ON MAXIMAL RESIDUE DIFFERENCE SETS MODULO p

J. FABRYKOWSKI

Abstract

A residue difference set modulo p is a set $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ of integers $1 \leq a_{i} \leq p-1$ such that $\left(\frac{a_{i}}{p}\right)=1$ and $\left(\frac{a_{i}-a_{j}}{p}\right)=1$ for all i and j with $i \neq j$, where $\left(\frac{a}{p}\right)$ is the Legendre symbol. We give a lower and an upper bound for m_{p}-the maximal cardinality of such set \mathcal{A} in the case of $p \equiv 1(\bmod 4)$.

1. Introduction. Throughout this paper p denotes a prime $\equiv 1(\bmod 4)$ and $\left(\frac{a}{p}\right)$ the Legendre symbol modulo p. A set $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ of integers $1 \leq a_{i} \leq p-1$, $1 \leq i \leq k$ satisfying the conditions:
(i) $\left(\frac{a_{i}}{p}\right)=1$ for $1 \leq i \leq k$
(ii) $\left(\frac{a_{i}-a_{j}}{p}\right)=1$ for $1 \leq i, j \leq k, i \neq j$
is called a residue difference set modulo p.
For a fixed prime p, let m_{p} denote the maximal value of k. The size of m_{p} has been investigated by Buell and Williams [1]. They proved that

$$
\begin{equation*}
\frac{1}{2} \log p<m_{p}<p^{1 / 2} \log p \text { for all primes } p, \text { and } \tag{1}
\end{equation*}
$$

(2) $m_{p}<(1+\epsilon) p^{1 / 2} \log p / 4 \log 2$ for all sufficiently large primes $p>C=C(\epsilon)$.

They have also mentioned that extensive numerical computations suggest $m_{p} \sim$ $c \log p$ for some constant c with $1 \leq c \leq 2$.

In this paper we shall prove the following:

Theorem.

$$
\begin{gather*}
m_{p}>\frac{1-\epsilon}{2 \log 2} \log p \text { for all } p>p_{0}(\epsilon) \tag{3}\\
m_{p} \leq p^{1 / 2} \text { for all primes } p \tag{4}
\end{gather*}
$$

To prove the theorem we require the following Lemma which was proved in [1]:
LEMMA. For any integer $k \geq 1$, let $a_{0}, a_{1}, \ldots, a_{k-1}$ be k integers such that $a_{0}=0$, $a_{1}=1,1<a_{i}<p, 2 \leq i \leq k-1, a_{i} \neq a_{j}$ for $i \neq j$. If

$$
S\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)=\sum_{\substack{x=0 \\ x \neq a_{0}, a_{1}, \ldots, a_{k-1}}}^{p-1}\left\{\prod_{j=1}^{k-1}\left(1+\left(\frac{x-a_{j}}{p}\right)\right)\right\}
$$

Received by the editors January 28, 1992 .
AMS subject classification: Primary: 11A07; secondary: 11B75.
(C) Canadian Mathematical Society 1993.
then

$$
\left|S\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)-p\right| \leq p^{1 / 2}\left\{(k-2) 2^{k-1}+1\right\}+k 2^{k-1} .
$$

2. Proof of the theorem. Buell and Williams proved their upper bounds for m_{p} by developing a procedure that generates a residue difference set. We modify this procedure to obtain a simple proof of (3).

The set A_{1} of possible values of a_{1} such that $\left(\frac{a_{1}}{p}\right)=1$ consists of all quadratic residues modulo p. Let us choose the smallest possible element from this set, that is $a_{1}=1$. The set A_{2} of possible values of b such that $\{1, b\}$ is a residue difference set is

$$
A_{2}=\left\{b ;\left(\frac{b}{p}\right)=\left(\frac{b-1}{p}\right)=1\right\} .
$$

Again, as before let us choose the smallest possible element from A_{2} and call it a_{2}.
The set A_{3} of possible values of c such that $\left\{1, a_{2}, c\right\}$ is a residue set is

$$
A_{3}=\left\{c ;\left(\frac{c}{p}\right)=\left(\frac{c-1}{p}\right)=\left(\frac{c-a_{2}}{p}\right)=1\right\} .
$$

Let us choose, the smallest possible such c and call it a_{3}.
Proceeding in this way we generate a residue difference set $\mathcal{A}=\left\{1, a_{2}, \ldots, a_{k-1}\right\}$ and a set A_{k} of possible values a_{k} so that $\left\{1, a_{2}, \ldots, a_{k-1}, a_{k}\right\}$ is also a residue difference set. We can continue our procedure as long as $\left|A_{k}\right|>0$. By the principle of the procedure:

$$
\begin{aligned}
\left|A_{k}\right|= & \frac{1}{2^{k}} \sum_{a_{k-1}<a_{k}<p}\left\{1+\left(\frac{a_{k}}{p}\right)\right\}\left\{1+\left(\frac{a_{k}-1}{p}\right)\right\} \\
& \left\{1+\left(\frac{a_{k}-a_{2}}{p}\right)\right\} \cdots \cdots\left\{1+\left(\frac{a_{k}-a_{k-1}}{p}\right)\right\} \\
= & \frac{1}{2^{k}} \sum_{\substack{x=0 \\
x \neq a_{0}, a_{1}, a_{2}, \ldots, a_{k-1}}}^{p-1} \prod_{j=0}^{k-1}\left\{1+\left(\frac{x-a_{j}}{p}\right)\right\}=\frac{1}{2^{k}} S\left(a_{0}, \ldots, a_{k-1}\right) .
\end{aligned}
$$

Thus by the Lemma:

$$
\begin{equation*}
\left|A_{k}\right| \geq \frac{p}{2^{k}}-p^{i / 2}\left(\frac{k-2}{2}+\frac{1}{2^{k}}\right)-\frac{k}{2} . \tag{5}
\end{equation*}
$$

The choice $k=\left[\frac{1-\epsilon}{2} \log _{2} p\right]+1,(\epsilon>0)$ makes the right hand side of (5) positive provided $p>p_{0}(\epsilon)$; thus (3) follows.

In order to prove (4) we recall the value of the Gauss' sum:

$$
\begin{equation*}
G_{p}(x)=\sum_{j=0}^{p-1} e\left(\frac{j^{2} x}{p}\right)=\left(\frac{x}{p}\right) \sqrt{p}, \text { for } p \not \backslash x . \tag{6}
\end{equation*}
$$

Let $N_{p}=\left\{n ; 1 \leq n \leq p-1,\left(\frac{n}{p}\right)=-1\right\}$, so $\left|N_{p}\right|=\frac{p-1}{2}$. From (6) it follows:

$$
\begin{equation*}
\sum_{n \in N_{p}} e\left(\frac{n x}{p}\right)=-\frac{1}{2}-\frac{1}{2}\left(\frac{x}{p}\right) \sqrt{p} \text { for } p \not \backslash x . \tag{7}
\end{equation*}
$$

Let now $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$ be any residue difference set modulo p and set

$$
g_{p}(x)=\sum_{a \in \mathcal{A}} e\left(\frac{a x}{p}\right) .
$$

We have:

$$
\begin{align*}
0 & \leq \sum_{n \in N_{p}}\left|g_{p}(n)\right|^{2} \\
& =\sum_{n \in N_{p}} \sum_{a, a^{\prime} \in \mathcal{A}} \sum e\left(\frac{\left(a-a^{\prime}\right) n}{p}\right) \\
& =\sum_{n \in N_{p}}|A|+\sum_{\substack{a, a^{\prime} \in \mathcal{A} \\
a \neq a^{\prime}}} \sum_{n \in N_{p}} e\left(\frac{\left(a-a^{\prime}\right) n}{p}\right) \tag{8}\\
& =|\mathcal{A}| \frac{p-1}{2}+\left(|\mathcal{A}|^{2}-|\mathcal{A}|\right)\left(-\frac{1}{2}-\frac{1}{2} \sqrt{p}\right)
\end{align*}
$$

using (7) and the fact that $\left(\frac{a-a^{\prime}}{p}\right)=1$.
Solving, the inequality (8) for $|\mathcal{A}|$ we obtain $|\mathcal{A}| \leq \sqrt{p}$ which proves (4).

References

1. D. A. Buell and K. S. Williams, Maximal Residue Difference Sets Modulo p, Proc. Amer. Math. Soc. 69(1978), 205-209.

Department of Mathematics and Astronomy
University of Manitoba
Winnipeg, Manitoba
R3T 2N2

