounter this type of artificial singularity, which manifests in (5.5) as an instantaneous
jump from one standing subspace to the other by a π-translation. This is the case of the
heteroclinic cycles, previously studied by Armbruster et al. (1988) and Porter & Knobloch
(2001). The third normal form, which we shall refer to as the reduced Cartesian normal
form, takes advantage of the simple transformation x = r2 cos(χ), y = r2 sin(χ) (Porter &
Knobloch 2005)

ṙ1 = r1(λ(s,1) + c11r2
1 + c12(x2 + y2) + x), (5.7a)

ẋ = sr2
1 + 2y2 + x(λ(s,2) + c21r2

1 + c22(x2 + y2)), (5.7b)

ẏ = −2xy + y(λ(s,2) + c21r2
1 + c22(x2 + y2)). (5.7c)

In this final representation, standing wave solutions are contained within the invariant
plane y = 0, and due to the invariance of (5.7) under the reflection y 	→ −y, one can
restrict attention, without loss of generality, to solutions with y ≥ 0, cf. Porter & Knobloch
(2001).

The system (5.5) possess four types of fixed points, which are listed in table 1.
First, the axisymmetric steady state (O) is represented by (r1, r2) = (0, 0), so it is the

trivial steady state of the normal form. The second steady state is what it is denoted as
the pure mode (P). In the original coordinates, it corresponds to the symmetry-breaking
structure associated with the mode S2. This state bifurcates from the axisymmetric steady
state (O) when λ(s,2) = 0. The third fixed point is the mixed-mode state (MM), which is
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Name Bifurcation condition Comments

SW sr2
1 − 2c11r2

1r2,MM cos(χMM) − 2c22r3
2,MM cos(χMM)3 = 0 Bif. from MM

MTW DTW − TTW ITW = 0, ITW > 0 Bif. from TW

Table 2. Definition of the limit cycles of the reduced polar normal form (5.5).

listed in table 1. It corresponds to the reflection symmetry preserving state associated with
the mode S1. It may bifurcate directly from the trivial steady state O, when λ(s,1) = 0 or
from P whenever σ+ = 0 or σ− = 0, where σ± is defined as

σ± ≡ λ(s,1) − −λ(s,2)c12

c22
±
√

−λ(s,2)

c22
. (5.8)

The representation in the reduced polar form is

r1,MM = −λ(s,1) ± r2,MM + c12r2
2,MM

c11
, cos(χMM) = ±1, (5.9a,b)

and the condition PMM(r2,MM cos(χMM)) = 0, where PMM is defined as

PMM(x) ≡ sμ1 + (s + c21λ(s,1) − c(1,1)λ(s,2))x + (c21 + sc12)x2 + (c12c21 − c11c22)x3.
(5.10)

Finally, the fourth fixed point of the system represents travelling waves (TW). It is
surprising that the interaction between two steady states causes a time-periodic solution.
The travelling wave emerges from MM in a parity-breaking pitchfork bifurcation that
breaks the reflection symmetry when cos(χTW) = ±1. The TW drifts at a steady
rotation rate ωTW along the group orbit, i.e. the phases φ̇1 = r2,TW sin(χTW) and φ̇2 =
−s(r2

1,TW/r2,TW) sin(χTW) are non-null.
Mixed modes and travelling waves may further bifurcate into standing waves (SW) and

modulated travelling waves (MTW), respectively. These are generic features of the 1 : 2
resonance for small values of λ(s,1) and λ(s,2), when s = −1. In the original coordinates,
SW are periodic solutions, whereas MTW are quasiperiodic. Standing waves emerge via a
Hopf bifurcation from MM when the conditions PSW(r2,MM cos(χMM)) > 0 for

PSW(x) ≡ (2c22x3 − sr2
1)c11 − (2c12x + 1)(c21x + s)x, (5.11)

and the one listed in table 2 are satisfied. The MTW are created when a torus bifurcation
happens on the travelling wave branch when the conditions listed in table 2 are satisfied.

Another remarkable feature of (5.2) is the existence of robust heteroclinic cycles that
are asymptotically stable. When s = −1, there are open sets of parameters where the
reduced polar normal form exhibits structurally stable connections between π-translations
on the circle of pure modes, cf. Armbruster et al. (1988). These structures are robust and
have been observed in a large variety of systems, (Palacios et al. 1997; Mercader, Prat &
Knobloch 2002; Nore et al. 2003; Mariano & Stazi 2005; Nore, Moisy & Quartier 2005).
In addition to these robust heteroclinic cycles connecting pure modes, there exist more
complex limit cycles connecting O, P, MM and SW, cf. Porter & Knobloch (2001). These
cycles are located for larger values of λ(s,1) and λ(s,2), with a possibly chaotic dynamics
(Shilnikov type). In this study, we have not identified any of these. Finally, a summary of
the basic solutions and the bifurcation path is sketched in figure 19.
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Figure 19. Schematic representation of the basic solutions of (5.2) and their bifurcation path.
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Figure 20. Evolution of the codimension two interaction S1 − S2 in the space of parameters (Re, L, δu). Grey
points denote the points that were computed and the red point denotes the transition from steady to unsteady
with low frequency as reported in § 4.4.

5.2. Results of the steady–steady 1 : 2 mode interaction
Section 4.4 reported the location of mode interaction points for discrete values of the
velocity ratio δu. The location of the mode interaction between S1 and S2 is depicted
in figure 20. It shows that the mode switching between the modes S1 and S2 is indeed
stationary only for δu < 1.5 and L < 1.3. For larger values of the velocity ratio and the jet
distance, the interaction is not purely stationary; at least one of the linear modes oscillates
with a slow frequency. It implies that the mode selection for large velocity ratios near the
codimension two points is similar to the one reported by Meliga et al. (2012) for swirling
jets. However, even when the two primary bifurcations are non-oscillating (S1 and S2), the
1 : 2 resonance of the azimuthal wavenumbers induces a slow frequency, what we denote
as travelling wave solutions.

We consider the bifurcation sequence for δu = 1.0 and L = 1.15, which is qualitatively
similar to transitions in the range 0.5 < δu < 1.5, near the codimension two points, which
are depicted in figure 20. At the codimension two points for δu < 0.5, at least one of the
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Figure 21. Parametric portrait at the codimension two point S1 : S2 for parameter values (L, δu) = (1.15, 1.0).
The colour-shaded areas corresponds to the regions in the parameter space where a given solution is
attracting, e.g. the green-shaded area is the region where TW is the attracting solution. Solid lines indicate
codimension-one bifurcations, dashed lines indicate when λ(s,2) = 0 (P) and λ(s,1) = 0 (MM), a grey marker
denotes the codimension-two point. The visualisations of blue and red surfaces in the isometric views represent
the respective positive and negative isocontour values of the perturbative axial velocity indicated in the figure.

two bifurcations is sub-critical and a normal form reduction up to fifth order is necessary.
Subcritical transition was also noticed for a distance between jets L = 0.1 by Canton
et al. (2017), who reported high levels of the linear gain associated with transient growth
mechanisms. This last case is outside of the scope of the present manuscript. Figure 21
displays the phase portrait of the stable attractors near the S1 : S2 interaction. For values
of δu > 1.0, the axisymmetric steady state loses its axisymmetry leading to a new steady
state with symmetry m = 2, herein denoted as pure mode (P). A reconstruction of the
perturbative component of the flow field of such a state is performed at the bottom right of
figure 21, which shows that the state P possesses two orthogonal planes of symmetry.
Near the codimension two point, for values of the velocity ratio δu < 1.1, the state P
is only observable, that is nonlinearly stable, within a small interval with respect to the
Reynolds number. For larger values of the velocity ratio, the state P remains stable within
the analysed interval of Reynolds numbers. For values of the velocity ratio δu < 1.0,
the bifurcation diagram is more complex. Figure 22 displays the bifurcation diagram of
the fixed-point solutions of (5.7) on the left diagram and the full set of solutions of the
normal form in the right diagram. The axisymmetric steady state first bifurcates towards
a mixed-mode solution, which is the solution in the y = 0 plane for the right diagram
of figure 22. A solution with a non-symmetric wake has been reconstructed in figure 21.
The mixed-mode solution is only stable within a small interval of the Reynolds number.
A secondary bifurcation, denoted BifMM−TW , gives rise to a slowly rotating wave of the
wake. The TW and the MM solutions are identical at the bifurcation point. The phase
speed is zero at the bifurcation, thus this is not a Hopf bifurcation. It corresponds to a drift
instability that breaks the azimuthal symmetry, i.e. it starts to slowly drift. This unusual
feature, that travelling waves bifurcate from a steady solution at a steady bifurcation, is a
generic feature of the 1 : 2 resonance. A reconstruction of the travelling wave solution is
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Figure 22. Bifurcation diagram with respect to the Reynolds number for L = 1.15 and δu = 0.8. The (a)
diagram reports the evolution of r2 for the fixed-point solutions of the normal form. The (b) diagram displays
the bifurcation diagram in the Cartesian coordinates. Solid lines and dashed lines denote stable attractors and
unstable attractors, respectively.

depicted on the top of figure 21. It corresponds to the line with non-zero y component in
the right diagram of figure 22. The TW solution loses its stability in a tertiary bifurcation,
denoted as BifTW−MTW . It conforms to a Hopf bifurcation of the TW solution, which
gives birth to a quasi-periodic solution named the modulated travelling wave (MTW). A
representation of this kind of solution in Cartesian coordinates (r1, x, y) is depicted in
figure 22(b).

Eventually, the modulated travelling wave experiences a global bifurcation. That occurs
when the periodic MTW solution, in (r1, x, y) coordinates, nearly intersects the invariant
r1 = 0 and y = 0 planes. The transition sequence is represented in figure 22(b) in Cartesian
coordinates (r1, x, y). The amplitude of the MTW limit cycle increases until the MTW
arising at the tertiary bifurcation BifTW−MTW are destroyed by meeting a heteroclinic cycle
at BifMTW−Ht. The locus of BifMTW−Ht is reported in figure 21 and in good agreement
with Armbruster et al. (1988). The conditions for the existence of the heteroclinic cycles
are: λ(s,1) > 0, λ(s,2) > 0, c22 < 0. When σ− becomes negative, the cycle is attracting
and robust heteroclinic cycles are observed. It is destroyed when σ+ becomes negative, in
that case the pure modes are no longer saddles, which breaks the heteroclinic connection.
Figure 23 displays the instantaneous fluctuation field from a heteroclinic orbit connecting
P and its conjugate solution P’, which is obtained by a rotation of π/2, for parameter values
Re = 200 and δu = 0.8. The dynamics of the cycle takes place in two phases. Figure 23
depicts the motion of the coherent structure associated with the heteroclinic cycle. Starting
from the conjugated pure mode P′, the cycle leaves the point (a), located in the vicinity
of P′, along the unstable eigenvector y, which is the stable direction of P. The first phase
consists in a rapid rotation by π/2 of the wake, it corresponds to the sequence a-b-c-d-e
displayed in figure 23. Then it is followed by a slow approach following the direction y and
departure from the pure mode state P along the direction r1. The second phase consists in a
rapid horizontal motion of the wake, which is an evolution from P to P′ that takes place by
the breaking of the reflectional symmetry with respect to the vertical axis; it constitutes the
sequence e-f-g-h-i-a. Please note that equivalent motions are also possible. The first phase
of rapid counter-clockwise rotation by π/2 can be performed in the opposite sense. It
corresponds to a motion in Cartesian coordinates along the plane r1 along negative values
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Figure 23. Heteroclinic cycle solution for parameter values Re = 200, δu = 0.8. The top and bottom image
sequences along the heteroclinic cycle show (from left to right) an axial slice plane at z = 1 of the instantaneous
fluctuations of the axial velocity of the flow field as viewed from downstream, along with a three-dimensional
isometric view (d on the top and g on the bottom).The middle diagram displays the heteroclinic cycle in the
coordinates (r1, x, y).

of y. The sequence e-f-g-h-i-a can be replaced by a horizontal movement in the opposite
sense, which adjusts to connect the plane y = 0 corresponding to negative values of r1.

6. Discussion and conclusions

The current study provides a complete description of the configuration consisting of two
coaxial jets, broadly found in industrial processes, covering a wide range of applications
such as noise reduction, mixing enhancement or combustion control. The numerical
procedure herein employed has been validated with the existing literature in the case of the
stability analysis (see Appendix B for a detailed overview). A large region of the parameter
space is explored (δu, L) ∈ ([0, 2], [0.5, 4.5]), substantially expanding the work of Canton
et al. (2017).

Section 3 provides an analysis of the basic properties of the steady state, such as
the topology of the flow and its variations in terms of the three parameters (Re, L, δu).
It also highlights the existence of multiple steady states, as a result of a series of
saddle-node bifurcations, and the connection between the bifurcation and flow topology.
Highlighting, nonetheless, that changes in the topology are not a direct consequence
of a saddle-node bifurcation. The linear stability analysis performed in § 4 reveals the
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Figure 24. Direct mode, adjoint mode and sensitivity of the leading global mode studied by Canton et al.
(2017) calculated using StabFem.

existence of two unstable steady modes: S1 and S2, which are mostly located within the
recirculation bubble, and two unsteady ones: F1 and F2, which are also produced within
the recirculating region of the flow, but they are convected downstream, while experiencing
substantial amplification. In addition, in § 4, we briefly discuss the consequences of the
retraction and eventual disappearance of the recirculation bubble and the formation of a
new recirculating flow region, aspects that have been covered in § 3, in terms of the sudden
changes in the critical Reynolds number. Subsequently, the critical Reynolds number is
determined for a wide range of inner-to-outer velocity rations and duct wall lengths. An
increase of the velocity ratio has an overall stabilising effect, and it leads to the swap from
mode S1, characterised with one symmetry plane, to mode S2 that possesses two symmetry
planes. Afterwards, the effect of the distance L between jets is analysed. The primary effect
of increasing this distance is a decrease in the critical Reynolds number for all values of
δu investigated.

Section 5 analyses the mode interaction between two symmetry-breaking modes
with azimuthal wavenumbers m = 1 and m = 2. The unfolding of the codimension-two
bifurcation reveals the presence of unsteadiness as a result of the resonant 1 : 2 interaction
between the two steady modes. The codimension-two point is located at a velocity ratio
δu = 1.0 and distance between jets of L = 1.15, a situation that it is qualitatively equivalent
to transitions found in the range 0.5 < δu < 1.5. For values lower than δu = 1.0, the
bifurcation diagram exhibits an intricate path. First, a MM solution emerges, which
displays a non-symmetric wake. The MM solution is only stable for a small range of the
Reynolds number. Subsequently, a slowly rotating wake is triggered in the form of a TW.
This unusual feature, an unsteady state emerging from a steady state, corresponds to a drift
instability commonly found at 1 : 2 resonance. Then, the TW solution encounters a Hopf
bifurcation, developing a quasi-periodic solution in the form of a MTW. Finally, the MTW
solution undergoes a global bifurcation meeting a heteroclinic cycle. This heteroclinic
orbit links the solution P with its conjugate solution P′, spinning the wake from P′ to P,
and moving it horizontally from P to P′. On the other hand, for values higher than δu = 1.0,
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a non-axisymmetric steady state emerges as a pure mode P with two orthogonal planes of
symmetry. If the transition happens for values of the velocity ratio close to unity, a further
increase in the velocity ratio rapidly leads to the heteroclinic cycle.

Physical realisations of the 1 : 2 mode interaction have been observed by Mercader et al.
(2002) and Nore et al. (2003, 2005) for confined flow configurations. However, to the
authors’ knowledge, this is the first time that a robust heteroclinic cycle resulting from this
type of 1 : 2 interaction is reported in the literature for an external flow configuration, as is
the coaxial jet configuration.
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Appendix A. Normal form reduction

In this section we provide a detailed explanation of the normal form reduction to obtain
the coefficients of (2.13), we define the terms of the compact notation of the governing
equations (2.4), which is reminded here, for the sake of conciseness

B
∂Q
∂t

= F (Q, η) ≡ LQ + N(Q, Q) + G(Q, η). (A1)

The nonlinear convective operator N(Q1, Q2) = U1 · ∇U2 accounts for the quadratic
interaction on the state variable. The linear operator on the state variable is LQ =
[∇P, ∇ · U]T. The remaining term accounts for the linear variations in the state variable
and the parameter vector. It is defined as G(Q, η) = G(Q, [η1, 0]T) + G(Q, [0, η2]T)

where G(Q, [η1, 0]T) = η1∇ · (∇U + ∇UT) and G(Q, [0, η2]T). The former operator
shows the dependency on the parameter η1, which accounts for the viscous effects. The
latter operator depends on the parameter η2, which accounts for the velocity ratio between
jets and it is used to impose the boundary condition U = (0, η2 tanh(bi(1 − 2r)), 0) on
Γin,i. In addition, we consider the following splitting of the parameters η = ηc + �η.
Here, ηc denotes the critical parameters ηc ≡ [Re−1

c , δu,c]T attained when the spectra of
the Jacobian operator possess at least an eigenvalue whose real part is zero. The distance
in the parameter space to the threshold is represented by �η = [Re−1

c − Re−1, δu,c − δu]T.

A.1. Multiple scales ansatz
The multiple scales expansion of the solution q of (2.4) is

q(t, τ ) = Q0 + εq(ε)(t, τ ) + ε2q(ε2)(t, τ ) + O(ε3), (A2)

where ε � 1 is a small parameter. The distance in the parameter space to the critical
point �η = [Re−1

c − Re−1, δu,c − δu]T is assumed to be of second order, i.e. �ηi = O(ε2)
for i = 1, 2. The expansion (A2) considers a two scale expansion of the original time
t 	→ t + ε2τ . A fast time scale t and a slow time scale of the evolution of the amplitudes

971 A30-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-6036-5093
https://orcid.org/0000-0001-6036-5093
https://orcid.org/0000-0003-1875-6386
https://orcid.org/0000-0003-1875-6386
https://orcid.org/0000-0003-3605-7351
https://orcid.org/0000-0003-3605-7351
https://doi.org/10.1017/jfm.2023.445


Mode selection in concentric jets

zi(τ ) in (A2), for i = 1, 2. Note that the expansion of the left-hand side (2.4) up to third
order is as follows:

εB
∂q(ε)

∂t
+ ε2B

∂q(ε2)

∂t
+ ε3

[
B

∂q(ε3)

∂t
+ B

∂q(ε)

∂τ

]
, (A3)

and the right-hand side respectively,

F (q, η) = F (0) + εF (ε) + ε2F (ε2) + ε3F (ε3). (A4)

The expansion (A4) will be detailed at each order.

A.1.1. Order ε0

The zeroth order Q0 of the multiple scales expansion (A2) is the steady state of the
governing equations evaluated at the threshold of instability, i.e. η = ηc,

0 = F (Q0, ηc). (A5)

A.1.2. Order ε1

The first order q(ε)(t, τ ) of the multiple scales expansion of (A2) is composed of the
eigenmodes of the linearised system

q(ε)(t, τ ) ≡ (z1(τ )e−im1θ q̂1 + z2(τ )ei−m2θ q̂2 + c.c.). (A6)

In our case, m1 = 1 and m2 = 2. Each term q̂
 of the first-order expansion (A6) is a
solution of the following linear equation:

J (ω
,m
)q̂
 ≡
(

iω
B − ∂F
∂q

|q=Q0,η=ηc

)
q̂
 = 0, (A7)

where ∂F/∂q|q=Q0,η=ηc q̂
 = Lm

q̂
 + Nm


(Q0, q̂
) + Nm

(q̂
, Q0). The subscript m


indicates the azimuthal wavenumber used for the evaluation of the operator.

A.1.3. Order ε2

The second-order expansion term q(ε2)(t, τ ) is determined from the resolution of a set of
forced linear systems, where the forcing terms are evaluated from first- and zeroth-order
terms. The expansion in terms of amplitudes zi(τ ) (i = 1, 2) of q(ε2)(t, τ ) is assessed
from term-by-term identification of the forcing terms at the second order. Nonlinear
second-order terms in ε are

F (ε2) ≡
2∑

j,k=1

(zjzkN(q̂j, q̂k) exp(−i(mj + mk)θ) + c.c.)

+
2∑

j,k=1

(zjz̄kN(q̂j,
¯̂qk) exp(−i(mj − mk)θ) + c.c.)

+
2∑


=0

η
G(Q0, e
), (A8)

where the terms proportional to zjzk are named F̂
(zjzk)

(ε2)
and e
 is an element of the

orthonormal basis of R
2.
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Then, we look for a second-order term expanded as follows:

q(ε2) ≡
2∑

j,k=1
k�j

(zjzkq̂zjzk
+ zjz̄kq̂zjz̄k

+ c.c.) +
2∑


=1

η
Q(η
)
0 . (A9)

Terms q̂z2
j

are azimuthal harmonics of the flow. The terms q̂zjzk
with j /= k are coupling

terms, and q̂|zj|2 are harmonic base flow modification terms. Finally, Q(η
)
0 are base flow

corrections due to a variation of the parameter η
 from the critical point.
At this order, there exist two resonant terms, the terms proportional to z̄1z2 and z2

1, which
are associated with the singular Jacobian J (0,mk) for k = 1, 2. To ensure the solvability of
these terms, we must enforce compatibility conditions, i.e. the Fredholm alternative. The
resonant terms are then determined from the resolution of the following set of bordered
systems: (

J (0,mk) q̂k

q̂†
k 0

)(
q̂(z(R))

e

)
=
(

F̂ (z(R))

(ε2)

0

)
, z(R) ∈ [z̄1z2, z2

1]T, (A10)

where e = e3 for z(R) = z1z2 and e = e4 for z(R) = z2
1. The non-resonant terms are

computed by solving the following non-degenerated forced linear systems:

J (0,mj+mk)q̂zjzk
= F̂

(zjzk)

(ε2)
, (A11)

and

J (0,0)Q
(η
)
0 = G(Q0, e
). (A12)

A.1.4. Order ε3

At third order, there exist six degenerate terms. In our case, we are not interested in solving
for terms of third order, instead, we will determine the linear and cubic coefficients of the
third-order normal form (2.13) from a set of compatibility conditions.

The linear terms λ(s,1) and λs,2 and cubic terms c(i,j) for i = 1, 2 are determined as
follows:

λ(s,1) =
〈q̂†

1, F̂ (z1)

(ε3)
〉

〈q̂†
z , Bq̂z〉

, λ(s,2) =
〈q̂†

2, F̂ (z2)

(ε3)
〉

〈q̂†
2, Bq̂2〉

, c(i,j) =
〈q̂†

2, F̂
(zi|zj|2)
(ε3)

〉
〈q̂†

i , Bq̂i〉
. (A13a–c)

The forcing terms for the linear coefficient are

F̂
(zj)

(ε3)
≡

2∑

=1

η
([N(q̂j, Q(η
))
0 + N(Q(η
)

0 , q̂j)] + G(q̂j, e
)), (A14)

which allows the decomposition of λ(s,
) = λ(s,
),Re(Re−1
c Re−1) + λ(s,
),δu(δu,c − δu) for


 = 1, 2.
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Canton et al. (2017) Present work

Rec 1420 1405
ω 5.73 5.72

Table 3. Comparison of Rec and ω between previous work and the present one.

The forcing terms for the cubic coefficients are

F̂
(zj|zk|2)
(ε3)

≡ [N(q̂j, q̂|zk|2) + N(q̂|zk|2, q̂j)]

+ [N(q̂−k, q̂zjzk
) + N(q̂j,k, q̂−k)]

+ [N(q̂k, q̂zjz̄k
) + N(q̂zjz̄k

, q̂k)], (A15)

if j /= k and

F̂
(zj|zj|2)
(ε3)

≡ [N(q̂j, q̂|z|2j ) + N(q̂|z|2j , q̂j)]

+ [N(q̂−j, q̂z2
j
) + N(q̂z2

j
, q̂−j)], (A16)

for the diagonal forcing terms.

Appendix B. Validation of the code – comparison with the literature

The calculations made in StabFem in the sections of the main manuscript are validated by
comparing with leading global mode in the geometry proposed by Canton et al. (2017).
Moreover, the critical Reynolds number and associated frequency are also analysed. In the
cited work, the authors use an analogous geometry with the following parameters:

(i) Radius of the inner jet Rinner = 0.5.
(ii) Diameter of the outer jet D = 0.4.

(iii) Distance between jets L = 0.1.
(iv) Ratio between velocities δu = 1.

The linear stability analysis has been carried out by imposing m = 0, as done by Canton
et al. (2017), so the leading global mode will be axisymmetric. The critical Reynolds
number Rec and the frequency ω of the leading global mode are compared in table 3. As
seen, few differences can be found in the critical Reynolds number and the frequency. The
relative error in the Rec calculation is 1.06 % and the one of the frequency is 0.17 %.

The global mode is now calculated using StabFem and compared with the one calculated
by Canton et al. (2017), as presented in figure 24. This mode can be found in figures 9,
10 and 11 in the cited paper. As can be seen, there are no substantial differences between
the direct modes, both of them being a vortex street with their biggest amplitude situated
10 units downstream of the exit of the jets. The adjoint mode is concentrated within the
nozzle, with its biggest amplitude situated on the sharp corners. There is no difference
between the adjoint mode calculated with StabFem and the one in Canton et al. (2017).
Finally, the structural sensitivity is similar to the one computed by Canton et al. (2017). It
is composed of two lobes in the space between the exit of the two jets.
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