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SUMMARY

To characterize post-treatment clearance of young forms of Plasmodium falciparum from the

blood, three differential equation models, a linear decline, a linear then logarithmic decline, and

the Michaelis–Menten (MM) kinetic equation, were fitted to log-transformed serial parasite

counts from 30 semi-immune patients with synchronous parasitaemias allocated one of six

antimalarial drug regimens. The first two equations were solved analytically. The MM equation

was solved numerically using a fifth-order Runge–Kutta method. For each equation, parasite

clearance was assumed stochastic and log-transformed parasite counts were assumed to be

normally distributed at each time-point. Comparisons between models were by Minimum

Akaike Information Criterion Estimate. A constrained MM equation fitted the data at least as

well as the other two models in 5 of 6 drug groups and also when pooled data were analysed,

providing a single index which could be used in drug efficacy studies in similar situations or as

part of more complex models that encompass asynchronous, complicated infections.

INTRODUCTION

Several factors make falciparum malaria more readily

quantifiable than other infections. Because Plas-

modium falciparum develops within erythrocytes,

sampling and microscopic identification of parasites

can be done with relative ease. Progression of the

infection can sometimes be assessed directly in

humans, such as through the past controlled use of

malaria fever therapy for syphilis and in drug-resistant

cases. In vitro parasite culture is well established.

Detailed observations of P. falciparum morphology

and behaviour in these situations [1–3] have served as

the basis for mathematical models of in vivo parasite

development [4, 5]. These models demonstrate that

* Author for correspondence.

changes in the density of P. falciparum in the

peripheral blood of a patient with malaria depend on

the distribution of parasites across their 48-h life-

cycle.

In the first half of the life-cycle, parasites can be

seen on stained blood smears as intracellular ring

forms or early trophozoites which can be quantified.

These young forms circulate with minimal clearance.

However, as maturation continues, erythrocytes con-

taining trophozoites adhere to microvascular en-

dothelium and are thus removed from the peripheral

circulation. These sequestered forms develop into

schizonts which induce red cell rupture and the release

merozoites. Merozoites quickly invade uninfected red

cells to become the new generation of ring forms. In

some patients, the majority of parasites remain at the

same stage of development as the infection progresses
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Fig. 1. Schematic diagram showing broad stages of parasite development across the 48-h life cycle of Plasmodium falciparum.

The vertical line represents the stage at which parasites cytoadhere and disappear from the peripheral circulation. The simple

models described in this report are based on clearance from the single compartment in the lower left panel ; more complex

models of asynchronous infections would need to include parasite fluxes to and from the sequestered biomass.

while in others the parasitaemia is relatively asyn-

chronous.

Changes in the peripheral parasitaemia during

treatment for falciparum malaria will, therefore,

depend on fluxes to and from the cytoadherent,

‘ invisible ’ biomass as well as on drug effects which

lead to the removal of young parasite forms from the

circulation before they can sequester. Because these

considerations suggest that the parasitaemia-time

curve in both untreated and treated P. falciparum

infections is complex, treatment response is commonly

assessed using simple indices such as the time for

clearance of 50, 95 or 100% of the initial parasitaemia.

These measures ignore the overall pattern of parasite

clearance which may be influenced by factors other

than the drug under assessment.

Although some reports have displayed plots of

serial parasite counts to show differences in drug

efficacy, no mathematical analysis of these curves has

been attempted. As a first step in this process, we have

evaluated three simple models describing parasite

clearance in patients whose partial immunity had

synchronized their P. falciparum infections and who

were treated when most parasites were early ring

forms. In this situation, there is minimal appearance

of new ring forms in the peripheral blood after

initiation of treatment, while the disappearance of

rings and early trophozoites should reflect drug effects

or, where drug action is primarily in the second half of

the life-cycle, sequestration of maturing parasite

forms. The results show that clearance of young

parasites can be described adequately by a modified

Michaelis–Menten model which could have broader

application in field studies of antimalarial drug

efficacy.

SUBJECTS AND METHODS

Subjects and clinical procedures

A subset of the previously published data of Li and

colleagues [6] was used to assess the models. The data

were obtained from 30 untreated Chinese adults aged

14–60 years who had acute, uncomplicated falciparum

malaria but no other apparent serious disease. All

were long-term residents in the same endemic area.

Clinical assessment and the appearances of smears

taken from both peripheral blood and intradermal

(tissue) sampling indicated that parasite development

was clustered around one stage of the life-cycle,

consistent with synchronization of the infection

through partial immunity [2, 3]. At presentation,

parasites were present in ! 5% of red cells in all cases

with a range of densities 4460–230700 parasites}µl

whole blood.

Equal numbers of patients were assigned at random

to one of six oral antimalarial drug regimens:

mefloquine alone, artemisin alone, sulfadoxine plus

pyrimethamine (Fansidar2), mefloquine plus arte-

misinin, mefloquine plus Fansidar, or mefloquine plus
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Fansidar plus artemisin (Groups 1–6). Allocated

treatment was started from 6–10 h of the parasite

cycle as judged morphologically from a peripheral

blood smear. Further smears were taken 4-hourly

until two negative films had been obtained. Parasite

densities were calculated from manual counts and the

simultaneous haematocrit (thin blood films) or total

white cell count (thick films). As in other bio-

mathematical systems [7], changes in parasitaemia are

measured in terms of orders of magnitude and parasite

counts were transformed logarithmically before

analysis.

Further assessment of parasite development and

clearance during treatment was performed in two

other previously-untreated Chinese patients with

uncomplicated, synchronous falciparum malaria. To

minimize drug pharmacokinetic effects on parasite

clearance, both were given rapid intravenous therapy.

The first patient received artesunate 120 mg by

injection followed by further 60 mg doses at 6, 24 and

48 h. The other was treated with a split-infusion

quinine loading dose of 17 mg}kg body weight over

4"

#
h [8]. In both cases, blood smears were taken hourly

for 8 h, then 4-hourly thereafter. In addition to total

parasite counts, parasites were subdivided on mor-

phological grounds (nuclear size, cytoplasmic content

and presence of malarial pigment) as either small R1

rings (approximately 0–8 h of the cycle), medium R2

rings (9–16 h), or large R3 rings (17–24 h) at each

time-point [9].

Definitions of models

In order to simplify the modelling process, the time at

which drug-induced parasite clearance begins (T¯ 0)

was shifted to the 4 h time-point immediately prior to

a " 5% sustained fall in parasitaemia. To account for

sources of noise such as errors made while measuring

parasite densities, the clearance of parasites was

assumed to be a stochastic process, with independent,

additive noise normally distributed about a time-

dependent mean (with respect to the log-transformed

data). The models presented here describe the be-

haviour of the system in terms of the mean. The

stochastic component of the models is presented

subsequently.

The first model describes the log-transformed

parasite count as a linear, decreasing function of time.

That is, the untransformed data are modelled by an

exponentially decreasing function P(\), so that the

mean proportion of parasites cleared per unit time is

a constant :

d}dt P(t)¯®aP(t)

P(0)¯P
!
,

5

6

7

8

(1)

where a and P
!

are positive constants, a having

dimensions hours−". The second, log-linear model

assumes that clearance mechanisms are limited. For

the untransformed data, the clearance of parasites is

piecewise linear-exponential, so that no more than a

fixed number of parasites can be removed per unit

time:

d}dt P(t)¯®cb for P(t)" b ;

d}dt P(t)¯®cP(t) for P(t)% b ;

P(0)¯P
!
.

5

6

7

8

(2)

Here, b and c are positive constants with dimensions

of parasites}µl and hours−" respectively. The third

model is the Michaelis–Menten (MM) equation used

commonly in pharmacokinetic analysis [10] :

d}dtQ(t)¯®k
"
Q(t)}(k

#
­Q(t))

Q(0)¯ ln (P
!
),

5

6

7

8

(3)

where ln (\)¯ log
e
(\). The log-transformed parasite

counts are modelled by the function Q(\), the

parameters k
#
and P

!
are positive constants, and k

"
is

a positive constant with dimension hours−". The MM

differential equation is a saturation model as it

describes a case in which the rate of parasite clearance

is bounded in magnitude. The clearance of parasites

increases with the parasitaemia to a maximum k
"
. The

parameter k
#

controls the curvature (second time-

derivative) of the trajectory Q(\) such that the smaller

the value of k
#
, the more rapidly parasites are cleared.

The linear model is easily solved, and is the log of

the following equation:

P(t)¯P
!
exp (®at) for t& 0. (4)

To solve the log-linear model represented by the

linear-exponential system (2), suppose that the switch

between the linear and exponential parts occurs at

time τ& 0. On the time interval [0, τ), the parasite

count is a linear function of time. That is, P(t)¯
mt­α for constants m and α. The boundary conditions

P
!
¯α and P(τ)¯mτ­α¯ b can be used to solve for

m and α :

m¯ (P(τ)®P
!
)}τ

α¯P
!
.

5

6

7

8

(5)

From eqn (2), the rate of parasite clearance is

continuous at t¯ τ. Thus:

P(τ)¯m¯ (P(τ)®P
!
)}τ¯®cb,
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so that the switching time becomes:

τ¯ (P
!
®P(τ))}(cb). (6)

On the time interval [τ,¢), it is true that

P(t)¯ b exp (®c(t®τ)).

Thus, the equation describing the parasite count for

the log-linear model is the log of the following system:

P(t)¯P
!
®cbt for 0% t% τ¯ [P

!
®b]}(cb) ;

P(t)¯ b exp (®c(t®τ)) for τ% t.

5

6

7

8

(7)

The MM differential equation cannot be solved

analytically. For the numerical curve fitting that

follows, eqn (3) was solved using a fifth-order

Runge–Kutta method.

Selection of a model using MAICE

The Minimum Akaike Information Criterion Es-

timate (MAICE) is a systematic and general-purpose

technique for choosing between several different

models describing a set of data [11] which is used

widely in biological systems [12–14]. Competing

models can be nested or totally unrelated, and have

different numbers of parameters. The best MAICE

model is defined as the model and the corresponding

maximum likelihood estimates (MLE) that minimize:

AIC¯®2 ln (MLE)­2p,

where p is the number of independently adjusted

parameters within the model. When two models have

the same MLE’s, MAICE chooses the one with fewer

parameters according to the so-called Law of Par-

simony. In the MAICE technique, the MLEs are

chosen to maximize the joint probability density

corresponding to the data. At each sample time t, the

log-transformed parasite counts are assumed to be

distributed normally about the mean. A Gaussian

model for noise was chosen because it is simple and

adequately describes the variation of the (log-

transformed) parasite counts. Although more com-

plicated descriptions of noise may be used, the present

results are not expected to be sensitive to the choice of

model describing noise.

The variance of the distribution of parasite counts

is σ# and is assumed to be the same at each sample

time. The normal probability density function for the

parasite data is :

f(y)¯ (2πσ#)−"/# exp (®[y®Q(t)]#}2σ#),

where Q(\) represents either the MM model of eqn

(3), the linear model (log of eqn (4)), or the log-linear

model (log of eqn (7)). The density f(\) is time-

dependent in the sense that its mean Q(t) is a function

of time.

For the linear model, the parameters P
!
, a and σ are

estimated by solving the following nonlinear pro-

gramming problem:

maximize L(P
!
, a,σ)¯ 0

Np

i="

0
Nc(i)

j="

f(y
j
) (8)

over P
!
" 0, a" 0, and σ" 0. Here, the number of

patients used is N
p
, while N

c
(i) denotes the number of

parasite counts for patient i. Parasite count j is

measured at time t
j

and has value y
j
, 0 denotes

product, and L(\) denotes the likelihood function.

For the log-linear model, the nonlinear programming

problem is

maximize L(P
!
, c, b,σ)¯ 0

Np

i="

0
Nc(i)

j="

f(y
j
) (9)

over P
!
" 0, c" 0, b" 0, and σ" 0. Three constraints

need to be imposed when maximizing the likelihood

function (9). The switching time τ defined in eqn (6)

must be non-negative, the switching time may not

exceed the last time at which a parasite count was

taken, and P
!
& b. For the MM model, no constraints

need to be imposed when maximizing the likelihood

function

maximize L(P
!
,k

"
,k

#
,σ)¯ 0

Np

i="

0
Nc(i)

j="

f(y
j
) (10)

over P
!
" 0, k

"
" 0, k

#
" 0, and σ" 0.

The nonlinear programming software FSQP [15] was

used to solve the above minimization problems. FSQP

is a FORTRAN subroutine that generates iterates

that are feasible with respect to all inequality and

linear equality constraints. The linear, log-linear, and

MM models were fitted to parasitaemia-time data in

each of the six drug groups individually, and to

pooled data from all six drug groups.

Application of preferred model to individual data sets

After comparison of the three models using pooled

data and MAICE, the preferred model was fitted to

parasite clearance data from each patient to generate

individual values of parameter k
#
. Group medians for

k
#
estimates were compared using the Kruskal–Wallis
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one-way analysis of variance [16]. The model of best

fit was also applied, where possible, to clearance of

ring forms subdivided by maturation stage in the two

patients who received intravenous therapy.

RESULTS

Comparison of models

The maximum likelihood technique is a nonlinear

optimization, where the unknown parameters cor-

respond to hypotheses, and the optimal parameter

values maximize the joint probability of data. The

technique is valid only if the optimization problem is

well-posed and possesses a unique maximum. If this is

not the case, additional constraints can be applied so

that the problem has a unique solution [17]. In terms

of a numerical solution, the MM nonlinear pro-

gramming problem (10) is ill-posed as evidenced from

the following three observations. Firstly, the maxi-

mization routine FSQP stalled frequently during line

searches and failed to converge. Secondly, maximiza-

tions that were started from different initial values of

the likelihood parameters sometimes converged to

points having different values of (k
"
,k

#
) but the same

maximum likelihood (data not shown). However, the

ratio k
"
}k

#
at such points was similar. Finally, when

the maximization did converge to a unique optimal

point, the approximate 95% confidence intervals for

k
"
and k

#
were very wide. These observations indicate

that there exist regions in the parameter space over

which the likelihood function is flat with respect to the

likelihood parameters k
"

and k
#
, so that the system

has one too many independent optimization para-

meters.

In view of these observations, the constraint k
"
¯

1 h−" was imposed on eqn (3) to eliminate one of its

independent parameters, and the resulting equation

d}dtQ(t)¯®Q(t)}(k
#
­Q(t))

was successfully refitted to the clearance data (see

Table1).Thequestionofhow todealwithoptimization

problems which have objective functions that are flat

with respect to their minimization variables has been

addressed in the context of other diseases and their

treatment [6]. The goodness of fit of the MM

differential eqn (3) with k
"
¯ 1 h−" compared to that

of eqn (3) with k
"

unrestricted was the same or

marginally worse across all treatment groups when

measured using maximized likelihoods, and was

superior with respect to the MAICE statistic (due to

the elimination of one of the optimization parameters).

This confirmed the validity of the decision to constrain

the parameter k
"
. At low parasite counts, clearance

can be assumed as exponential with rate constant

®1}k
#

under the modified MM model.

For 5 of 7 drug groups (including pooled data) the

constrained MM model fitted the data best, measured

using MAICE values, compared to the linear and log-

linear models (see Table 1). It was sub-optimal only in

the case of Group 2. For Group 6, the fits of the linear

and MM models were comparable. Note that the

linear and log-linear models are nested. That is, the

log-linear model with a time switch at τ¯ 0 becomes

the linear model. For nested models, the MAICE

technique is the same as a log-likelihood ratio test.

Model-derived parameter estimates

MM fits for parasite counts obtained after treatment

withmefloquineplusFansidar plus artemisinin (Group

6) and Fansidar (Group 3) are shown in Figures 2 and

3 respectively. In individual patients, the lag time

(from first count until drug-induced clearance begins)

varied from 4 h in both the artemisinin-treated groups

(2 and 6) to 12–16 h in those who received mefloquine,

Fansidar or mefloquine plus Fansidar (Groups 1, 3

and 5 respectively). Estimates of k
#
are shown in Table

1; those in patients treated with Fansidar (Group 3)

were significantly less than in the mefloquine plus

artemisinin and mefloquine plus Fansidar plus arte-

misinin groups (4 and 6 respectively).

The parasitaemia-time curves by parasite stage for

the patients treated with intravenous artesunate and

quinine are shown in Figures 4 and 5 respectively. In

the case of artesunate, R1 forms cleared non-linearly

but in parallel with the much smaller numbers of R2

forms present when treatment was started. Minimal

numbers of R3 forms were seen from 16 h onwards,

consistent with maturation of less than 0±1% of R1

and R2 forms to the R3 stage. The constrained MM

model applied to clearance of R1 and R2 forms gave

k
#

values of 14±7 and 15±8 ln}µl respectively ; the

model could not be fitted to limited R3 data. In the

case of quinine, peaks of R2 and R3 forms occurred at

8 and 16 h respectively, consistent with the morpho-

metric grading system used and maturation of

approximately 80% of the initial R1 and R2 rings into

R3 forms. R3 forms declined non-linearly after 16 h,

with an estimated k
#

of 8±0 ln}µl.
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Table 1. MAICE scores derived from linear (lin), log-linear (l-l ) and constrained Michaelis–Menten (MM )

models fitted to log-transformed parasite density data in six treatment groups and to pooled data

MAICE MM parameter estimates

Individual patients

Group n lin l-l MM P
!
¬10−% k

#
(ln}µl) σ k

#
(ln}µl)

1 50 124±6 126±6 116±9* 5±0 [2±9–8±6] 29 [23–35] 0±72 [0±47–0±96] 21±7 (15±2–44±7)

2 36 119±6 118±2* 123±3 3±5 [1±8–6±9] 19 [14–24] 0±97 [0±62–1±30] 19±0 (13±9–20±5)

3 59 133±8 135±8 114±5* 4±6 [2±9–7±2] 16 [14–18] 0±50 [0±35–0±66] 14±0 (12±9–15±6)**

4 44 110±2 112±2 108±2* 1±6 [1±0–2±7] 33 [25–40] 0±66 [0±43–0±89] 26±6 (15±3–35±5)

5 50 119±5 121±5 118±0* 2±4 [1±3–4±7] 28 [20–36] 0±95 [0±60–1±30] 21±2 (7±5–39±5)

6 42 133±8* 135±5 134±2 2±3 [1±3–4±1] 33 [25–40] 0±83 [0±56–1±10] 24±2 (19±8–38±4)

1–6 281 794±6 796±2 780±8* 3±1 [2±4–4±0] 24 [22–26] 0±92 [0±79–1±00] —

Parameter estimates and approximate [95% confidence intervals] for MM fits are shown. The number of points (n) is the total

for all subjects in each group and all time-points. Asterisked values are the lowest for the three models fitted. Median (range)

k
#

for the MM model fitted to individual patient data are also shown. **P! 0±05 vs. Groups 4 and 6.
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Fig. 2. Serial parasite counts from five patients who received

mefloquine}sulfadoxine}pyrimethamine}artemisinin treat-

ment at time 0 (dashed lines). The constrained Michaelis–

Menten model fitted to the pooled data is shown as a solid

line.
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Fig. 3. Serial parasite counts from five patients who received

Fansidar treatment at time 0 (dashed lines). The constrained

Michaelis–Menten model fitted to the data is shown as a

solid line.
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Fig. 4. Parasite densities for ring forms of P. falciparum

assessed as at the R1 (——), R2 (— -) or R3 (----) stage of

development after initiation of treatment with intravenous

artesunate.
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Fig. 5. Parasite densities for ring forms of P. falciparum

assessed as at the R1 (——), R2 (— -) or R3 (----) stage of

development after initiation of treatment with intravenous

quinine.
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DISCUSSION

Although the sequestered biomass is an important

determinant of some major complications of

falciparum malaria [18], mature parasite forms cannot

be quantified directly. Clearance of younger parasites

from the peripheral circulation has, therefore, been

used commonly as a general index of antimalarial

drug efficacy. Nevertheless, P. falciparum rings and

early trophozoites may themselves have a patho-

physiological role especially if their density is high

[19], whilst a logical aim of treatment is to damage

and}or induce clearance of young forms so that they

are no longer metabolically active and cannot mature

to the point where they sequester. Thus, drugs which

induce rapid peripheral blood parasite clearance (such

as the artemisinin derivatives) may improve outcome

through this property alone [20].

Because of the presence of an unquantifiable

number of sequestered forms, changes in the per-

ipheral parasitaemia with time in a patient with

falciparum malaria can be complex, even after

treatment has started. However, the models assessed

in this report provide a mathematical description of

the parasitaemia-time curve in a uniquely simple

clinical situation, that in which only the clearance of

a fixed density of young ring forms occurs. The

comparison of plausible models applied in a de-

scriptive sense has direct parallels in other areas of

medicine [6, 21]. Given the fate of intraerythrocytic

parasites in the second half of their life-cycle, more

complex approaches would be needed to characterize

clearance in other clinical contexts. Incorporation of

drug pharmacokinetic parameters would further in-

crease model complexity. Nevertheless, pharmaco-

epidemiological studies which examine the efficacy of

different antimalarial drug regimens in different

patient populations could benefit from the type of

approach used in the present study.

The modified MM equation provides a simple but

adequate model of the post-treatment clearance of

young parasite forms in our patient groups, proving

preferable to both a linear decline and a log-linear

model. The latter, like the MM model itself, could be

applied to a capacity-limited system. Although

mechanisms governing parasite removal from the

circulation remain incompletely understood, host

immune and reticuloendothelial function (especially

that of the spleen) are probably key factors. These

mechanisms, as with enzyme kinetics and other

biological processes [10], would be expected to display

nonlinearity and saturation in patients with malaria

especially at parasite counts higher than those in our

uncomplicated patients.

The lag time between drug administration and the

start of parasite clearance reflects both pharmaco-

kinetic (absorption and distribution) and pharmaco-

dynamic (rapidity of action and stage specificity)

properties of the drugs and combinations used.

Artemisinin derivatives are absorbed promptly and

are highly active against young parasite forms

[20, 22, 23], consistent with the short lag times seen in

patients who received artemisinin alone or as part of

combination therapy. Mefloquine, which is available

only as an oral preparation, is more slowly absorbed,

reaching peak concentrations 14 h or more after

dosing [24]. Like the chemically-related drug quinine

[22], mefloquine is primarily active against parasite

stages later than rings. Fansidar acts on the most

mature parasite forms [25]. These considerations

account for the relatively long lag times after

mefloquine and Fansidar given alone or in com-

bination.

The MM parameter k
#

represents a more specific

index of parasiticidal action than lag time. Never-

theless, as mentioned previously, the ability to clear

parasites effectively will depend on most immuno-

logical and reticuloendothelial function as well as

drug effects. Our patients were a relatively homo-

geneous group in terms of general health and previous

malaria exposure. The similarity of k
#
values in most

treatment groups could, therefore, indicate that

clearance mechanisms in our patients were similar

once parasite death has occurred from any drug

regimen. The significant lower values of k
#

and their

narrow range in Group 3 patients are in accord with

previous data on the action of Fansidar. Because this

combination therapy has little activity against circu-

lating parasite forms [25], the pattern of a long lag

time followed by relatively fast clearance may thus

reflect continued maturation leading to sequestration

rather than relatively late parasite death and removal

from the circulation.

Support for this hypothesis comes from the more

detailed analysis of parasite clearance in the patients

who received intravenous therapy. Artesunate induced

prompt clearance of R1 and R2 forms with minimal

continued maturation of either to R3, consistent with

in vitro data relating to drug stage specificity

[20, 22, 23]. Rapid quinine loading did not prevent the

majority of R1 rings present initially developing

through the R2 stage into R3 forms, as might also be
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expected for mefloquine and Fansidar. The R3 forms

cleared with a value of k
#

which was approximately

half those of R1 and R2 in the patient treated with

artesunate. This suggests that the mechanisms

governing parasite disappearance were different dur-

ing treatment with each drug, and that sequestration

was a significant contributing factor in the case of

quinine.

Persistence of small numbers of microscopically

drug-affected young ring forms to 32 h and beyond

(see Figs 2–5) suggests that all regimens interfered to

some extent with normal parasite maturation to

trophozoite stage and prevented cytoadherence. In

the two patients treated intravenously, a proportion

of R1, R2 and R3 forms persisted well beyond the

point at which all should have matured to the next

stage or sequestered. In some groups, parasites were

still being cleared at a time (" 36–40 h after initial

drug administration) when a new generation of tiny

ring forms would be entering the circulation in an

untreated patient. ThemodifiedMMmodel accommo-

dates this non-linearity in the terminal phase of the

log parasitaemia-time curve whereas the other two

models do not. It is interesting to speculate whether

these persistent forms may still be viable and

contribute to recrudescence, a well recognized

phenomenon in the case of the artemisinin derivatives

[20].

The times to 50% or 95% parasite clearance in the

present patients would be functions of both lag time

and k
#
, and thus reflect a combination of drug,

parasite and host effects. The time to 100% clearance

is a function of the sensitivity of microscopy per se as

well as the skill of the microscopist, and ignores

completely the preceding changes in parasitaemia.

These considerations indicate that conventional

measures are inappropriate where detailed com-

parisons of antimalarial drugs, or of different groups

of patients receiving the same treatment, are proposed.

The modified MM model adequately fitted clearance

curves with a long lag time and could, therefore, be

considered in any patient, whether with a synchronous

infection or not, to describe the terminal phase of

parasite clearance when fluxes to and from the

sequestered biomass are likely to have stopped.

Although the frequency at which parasite counts

can be taken is limited by considerations of patient

comfort and convenience, the modified MM model

was easily applicable to individual and pooled data

from 4-hourly sampling. Absolute errors in parasite

counts are greatest at higher parasitaemias but the

effect of this is minimized by the use of a logarithmic

distribution. Consistent with these considerations, the

95% confidence intervals for pooled data in Table 1

for MM parameter estimates were relatively narrow.

Techniques from time series analysis could have been

applied to the parasite count data. However, such

methods are most successful when there are relatively

many sampling points. There are on average less than

10 sampling points per group of patients in the present

data, which casts doubt upon the validity of a time

series approach. In any case, a major advantage of the

current analysis is that it uses standard numerical

techniques (including nonlinear optimization and

Runge–Kutta solution of differential equations) and

readily available, nonproprietary numerical software

such as FSQP.

Notwithstanding its possible use in the charac-

terization of the terminal phase of any parasitaemia-

time curve, the modified MM model could form part

of a more complex integrated system including fluxes

to and from the sequestered biomass in patients with

asynchronous infections. As discussed in recent

reports [4, 5], an expanded model would need to

include an estimate of the parasite multiplication rate

(the number of merozoites produced from a single

mature schizont which successfully invade uninfected

red cells) as well as a mathematical description of the

effect of sequestration on parasite numbers in the

peripheral blood. Such a systematic evaluation of

parasite kinetics in patients with falciparum malaria

should allow a better understanding of disease

pathophysiology and may have direct application to

clinical management.
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