ON MAXIMAL RESIDUE DIFFERENCE SETS MODULO p

J. FABRYKOWSKI

ABSTRACT. A residue difference set modulo p is a set $\mathcal{A} = \{a_1, a_2, \ldots, a_k\}$ of integers $1 \le a_i \le p-1$ such that $(\frac{a_i}{p}) = 1$ and $(\frac{a_i - a_j}{p}) = 1$ for all i and j with $i \ne j$, where $(\frac{a}{p})$ is the Legendre symbol. We give a lower and an upper bound for m_p —the maximal cardinality of such set \mathcal{A} in the case of $p \equiv 1 \pmod{4}$.

1. Introduction. Throughout this paper p denotes a prime $\equiv 1 \pmod{4}$ and $\left(\frac{a}{p}\right)$ the Legendre symbol modulo p. A set $\mathcal{A} = \{a_1, a_2, \dots, a_k\}$ of integers $1 \le a_i \le p-1$, $1 \le i \le k$ satisfying the conditions:

(i)
$$\left(\frac{a_i}{n}\right) = 1$$
 for $1 \le i \le k$

(ii) $(\frac{a_i-a_j}{p}) = 1$ for $1 \le i, j \le k, i \ne j$ is called a residue difference set modulo p.

For a fixed prime p, let m_p denote the maximal value of k. The size of m_p has been investigated by Buell and Williams [1]. They proved that

(1)
$$\frac{1}{2}\log p < m_p < p^{1/2}\log p \text{ for all primes } p, \text{ and}$$

(2) $m_p < (1+\epsilon)p^{1/2}\log p/4\log 2$ for all sufficiently large primes $p > C = C(\epsilon)$.

They have also mentioned that extensive numerical computations suggest $m_p \sim$ $c \log p$ for some constant c with $1 \le c \le 2$.

In this paper we shall prove the following:

THEOREM.

(3)
$$m_p > \frac{1-\epsilon}{2\log 2} \log p \text{ for all } p > p_0(\epsilon),$$

(4)
$$m_p \le p^{1/2}$$
 for all primes p .

To prove the theorem we require the following Lemma which was proved in [1]:

LEMMA. For any integer $k \ge 1$, let $a_0, a_1, \ldots, a_{k-1}$ be k integers such that $a_0 = 0$, $a_1 = 1, 1 < a_i < p, 2 \le i \le k - 1, a_i \ne a_i$ for $i \ne j$. If

$$S(a_0, a_1, \dots, a_{k-1}) = \sum_{\substack{x=0\\x \neq a_0, a_1, \dots, a_{k-1}}}^{p-1} \left\{ \prod_{j=1}^{k-1} \left(1 + \left(\frac{x - a_j}{p} \right) \right) \right\}$$

Received by the editors January 28, 1992.

AMS subject classification: Primary: 11A07; secondary: 11B75.

[©] Canadian Mathematical Society 1993.

then

$$|S(a_0, a_1, \dots, a_{k-1}) - p| \le p^{1/2} \{ (k-2)2^{k-1} + 1 \} + k2^{k-1}$$

2. **Proof of the theorem.** Buell and Williams proved their upper bounds for m_p by developing a procedure that generates a residue difference set. We modify this procedure to obtain a simple proof of (3).

The set A_1 of possible values of a_1 such that $(\frac{a_1}{p}) = 1$ consists of all quadratic residues modulo p. Let us choose the smallest possible element from this set, that is $a_1 = 1$. The set A_2 of possible values of b such that $\{1, b\}$ is a residue difference set is

$$A_2 = \left\{b \; ; \; \left(\frac{b}{p}\right) = \left(\frac{b-1}{p}\right) = 1\right\}.$$

Again, as before let us choose the smallest possible element from A_2 and call it a_2 .

The set A_3 of possible values of c such that $\{1, a_2, c\}$ is a residue set is

$$A_3 = \left\{c \; ; \; \left(\frac{c}{p}\right) = \left(\frac{c-1}{p}\right) = \left(\frac{c-a_2}{p}\right) = 1\right\}.$$

Let us choose, the smallest possible such c and call it a_3 .

Proceeding in this way we generate a residue difference set $\mathcal{A} = \{1, a_2, \dots, a_{k-1}\}$ and a set A_k of possible values a_k so that $\{1, a_2, \dots, a_{k-1}, a_k\}$ is also a residue difference set. We can continue our procedure as long as $|A_k| > 0$. By the principle of the procedure:

$$\begin{aligned} |A_k| &= \frac{1}{2^k} \sum_{\substack{a_{k-1} < a_k < p \\ a_{k-1} < a_k < p \\ explicit}} \left\{ 1 + \left(\frac{a_k}{p}\right) \right\} \left\{ 1 + \left(\frac{a_k}{p}\right) \right\} \\ &\left\{ 1 + \left(\frac{a_k - a_2}{p}\right) \right\} \cdots \left\{ 1 + \left(\frac{a_k - a_{k-1}}{p}\right) \right\} \\ &= \frac{1}{2^k} \sum_{\substack{x \neq a_0, a_1, a_2, \dots, a_{k-1}}}^{p-1} \prod_{j=0}^{k-1} \left\{ 1 + \left(\frac{x - a_j}{p}\right) \right\} \\ &= \frac{1}{2^k} S(a_0, \dots, a_{k-1}). \end{aligned}$$

Thus by the Lemma:

(5)
$$|A_k| \ge \frac{p}{2^k} - p^{1/2} \left(\frac{k-2}{2} + \frac{1}{2^k} \right) - \frac{k}{2}$$

The choice $k = [\frac{1-\epsilon}{2} \log_2 p] + 1$, $(\epsilon > 0)$ makes the right hand side of (5) positive provided $p > p_0(\epsilon)$; thus (3) follows.

In order to prove (4) we recall the value of the Gauss' sum:

(6)
$$G_p(x) = \sum_{j=0}^{p-1} e\left(\frac{j^2 x}{p}\right) = \left(\frac{x}{p}\right) \sqrt{p}, \text{ for } p \not\mid x.$$

Let $N_p = \{n ; 1 \le n \le p - 1, (\frac{n}{p}) = -1\}$, so $|N_p| = \frac{p-1}{2}$. From (6) it follows:

(7)
$$\sum_{n \in N_p} e\left(\frac{nx}{p}\right) = -\frac{1}{2} - \frac{1}{2}\left(\frac{x}{p}\right)\sqrt{p} \text{ for } p \not\mid x.$$

Let now $\mathcal{A} = \{a_1, \ldots, a_k\}$ be any residue difference set modulo p and set

$$g_p(x) = \sum_{a \in \mathcal{A}} e\left(\frac{ax}{p}\right).$$

We have:

(8)

$$0 \leq \sum_{n \in N_p} |g_p(n)|^2$$

= $\sum_{n \in N_p} \sum_{a,a' \in \mathcal{A}} e\left(\frac{(a-a')n}{p}\right)$
= $\sum_{n \in N_p} |A| + \sum_{\substack{a,a' \in \mathcal{A} \\ a \neq a'}} \sum_{n \in N_p} e\left(\frac{(a-a')n}{p}\right)$
= $|\mathcal{A}| \frac{p-1}{2} + (|\mathcal{A}|^2 - |\mathcal{A}|) \left(-\frac{1}{2} - \frac{1}{2}\sqrt{p}\right)$

using (7) and the fact that $(\frac{a-a'}{p}) = 1$. Solving, the inequality (8) for $|\mathcal{A}|$ we obtain $|\mathcal{A}| \le \sqrt{p}$ which proves (4).

REFERENCES

1. D. A. Buell and K. S. Williams, *Maximal Residue Difference Sets Modulo p*, Proc. Amer. Math. Soc. 69(1978), 205–209.

Department of Mathematics and Astronomy University of Manitoba Winnipeg, Manitoba R3T 2N2

146