CLASSIFICATION OF RESTRICTED LINEAR SPACES

JIM TOTTEN

1. Introduction. The material in this paper is taken from the author's doctoral dissertation [2]. We will use the terminology and notation of [3]. Let us recall those terms which will be needed here.

We define a restricted linear space (RLS) as a finite set of p elements, called points, of which q subsets, called lines, are distinguished so that the following axioms hold:
(RLS-1) Any two distinct points u, v belong to exactly one common line $u v$.
(RLS-2) Every line contains at least two points.
(RLS-3) $q \geqq 2$.
(RLS-4) $(q-p)^{2} \leqq p$.
If only (RLS-1) and (RLS-2) hold it is simply called a finite linear space (FLS). A non-trivial FLS is an FLS with $q \geqq 2$. The square order of an FLS is that number n defined by $n^{2} \leqq p<(n+1)^{2}$.

We must now define a number of special FLS's. A near-pencil is an FLS with all its points but one collinear. Lin's cross has been defined as the unique FLS with 6 points having one 4 -line and one 3 -line. By a finite semiaffine plane of type III (FSP3) [1, 6] we will mean an FLS obtained from a finite affine plane (FAP) by adjoining to it one "infinite" point. If the FAP we started with had order at least 3 and if we delete a "finite" point from this FSP3, we obtain what we will call a punctured FSP3. It was first handled by de Witte in his doctoral dissertation [7] and has only recently appeared in print [8]. The next class of FLS's require much more explanation.

An FLS \mathscr{L} is called an inflated FAP if and only if the following conditions hold:
(a) a subset of its points together with its induced set of lines forms an FAP, say \mathscr{L}^{*};
(b) the complementary subset of its points together with its induced set of lines forms a non-empty FLS, say \mathscr{L}^{\prime};
(c) any line joining two points of \mathscr{L}^{\prime} contains only points of \mathscr{L}^{\prime};
(d) any line joining a point of \mathscr{L}^{\prime} and a point of \mathscr{L}^{*} contains at least one more point of \mathscr{L}^{*}.

Because of (d) it is readily seen that this determines an injection from the set of points of \mathscr{L}^{\prime} into the set of "parallel classes" of \mathscr{L}^{*}. If \mathscr{L}^{\prime} has only one point, then \mathscr{L} is an FSP3. If \mathscr{L}^{\prime} has s collinear points, where $1 \leqq s-1 \leqq n=$ the order of \mathscr{L}^{*}, then \mathscr{L} is obtainable from a finite projective plane (FPP) of

[^0]order n by deleting $n+1-s$ collinear points. If \mathscr{L}^{\prime} is a near-pencil, then \mathscr{L} is called a simply inflated FAP, and if \mathscr{L}^{\prime} is an FPP, then \mathscr{L} is called a projectively inflated FAP.

The objective then is to establish the following:
Theorem 1. \mathscr{L} is an RLS if and only if \mathscr{L} is one of the following:
(i) a near-pencil,
(ii) an FAP, an FSP3, a punctured FSP3, or an FPP of order n with at most n points deleted and no lines deleted,
(iii) Lin's cross,
(iv) a simply inflated FAP or a projectively inflated FAP.

I wish to thank Professor Paul de Witte for suggesting the problem and Professors de Witte and F. A. Sherk for their comments on and improvements to this work.
2. Prerequisites. We will now reintroduce the notation of [3] and list some basic formulas (P1-P4) and results that may be found in $[\mathbf{3}, \mathbf{4}, \mathbf{5}]$. The degree of a line x (resp. point u) is the number of points lying on it (resp. lines passing through it), and is denoted by $a(x)$ (resp. $b(u)$). A k-line (resp. k-point) is a line (resp. point) of degree k. We will assume throughout that the points and lines have been given a monotone labelling, that is, the lines will be denoted by $x_{\sigma}, 1 \leqq \sigma \leqq q$, such that $\sigma \leqq \tau$ implies $a_{\sigma}=a\left(x_{\sigma}\right) \geqq a\left(x_{\tau}\right)=a_{\tau}$, and the points will be denoted by $u_{\alpha}, 1 \leqq \alpha \leqq p$, such that $\alpha \leqq \beta$ implies $b_{\alpha}=b\left(u_{\alpha}\right) \geqq$ $b\left(u_{\beta}\right)=b_{\beta}$. If it is possible to have a monotone labelling in which x_{1} misses x_{2}, we say that the FLS is loose; otherwise tight. We will assume that the monotone labelling for any loose FLS under consideration has been given so that x_{1} misses x_{2}. The incidence number $r_{\sigma \alpha}=r\left(x_{\sigma}, u_{\alpha}\right)$ of a line x_{σ} and a point u_{α} is 1 if u_{α} lies on x_{σ} and 0 otherwise. The number of lines that miss a line x_{σ} will be denoted by $s\left(x_{\sigma}\right)=s_{\sigma}$.

P1. $\sum_{\sigma} a_{\sigma}=\sum_{\alpha} b_{\alpha}$.
P2. $p-1=\sum_{\sigma}\left(a_{\sigma}-1\right) r_{\sigma \alpha}$; hence $p(p-1)=\sum_{\sigma} a_{\sigma}\left(a_{\sigma}-1\right)$.
P3. If $r_{\sigma \alpha}=0$, the number $b_{\alpha}-a_{\sigma}$ counts the number of lines passing through u_{α} that miss x_{σ}.

P4. $q-1=s_{\sigma}+\sum_{\alpha}\left(b_{\alpha}-1\right) r_{\sigma \alpha}$.
Theorem A. An FLS is an FAP if and only if it is a loose RLS.
Theorem B. If \mathscr{L} is an RLS of square order n we have a_{2} equal to:
(i) 2 if \mathscr{L} is a near-pencil,
(ii) n if \mathscr{L} is an FAP,
(iii) $n+1$ otherwise.

Theorem C. If \mathscr{L} is an RLS of square order n we have a_{1} equal to:
(i) $p-1$ if \mathscr{L} is a near-pencil,
(ii) $n+2=4$ if \mathscr{L} is Lin's cross,
(iii) n if \mathscr{L} is an FAP,
(iv) $n+1$ otherwise.

Corollary. If \mathscr{L} is an RLS of square order n other than a near-pencil, then $p \leqq n^{2}+n+1$.

Theorem D. If \mathscr{L} is an RLS of square order n we have $b_{\alpha} \geqq n+1$ for all points u_{α}, unless \mathscr{L} is one of the following:
(i) a near-pencil,
(ii) Lin's cross,
(iii) an FSP3,
(iv) a punctured FSP3.

Corollary. If \mathscr{L} is an RLS of square order n, then $q \geqq n^{2}+n+1$, unless \mathscr{L} is one of the following:
(i) a near-pencil,
(ii) $a n \mathrm{FAP}$,
(iii) an FSP3,
(iv) a punctured FSP3.

Theorem E. If \mathscr{L} is an RLS of square order n other than Lin's cross, then parallelism is an equivalence relation on the set of n-lines.

The following result is due to de Witte [9].
Theorem F. If \mathscr{L} is an FLS of square order n other than a near-pencil, then \mathscr{L} is embeddable in an FPP of order n if and only if $q \leqq n^{2}+n+1$.
3. Method of proof. In order to establish Theorem 1 it is sufficient to prove:

Theorem 2. If \mathscr{L} is an RLS of square order n with $q \geqq n^{2}+n+2$ other than a near-pencil or Lin's cross, then \mathscr{L} is an inflated FAP.

Proof of Theorem 1 (assuming Theorem 2). That the FLS's listed in Theorem 1 are restricted is very easy to show. So let us suppose \mathscr{L} is an RLS of square order n. If $q \geqq n^{2}+n+2$, then \mathscr{L} must be one of (i), (iii) or (iv) by Theorem 2 since it can be easily shown that any inflated FAP which is restricted must be either a simply or projectively inflated FAP or satisfy $q \leqq n^{2}+n+1$. On the other hand if $q \leqq n^{2}+n+1$, it follows from Theorem F that \mathscr{L} is either (i) or (ii).

For the remainder of this paper we will assume that \mathscr{L} is an RLS of square order n with $q \geqq n^{2}+n+2$ other than a near-pencil or Lin's cross. A line y will be called a maximal parallel of a line x, written $y \in M(x)$, if and only if y misses x and all lines z missing x satisfy $a(z) \leqq a(y)$. A point will be called real if it is an $(n+1)$-point and ideal if not. A line will be called real if it meets every $(n+1)$-line, ideal if it does not, and hyperideal if it misses every $(n+1)$ line. The weight of a non-empty set S of points will be defined as $w(S)=$ $\min \left\{b_{\alpha}-n-1 \mid u_{\alpha} \in S\right\}$.

To prove Theorem 2 we will first observe that it is an immediate corollary of the following two theorems, whose proofs we will then undertake:

Theorem 3. If \mathscr{L} is an RLS of square order n with $q \geqq n^{2}+n+2$ other than a near-pencil or Lin's cross and if no $(n+1)$-line has a hyperideal maximal parallel, then \mathscr{L} is an inflated FAP.

Theorem 4. If \mathscr{L} is an RLS of square order n with $q \geqq n^{2}+n+2$ other than a near-pencil or Lin's cross, then no $(n+1)$-line has a hyperideal maximal parallel.

Before proceeding to the proofs of these two theorems let us establish some lemmas summarizing a number of small results.

Lemma 1. If \mathscr{L} is an RLS of square order n with $q \geqq n^{2}+n+2$ other than a near-pencil or Lin's cross, then
(i) $a_{1}=a_{2}=n+1$ and \mathscr{L} is tight; hence any two $(n+1)$-lines meet each other;
(ii) $p \leqq n^{2}+n+1$ and so $n \geqq 2$;
(iii) $b_{\alpha} \geqq n+1$ for all points u_{α};
(iv) parallelism is an equivalence relation on the set of n-lines;
(v) $p \geqq n^{2}+2$ and $q \leqq n^{2}+2 n+1$;
(vi) any real point lies on at least two $(n+1)$-lines;
(vii) any ideal line contains only ideal points; hence the weight of any ideal line is at least 1 ;
(viii) any $(n+1)$-line contains at least one real point;
(ix) there is at least one ideal line;
(x) there is at least one real point lying on at least two $(n+1)$-lines;
(xi) if x is hyperideal, then $a(x) \leqq n-1$;
(xii) if y is an ideal line missing the $(n+1)$-line x, then $s(x) \geqq 1+$ $a(y)(w(y)-1)$.

Proof. By Theorems A, B and C we obtain (i). By Corollary to Theorem C we get (ii), and (iii) follows from Theorem D. Statement (iv) is simply Theorem E, and (v) is a consequence of (ii) and the fact that in an RLS of square order n we have $q \leqq p+n$. By using (i), (v) and P2 we have (vi). Property (vii) is immediate from P3. By using (iii), (v) and P4 we get (viii). Statement (x) follows from (i), (vi) and (viii), and (xi) is then immediate from (x) and P3. Property (xii) is established simply by counting the lines at each point of y. It only remains to prove (ix). So let x be any $(n+1)$-line. If x misses a line, we have nothing to prove. So suppose x meets every line. Thus $s(x)=0$. Then since $q \geqq n^{2}+n+2$, we see by P4 that at least one point of x, say v, is ideal. Let u be a real point on x and let y be an $(n+1)$-line passing through u but different from x (guaranteed by (viii) and (vi) respectively). Then by P3 there is a line passing through v that misses y and (ix) holds.

Lemma 2. In any FLS if x_{σ} and x_{τ} miss each other and both of them meet x_{ρ}, then $\sum_{\alpha}\left(b_{\alpha}-a_{\rho}\right) r_{\sigma \alpha}\left(1-r_{\rho \alpha}\right) \geqq\left(a_{\tau}-1\right)\left(a_{\sigma}-a_{\rho}+1\right)$.

Proof. By P3 and P4 the expression $\sum_{\alpha}\left(b_{\alpha}-a_{\rho}\right) r_{\sigma \alpha}\left(1-r_{\rho \alpha}\right)$ clearly counts the number of lines which meet x_{σ} and miss x_{ρ}. Now let v be the meet of x_{ρ} and x_{τ}. Then there are $a_{\sigma}\left(a_{\tau}-1\right)$ lines joining x_{σ} to x_{τ} that do not pass through v. At most $\left(a_{\rho}-1\right)\left(a_{\tau}-1\right)$ of these lines also meet x_{ρ} since none pass through v. Hence ait least $\left(a_{\tau}-1\right)\left(a_{\sigma}-a_{\rho}+1\right)$ of the lines that meet x_{σ} and x_{τ} miss x_{ρ}.

Corollary (Transfer principle). If x_{σ} and x_{ρ} are both k-lines, x_{σ} and x_{τ} miss each other, and both meet x_{ρ}, and $b_{\beta} \geqq k$ for the point u_{β} in common to x_{σ} and x_{ρ}, then $\sum_{\alpha}\left(b_{\alpha}-k\right) r_{\sigma \alpha} \geqq a_{\tau}-1$.

Proof. Obvious.
Lemma 3. If x_{σ} and x_{ρ} are k-lines, and if x_{ρ} and x_{τ} meet each other and both miss x_{σ}, then $\sum_{\alpha}\left(b_{\alpha}-k-1\right) r_{\sigma \alpha} \geqq a_{\tau}-1$.

Proof. The proof is much the same as Lemma 2 and may be found in [5].
4. Proof of Theorem 3. Suppose \mathscr{L} is as described in the statement of Theorem 3. To prove the theorem we need only establish:
(a) the real points together with their induced set of lines form an FAP of order n, say \mathscr{L}^{*};
(b) the ideal points and the ideal lines form an FLS, say \mathscr{L}^{\prime};
(c) a line joining a real point and an ideal point contains at least two real points.

Let x_{ρ} be an ideal line of maximal degree. By (i) we may assume that x_{ρ} misses x_{1} and meets x_{2} since it is not hyperideal. Thus, it is appropriate to call x_{2} a transversal of $\left(x_{1}, x_{\rho}\right)$. By considering any point of x_{ρ} not on x_{2}, which is ideal by (vii), we see that $M\left(x_{2}\right)$ is not empty. Let x_{τ} be a maximal parallel of x_{2}. Then x_{τ} meets an $(n+1)$-line, say y (y may or may not be x_{1}). Let u be the meet of x_{2} and x_{ρ}, k the weight of the non-empty point set $x_{\rho}-\{u\}$, and $u_{\beta} \neq u$ a point of x_{ρ} having degree $n+1+k$. By (vii) we have $k \geqq 1$.

By applying the transfer principle to x_{2}, y and x_{τ} we get

$$
\sum_{\alpha}\left(b_{\alpha}-n-1\right) r_{2 \alpha} \geqq a_{\tau}-1
$$

Through each of the points on x_{ρ} different from u there are at least k lines that miss x_{2} and hence $s_{2} \geqq k\left(a_{\rho}-1\right)$. Then by P4 we have

$$
q-1 \geqq s_{2}+\sum_{\alpha}\left(b_{\alpha}-n-1\right) r_{2 \alpha}+n a_{2} \geqq k\left(a_{\rho}-1\right)+a_{\tau}-1+n^{2}+n .
$$

On the other hand there are exactly k lines passing through u_{β} that miss x_{2} and by P2 we get

$$
p-1 \leqq n^{2}+\left(a_{\rho}-1\right)+k\left(a_{\tau}-1\right) .
$$

Since $q \leqq p+n$ we obtain $0 \geqq(k-1)\left(a_{\rho}-a_{\tau}\right)$. Both expressions on the
right-hand side are non-negative. Thus we get equalities for all the above inequalities:
(1) $p=q-n=n^{2}+a_{\rho}+k\left(a_{\tau}-1\right)=n^{2}+a_{\tau}+k\left(a_{\rho}-1\right)$.
(2) $s_{2}=k\left(a_{\rho}-1\right)$.
(3) every point on x_{ρ} different from u has degree $n+1+k$.
(4) every ideal line missing x_{2} must meet x_{ρ}.
(5) $\sum_{\alpha}\left(b_{\alpha}-n-1\right) r_{2 \alpha}=a_{\tau}-1$.
(6) through u_{β} there pass one a_{ρ}-line, $n(n+1)$-lines meeting x_{2} and k a_{τ}-lines missing x_{2}. In fact we can say this about any point on x_{ρ} different from u, by considering (3).
Since x_{2} could have been chosen as any transversal of (x_{1}, x_{ρ}) having degree $n+1$, in particular one not passing through u, we see that (3) and (6) also apply to the point u when there are at least three points on x_{ρ}. But if $a_{\rho}=2$, then $a_{\tau}=2$ and we have that there are $n(n+1)$-lines and $k^{\prime}+12$-lines passing through u for some $k^{\prime} \geqq 1$, and by applying P2 to the two points of x_{ρ}, we get $k=k^{\prime}$. Thus we may improve (3) and (6) to read:
(7) each point of x_{ρ} has precise degree $n+1+k$.
(8) through every point of x_{ρ}, there pass one a_{ρ}-line, $n(n+1)$-lines and $k a_{\tau}$-lines.
By using (1) and P2 we get
(9) any point lying on an a_{τ}-line must be ideal.

From (8) and (9) we also obtain
(10) every $(n+1)$-line contains at least one ideal point.

Let $u_{\gamma} \neq u$ be any point of x_{2}. Then by (i) and (8) we see that u_{γ} is joined to x_{ρ} only by $(n+1)$-lines. Since the role of x_{2} could have been played by any transversal of (x_{1}, x_{ρ}) of degree $n+1$, in particular one not passing through u_{γ}, we may conclude by (4), (i) and P3 that $b_{\gamma}=n+1$. Thus by (5) and (7) we get
(11) $a_{\tau}-1=\sum_{\alpha}\left(b_{\alpha}-n-1\right) r_{2 \alpha}=b(u)-n-1=k$.

Since any transversal of (x_{1}, x_{ρ}) of degree $n+1$ could have played the role of x_{2}, it follows that any $(n+1)$-line meeting x_{ρ} has exactly one ideal point, namely the one lying on x_{ρ}. Any $(n+1)$-line missing x_{ρ} is joined to u by n ($n+1$)-lines and one a_{τ}-line by (8). Thus from (9) we see that
(12) any $(n+1)$-line has n real points and one ideal point. Let v be the ideal point of x_{1}. By (4) we see that every line passing through v meets either x_{2} or x_{ρ}. Thus $b(v) \leqq n+a_{\rho}$, with inequality only if there is a line passing through v that meets both x_{2} and x_{ρ} at distinct points. By (12) and (8) such a line must have degree a_{τ} and thus have only ideal points by (9), contradicting (12) for the line x_{2}. Therefore we have
(13) $b(v)=n+a_{\rho}$.

If y is any line joining v to x_{2} but not passing through u, we obtain by P2

$$
p-1 \leqq(n-1) n+a(y)-1+a_{\rho}\left(a_{\tau}-1\right) .
$$

By (1) and (11) we see that $a(y)=n+1$. Therefore
(14) through v there pass $n(n+1)$-lines (all missing $\left.x_{\rho}\right)$ and $a_{\rho} a_{\tau}$-lines (all meeting x_{ρ}).
Now if x were any transversal of $\left(x_{1}, x_{\rho}\right)$ of degree $n+1$ not passing through u, then by (6) we have
(15) every a_{τ}-line meeting x_{ρ} must miss either x or x_{2} and is thus ideal. If y is a real line with $a(y) \leqq n$, then by (14) and (15) y does not pass through v and thus meets all $n(n+1)$-lines passing through v at distinct real points by (12). Thus
(16) any real line has exactly n real points and at most one ideal point. By (16) we see that two ideal points must be joined by an ideal line and (vii) then implies that the ideal points and the ideal lines form an FLS, \mathscr{L}^{\prime}, and thus (b) is proved. Again by (16) and (vii) a line joining a real point and an ideal point is real and has n real points. Since $n \geqq 2$ by (ii) we have proved (c). Let \mathscr{L}^{*} be the FLS consisting of the real points and their induced lines. These lines are real lines of \mathscr{L} stripped of their ideal points, if in fact they had any. By (16) the degree of every line of \mathscr{L}^{*} is n, and since the degree of every point is $n+1$, we have that \mathscr{L}^{*} is an FAP of order n and (a) is proved.
5. Proof of Theorem 4. Let \mathscr{L} be as described in the statement of Theorem 4 and suppose that there is an $(n+1)$-line z_{0} with an hyperideal maximal parallel y_{0}. We must derive a contradiction. Set $k=w\left(y_{0}\right)$ and $a=a\left(y_{0}\right)$. By (xi) and (vii) we have $a \leqq n-1$ and $k \geqq 1$. The proof will be carried out in several stages.

Stage 1: $p \leqq n^{2}+k(a-1)$.
Simply apply P2 to an $(n+1+k)$-point on y_{0}.
Stage 2: For any $(n+1)$-line x_{σ} we have $\sum_{\alpha}\left(b_{\alpha}-n-1\right) r_{\sigma \alpha} \leqq a-k-2$. By P4 and (xii) we obtain

$$
q \geqq n^{2}+n+2+a(k-1)+\sum_{\alpha}\left(b_{\alpha}-n-1\right) r_{\sigma \alpha}
$$

The result follows from Stage 1 and $q \leqq p+n$.
Note $2.1: 1 \leqq k \leqq a-2 \leqq n-3$, and hence $3 \leqq a \leqq n-1$.
Stage 3: If x is ideal but not hyperideal, then $a(x) \leqq a-k-1$.
If x misses x_{1} and meets x_{2}, then by the transfer principle we have $\sum_{\alpha}\left(b_{\alpha}-n-1\right) r_{1 \alpha} \geqq a(x)-1$ and the result follows from Stage 2.

Stage 4: x is ideal if and only if x is hyperideal.
Suppose there are ideal lines which are not hyperideal, since the proof in the other direction is trivial. Let H be the set of all such lines. Let x_{τ} be a line of H with maximal degree, and say it meets x_{1} and misses x_{2}. Then let u be the meet of x_{τ} and x_{1} and let $l=w\left(x_{\tau}-\{u\}\right)$. Let $u_{\beta} \neq u$ be any $(n+1+l)$ point on x_{τ}. Let g_{β} and h_{β} be the number of real lines and the number of lines of H respectively, which pass through u_{β}. Since $x_{\tau} \in H$, we have $h_{\beta} \geqq 1$. Let j
be the number of lines passing through u_{β} which meet x_{1} and miss x_{2}. Then $j \geqq 1$ and there are $n+1-j$ lines passing through u_{β} meeting both x_{1} and x_{2}. Then $g_{\beta} \leqq n+1-j \leqq n$. Since j is also the number of lines passing through u_{β} which meet x_{2} and miss x_{1}, we may let x_{ρ} be such a line. The transfer principle then states $\sum_{\alpha}\left(b_{\alpha}-n-1\right) r_{1 \alpha} \geqq a_{\rho}-1$ and by P4 we get

$$
q-1 \geqq s_{1}+n^{2}+n+a_{\rho}-1 \geqq l\left(a_{\tau}-1\right)+n^{2}+n+a_{\rho}-1
$$

Since $g_{\beta} \leqq n$ we see that every $(n+1)$-line in \mathscr{L} has at least one of its points lying on a line of H passing through u_{β}. Let u_{γ} be any real point of \mathscr{L} (guaranteed by (x)). Then by (vii) u_{γ} does not lie on any line of H and thus the number, c_{γ}, of $(n+1)$-lines passing through u_{γ} cannot exceed the number of points lying on the lines of H passing through u_{β}. Thus $c_{\gamma} \leqq 1+h_{\beta}\left(a_{\tau}-1\right)$ and by P2 we get $p-1 \leqq n^{2}+h_{\beta}\left(a_{\tau}-1\right)$. Hence $h_{\beta}\left(a_{\tau}-1\right) \geqq l\left(a_{\tau}-1\right)+$ $a_{\rho}-1$ and therefore $h_{\beta} \geqq l+1$. Suppose now that u_{β} lies on at least one $(n+1)$-line. Then $b_{\beta}=g_{\beta}+h_{\beta}$. Now through u_{β} pass l lines missing x_{2}, whose degrees cannot exceed a_{τ} since they are lines of H. Of the remaining lines passing through u_{β}, x_{ρ} is one and thus P2 implies

$$
p-1 \leqq a_{\rho}-1+l\left(a_{\tau}-1\right)+c_{\beta} n+\left(n-c_{\beta}\right)(n-1)
$$

where c_{β} is the number of ($n+1$)-lines passing through u_{β}. Since $c_{\beta} \leqq n$, we must have $c_{\beta}=n$. Now all $n(n+1)$-lines passing through u_{β} must miss y_{0} and hence $n+1+l=b_{\beta} \geqq a+n$, from which we obtain $l \geqq a-1$. By Stage 2 we get, for any $(n+1)$-line x_{σ} passing through u_{β},

$$
a-k-2 \geqq \sum_{\alpha}\left(b_{\alpha}-n-1\right) r_{\sigma \alpha} \geqq b_{\beta}-n-1=l \geqq a-1,
$$

a contradiction. Therefore, there are no $(n+1)$-lines passing through u_{β}. Then by P2 we obtain

$$
\begin{aligned}
p-1 & \leqq g_{\beta}(n-1)+a_{\rho}-1+\left(h_{\beta}-1\right)\left(a_{\tau}-1\right)+\left(b_{\beta}-g_{\beta}-h_{\beta}\right)(a-1) \\
& =g_{\beta}(n-a)+a_{\rho}-1+\left(h_{\beta}-1\right)\left(a_{\tau}-a\right)+(n+l)(a-1) \\
& \leqq g_{\beta}(n-a)+a_{\rho}-1+l\left(a_{\tau}-a\right)+(n+l)(a-1) \\
& =g_{\beta}(n-a)+a_{\rho}-1+l\left(a_{\tau}-1\right)+n(a-1)
\end{aligned}
$$

where we have used the fact that $a_{\tau}<a$ by Stage 3 . Because $q-1 \geqq n^{2}+$ $n+a_{\rho}-1+l\left(a_{\tau}-1\right)$, we get $g_{\beta}(n-a) \geqq n(n+1-a)$, which contradicts $g_{\beta} \leqq n$ since we have $a \leqq n-1$.

Note 4.1: x is real if and only if x meets some $(n+1)$-line.
Stage 5: Every $(n+1)$-line contains only real points.
If an $(n+1)$-line x contains at least one ideal point, say u, then by P3 and Stage 4 all $(n+1)$-lines must pass through u, contradicting (x).

Note 5.1: Ideal points lie on at least one ideal line.
Stage 6: If x is ideal, then $a(x) \leqq a$.

Obvious.
Note 6.1: Any n-line is real.
Stage 7: There are exactly $n+1$ real lines passing through each point.
If u lies outside any $(n+1)$-line, the result is true for u by Note 4.1 . If u lies on all the $(n+1)$-lines, then by $(x) u$ is real and certainly all lines passing through u are real.

Stage 8: A real line x meets $1+n a(x)$ real lines.
Immediate from Stage 7 and P4.
Note 8.1: Any $(n+1)$-line meets $n^{2}+n+1$ (real) lines. Thus for any $(n+1)$-line x we have $s(x)=s=q-n^{2}-n-1$ and hence
($\alpha) n \geqq s \geqq 1+(k-1) a \geqq 1$;
(β) $s \leqq p-n^{2}-1 \leqq k(a-1)-1$.
(α) follows from (v) and (xii), and (β) from Stage 1.
Note 8.2: There are $n^{2}+n+1$ real lines and s (hyper-) ideal lines.
Note 8.3: Any n-line meets $n^{2}+1$ real lines and misses n real lines.
Stage 9: There are at least $k+2 \quad(n+1+k)$-points lying on y_{0}.
Let t denote the number of $(n+1+k)$-points lying on the line y_{0}. The number of lines that meet y_{0} and miss x_{1} is at least $k a-t+1$. Thus we have $s=s_{1} \geqq 1+k a-t$ and by (β) we get $t \geqq k+2$.

Stage 10: There are at least $n+k+3-a$ n-lines passing through any $(n+1+k)$-point on y_{0}.
Let u_{β} be any $(n+1+k)$-point lying on y_{0} and let d_{β} be the number of n-lines passing through it. Then by P2 we get

$$
p-1 \leqq d_{\beta}(n-1)+\left(n+1-d_{\beta}\right)(n-2)+k(a-1) .
$$

By (β) we get $s \leqq d_{\beta}-n-2+k a-k$ and by (α) we have $d_{\beta} \geqq n+k+$ $3-a$.

Stage 11: $2(a-1) \leqq n$.
Let x be any n-line joining y_{0} to x_{1} (guaranteed by Stage 10 and Note 6.1). Applying Lemma 2 to x_{1}, y_{0} and x we get $n \geqq(a-1)(n+1-n+1)$.

Stage 12: If two n-lines meet at a point u, then there is at most one ideal line meeting both and not passing through u.

Let z_{1} and z_{2} be the n-lines and y_{1}, y_{2} two ideal lines not passing through u and meeting both z_{1} and z_{2}. We must derive a contradiction. Without loss of generality the lines y_{1} and y_{2} meet z_{1} at two distinct points, say v and w respectively. By Note 8.3 it suffices to show that z_{2} misses at least $n+1$ real lines. Since y_{1} joins v to z_{2}, at least two real lines passing through v miss z_{2} by Stage 7 and similarly for w. By P3 there is at least one real line missing z_{2} passing through each other point of z_{1} different from u, which is a contradiction.

Stage 13: $k=1$.
Let u and v be two distinct $(n+1+k)$-points lying on the line y_{0} (guaranteed by Stage 9) and let $d(u)$ and $d(v)$ denote the respective number of n-lines passing through them. By Stage 10 and (iv) we see that every n-line passing through u meets an n-line passing through v and vice versa. By Stage 12 we can conclude that any ideal line different from y_{0} passing through u misses all n-lines passing through v and vice versa. Without loss of generality, suppose now that $d(u) \leqq d(v)$. Then, other than y_{0}, the degree of any ideal line passing through u cannot exceed $b(v)-d(v)$. By applying P2 to the point u we obtain

$$
\begin{aligned}
& p-1 \leqq d(u)(n-1)+(n+1-d(u))(n-2)+a-1 \\
&+(k-1)(n+k-d(v)) \\
& \leqq \\
& n^{2}-n-3+a+(k-1)(n+k)-d(v)(k-2) .
\end{aligned}
$$

By (α) and (β) we have $1+(k-1) a \leqq p-n^{2}-1$ and thus

$$
(n+k+1-d(v))(k-2) \geqq 2+a(k-2)
$$

By Stage 10 we have $n+k+1-d(v) \leqq a-2$. Therefore, $k \geqq 2$ is impossible.

Stage 14: y_{0} is the only ideal line (i.e. $s=1$ and so $q=n^{2}+n+2$).
Suppose instead that x_{π} is an ideal line different from y_{0} having maximal degree. Let u be the meet of y_{0} and x_{π} if they have a point in common, or any point of x_{π} if y_{0} misses x_{π}. Let $l=w\left(x_{\pi}-\{u\}\right)$ and let t be the number of ($n+1+l$)-points of x_{π} different from u. Then

$$
s=s_{1} \geqq 2+t(l-1)+\left(a_{\pi}-t-1\right) l=\left(a_{\pi}-1\right) l-t+2
$$

By applying P2 at an $(n+1+l)$-point $v \neq u$ of x_{π} we see that

$$
p-1 \leqq(n+1)(n-1)+l\left(a_{\pi}-1\right)=n^{2}-1+l\left(a_{\pi}-1\right)
$$

and by (β) we get $t \geqq 3$. We also have $s \geqq 2+(l-1)\left(a_{\pi}-1\right)$ and thus by (β) again we get $a \geqq(l-1)\left(a_{\pi}-1\right)+4$. Now let us suppose that there are at most two n-lines passing through v which meet y_{0}. Therefore, by applying P2 to v we obtain

$$
\begin{aligned}
p-1 & \leqq 2(n-1)+(a-2)(n-2)+(n+1-a)(n-1)+l\left(a_{\pi}-1\right) \\
& =n^{2}+1-a+l\left(a_{\pi}-1\right)
\end{aligned}
$$

and by (β) we have $s \leqq 1+l\left(a_{\pi}-1\right)-a$. But $s \geqq 2+(l-1)\left(a_{\pi}-1\right)$, from which we see that $a_{\pi} \geqq a+2$, a contradiction. Hence, there are at least three n lines passing through any $(n+1+l)$-point of x_{π} different from u and meeting y_{0}. Now let y_{1}, y_{2}, y_{3} be three n-lines passing through v and meeting y_{0}. Since $t \geqq 3$ we may let w be yet another $(n+1+l)$-point of x_{π} different from both u and v. Suppose z is an n-line passing through w and meeting y_{0}. Then by (iv) we see that z must meet at least two of y_{1}, y_{2}, y_{3}, say z meets y_{1} and y_{2}. But
z, y_{1}, y_{2} are certainly not concurrent and thus z must meet at least one of them, say y_{1}, at a point not lying on y_{0}. This contradicts stage 12 for the n-lines y_{1} and z and the ideal lines y_{0} and x_{π}. Therefore we must have $s=1$.

Stage 15: All ideal points lie on y_{0} and have degree $n+2$.
By Note 5.1 and Stage 14 we see that every ideal point lies on y_{0} and Stage 14 proves the rest.

Stage 16: No 2-line meets y_{0}.
Suppose that a point v lies on y_{0} and a 2-line. Then from P2 we see that

$$
p-1 \leqq n(n-1)+1+(a-1)=n^{2}-n+a \text {, }
$$

which together with (v) gives a contradiction.
Note 16.1: A real line has at least 2 real points.
Stage 17: The real points of \mathscr{L} together with all real lines stripped of their ideal points, if they had any, form an FLS, say \mathscr{L}^{*}.

This is immediate from (vii) and note 16.1.
Stage 18: Any n-line x in \mathscr{L} determines a partition Π_{x} of the points of \mathscr{L}^{*} into $n+1$ lines of \mathscr{L}^{*}, such that no line of Π_{x} different from x passes through the ideal point of x in \mathscr{L}, if there is in fact an ideal point lying on x.

This follows directly from Note 8.3 and Stage 15.
Stage 19: If x and y are two distinct n-lines of \mathscr{L} meeting in an ideal point, then Π_{x} and Π_{y} have exactly one line of \mathscr{L} in common.

Let u be the ideal point in common to x and y. Then by Stage 18 passing through each point of y there is exactly one line of Π_{x}, the one through u being x itself. Since Π_{x} contains $n+1$ lines, there must be exactly one of them in Π_{y}.

Stage 20: Let u be any fixed ideal point of \mathscr{L}. For every n-line x of \mathscr{L} passing through u let us adjoin to \mathscr{L}^{*} a new point $[x]$ lying on all the lines of Π_{x} (and only those lines). Then the resulting structure, denoted \mathscr{L}^{\prime}, is an FLS with $p^{\prime}=p^{*}+d(u), q^{\prime}=q^{*}=n^{2}+n+1$ and $b_{\alpha}{ }^{\prime}=n+1$ for all α.

By Stage 19 we see that \mathscr{L}^{\prime} is an FLS.The values of p^{\prime} and q^{\prime} are obvious and $b_{\alpha}{ }^{\prime}=n+1$ follows from Stages 15 and 18 .

Stage 21: \mathscr{L}^{\prime} can be embedded in an FPP of order n, say $\mathscr{L}^{\prime \prime}$.
Since $p^{*}=p-a$ we see that

$$
\begin{aligned}
p^{\prime}=p-a+d(u) & \geqq p+n+4-2 a \\
& \geqq p+2(a-1)+4-2 a=p+2
\end{aligned}
$$

by Stages $10,11,13$ and 20 . Therefore, \mathscr{L}^{\prime} is an RLS of square order n with $q^{\prime}=n^{2}+n+1$ and by Theorem F we have \mathscr{L}^{\prime} is embeddable in an FPP of order n.

Stage 22: If two n-lines of \mathscr{L} both meet y_{0}, they must meet each other.

Suppose the parallel n-lines x_{ρ} and x_{σ} both meet y_{0}, say at u and v respectively. Then passing through u there is another line, say x_{τ}, that misses x_{σ} by P3. By Lemma 3 and Stage 16 we get $\sum_{\alpha}\left(b_{\alpha}-n-1\right) r_{\sigma \alpha} \geqq a_{\tau}-1 \geqq 2$, which contradicts Stage 15.

Stage 23: Final contradiction.
Let $\mathscr{L}^{*}, \mathscr{L}^{\prime}$ and $\mathscr{L}^{\prime \prime}$ be created as above for the fixed ideal point u of \mathscr{L}. Any n-line of \mathscr{L} containing an ideal point different from u is mapped onto an $(n-1)$-line of \mathscr{L}^{\prime} by Stage 22. Now for each ideal point of \mathscr{L} different from u we choose one n-line. These correspond to $a-1$ distinct $(n-1)$-lines of \mathscr{L}^{\prime} which meet pairwise by Stage 22. In embedding \mathscr{L}^{\prime} into $\mathscr{L}^{\prime \prime}$ we must add to each of these $a-1$ lines two more points which must all be distinct. Thus as in Stage 21 we have

$$
n^{2}+n+1=p^{\prime \prime} \geqq p^{\prime}+2(a-1) \geqq p+n+4-2 a+2(a-1)
$$

which contradicts the definition of n.
De Witte has found a different method of completing the proof of Theorem 4 from Stage 22 on:

Stage 22^{\prime} : In the above embedding the $n+1$ lines of \mathscr{L}^{*} originating from the $n+1$ real lines passing through any fixed ideal point v of \mathscr{L} are mapped onto $n+1$ concurrent lines of $L^{\prime \prime}$.

Let v be any ideal point of \mathscr{L} whatsoever. Then by Stage 10 there are at least two n-lines passing through v, say x and y. In creating \mathscr{L}^{*} the n-lines x and y are mapped onto parallel $(n-1)$-lines. The $n+1$ real lines passing through v are mapped onto pairwise parallel lines of \mathscr{L}^{*}. They are in turn mapped onto $n+1$ lines of $\mathscr{L}^{\prime \prime}$, which meet pairwise. Let X be this set of lines of $\mathscr{L}^{\prime \prime}$. Let $v^{\prime \prime}$ be the meet in $\mathscr{L}^{\prime \prime}$ of $x^{\prime \prime}$ and $y^{\prime \prime}$, which correspond to x and y in \mathscr{L}, and suppose a line $z^{\prime \prime}$ of X does not pass through $v^{\prime \prime}$. Then $z^{\prime \prime}$ meets $x^{\prime \prime}$ and $y^{\prime \prime}$ at points of $\mathscr{L}^{\prime \prime}-\mathscr{L}^{*}$. Thus there is exactly one such line $z^{\prime \prime}$ and every other line of X passes through $v^{\prime \prime}$. Since there are n lines of X passing through $v^{\prime \prime}$ and $z^{\prime \prime}$ meets each in a distinct point, $z^{\prime \prime}$ must contain at least n points of $\mathscr{L}^{\prime \prime}-\mathscr{L}^{*}$. But by Note 16.1 this gives $z^{\prime \prime}$ at least $n+2$ points, which is impossible.

Stage 23': Final contradiction.

By applying the argument of Stage 22^{\prime} to two different ideal points of \mathscr{L}, say v and w, we see that the $n+1$ real lines passing through each are mapped onto $n+1$ concurrent lines of $\mathscr{L}^{\prime \prime}$, say concurrent at $v^{\prime \prime}$ and $w^{\prime \prime}$. This means that the line $v^{\prime \prime} w^{\prime \prime}$ of $\mathscr{L}^{\prime \prime}$ corresponds to both a real line passing through v and one passing through w. This is impossible since the mapping $\mathscr{L}^{*} \rightarrow \mathscr{L}^{\prime \prime}$ is an embedding and thus injective.

References

1. Peter Dembowski, Semiaffine Ebenen, Arch. Math. (Basel) 13 (1962), 120-131.
2. JamesE. Totten, Classification of restricted linear spaces, Ph.D. thesis, University of Waterloo, 1974.
3. Jim Totten, Basic properties of restricted linear spaces, Discrete Math. 13 (1975), 67-74.
4. - On the degree of points and lines in a restricted linear space, to appear, Discrete Math.
5. - Parallelism in restricted linear spaces, to appear, Discrete Math.
6. Jim Totten and Paul de Witte, On a Paschian condition for linear spaces, Math. Z. 187 (1974), 173-183.
7. Paul de Witte, Combinatorial properties of finite plans (in Dutch), Ph.D. thesis, University of Brussels, 1965. Cf. Zbl. 135 (1967), 13-14.
8. - Restricted linear spaces with a square number of points, Simon Stevin 48 (1975), 107-120.
9. - On the embeddability of linear spaces in projective planes of order n, submitted, Trans. Amer. Math. Soc.

Mathematisches Institut der Universität Tübingen,
74 Tübingen, B.R.D.

[^0]: Received March 21, 1975 and in revised form, December 15, 1975.

