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Abstract

For an integer b > 2, a positive integer is called a b-Niven number if it is a multiple of the sum of the digits
in its base-b representation. In this article, we show that every arithmetic progression contains infinitely
many b-Niven numbers.
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1. Introduction

Let N denote the set of positive integers and let b > 2 be an integer. For all n € N
and 0 < i < [log, n], let v (n, i) be nonnegative integers such that v,(n,i) < b —1 and

n= Zuogb "l vp(n, i)b'. In other words, v,(n, i) is the (i + 1)st digit from the right in the

i=0
base-b representation of n. Furthermore, define s;, : N — N by s,(n) = Z%lzo(;g” nl vp(n, i).

A positive integer n is b-Niven if s,(n) | n.

It was shown in 1993 by Cooper and Kennedy [1] that there are no 21 consecutive
10-Niven numbers. Their result was generalised in 1994 by Grundman [4], who showed
that there are no 2b + 1 consecutive b-Niven numbers. In 1994, Wilson [6] proved that
for each b, there are infinitely many occurrences of 2b consecutive b-Niven numbers.
These results were recently extended by Grundman et al. [5], who investigated the
maximum lengths of arithmetic progressions of b-Niven numbers. Furthermore, an
asymptotic estimate for the number of »-Niven numbers not exceeding x was found
in 2003 by De Koninck ef al. [2] and in 2008, they [3] showed that given any r €
{2,3,...,2b}, there exists a constant ¢ = c¢(b, r) such that the number of r-tuples of
consecutive b-Niven numbers not exceeding x is asymptotic to cx/(log x)" as x tends to
infinity.

In this article, we prove that every arithmetic progression contains infinitely many
b-Niven numbers.
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2. Main results

The following lemma is sometimes referred to as the ‘postage stamp theorem’, the
‘chicken McNugget theorem’ or the ‘Frobenius coin theorem’.

LEMMA 2.1. Let u and v be integers with uv > 0 and gcd(u,v) = 1. Then every integer
w such that w shares the same sign with u and v and satisfies |w| > (lu| — 1)(Jv| — 1) can
be written in the form w = gu + hv for some nonnegative integers g and h.

The following two lemmas, which will be useful in our proof, are easy exercises in
elementary number theory.

LEMMA 2.2. Ifd | b — 1, then for all u € N, we have d | u if and only if d | sp(u).
LEMMA 2.3. For all integers n and n’ with2 < n’ < n, sp(n’) < (b — 1)[log,(n)].
For positive integers m and r, let
Sy ={mx+r:xeN}L

PROPOSITION 2.4. Let d = ged(sy(m), sp(r), b — 1). If gcd(sp(m), sp(r)) = d, then S, ,
contains at least one b-Niven number.

PROOF. Let ky(b, m, r) € N be such that for all integers k > k),

k> (b - 1)[1ogb (sbg") K+ Sbc(lr) ﬂ + (b 2)((19 - l)ﬁogb (Sbg”) K+ Sbc(lr) ﬂ - 1).

2.1

Note that & is well defined since b, m, r are constants and the right-hand side of (2.1)
is of order O(log k). Using Dirichlet’s theorem on primes in arithmetic progressions,
let k € N be such that k > max{kg, b, m} and

b= sp(m) ket sp(r)

d d

is a prime. Since p > k > max{b,m}, we have p { bm. Furthermore, let X be the
smallest positive integer such that ¥ = —m~'r (mod p). From Lemma 2.3 and (2.1),

k = 5p(%) + (b = 2)(sp(p) = 1).
By Lemma 2.1, there exist nonnegative integers g and & such that

k=spX)+gb—1)+h-sp(p).

Let w € N be a multiple of p—1 such that »* > max{m, r}. Note that b =1 (mod p)
by Fermat’s little theorem since p t+ b. We now deﬁne a function 7, : N - N as
follows. For each fixed n € N, let o0_; = 0 and o; = Z;:o vp(n,j) for 0 < i < |log, n.
Then,

Tllog;, )

nm = ) b,
j=1
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where {; =i for the unique i €{0,1,2,...,|log, n]} satisfying o1 <j <oy It is
important to notice that the construction of 7,(n) guarantees s,(75(1)) = Tj10g, n] =

sp(n) and 7,(n) = ¥ b = Sy (n, )b = n (mod p).

Let xp = 7,(X) and, for each positive integer ¢ < g, let
b
X, = x| — blogr-1l Z prw+llog, xi1 -1
=1

From this construction, s,(x;) = sp(x;—1) + b — 1 and
x; = Xy — b8l p L pllosxcil=l = | (mod p)

for all r<g. It follows that s,(xg) = sp(x0) +g(b—1)=s5,(%)+g(b—-1) and
Xg =xo =X (mod p). Lastly, let @ and S be integers such that b*“ >x, and
bP° > 1,(p). We define

h—1

X =Xg+ Z 75(p) - BTV,
=0

Now, sp(x) = sp(xg) + h - sp(tp(p)) =k, x=x,+ X0 p - b#* = —p~'r (mod p)
and since every summand of x is a distinct power of b where the powers differ by at
least w, we have s,(mx + r) = sp(m) - sp(x) + 5p(r) = sp(m) - k + 5,(r) = dp. Therefore,
mx + r is a b-Niven number based on the following observations:

*mx+r= m(—m‘lr) +r = 0 (mod p);
*d|(mx+r)sinced|mandd |rby Lemma2.2;
* gcd(p,d) = 1since p>bandd|b-1. o

LEMMA 2.5. Let n be a nonnegative integer. For all nonnegative integers y, sp(yn) =
ysp(n) + z(b — 1) for some integer z.

PROOF. Note that for all nonnegative integers n, if n = Z?:O(fb "l vp(n, Db, then s,(n) =

Z,U:O(%h "l vp(n,i) = n (mod b — 1). Hence, sp(yn) = yn = ysp(n) (mod b — 1). O
PROPOSITION 2.6. Let d = gcd(sp(m), sp(r), b — 1). Then there exists a positive multi-

ple m of m such that gcd(sy(m), sp(r)) = d.

PROOF. Let iy be the smallest nonnegative integer such that v, (m, ip) # 0. Then there
exists a nonnegative integer a < b — 1 such that vy(am, iy) = vp(a - vy(m, iy),0) > b/2.
Next, if v,(am, i + 1) # b — 1, then let m’ = am; otherwise, let m’ = (b + 1)am so that
vp(m’, ip) = vp(am,ip) > b/2 and

vp(m' iy + 1) = vp(am, iy + 1) + vi(am, iy) = b — 1 + vi(am, iy) # b — 1 (mod b).

Furthermore, define m” to be a multiple of m’ such that the leading digit of m” in
base-b representation is at least b/2, that is, v,(m”, | log, m” |) > b/2. Let m"* = v*m” +
m’. Then m* is a multiple of m such that v,(m*,iy) = b/2, vp(m*,ip + 1) # b — 1 and
vy(m*, [log, m* ) = b/2.
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Let x,y,z be integers such that xs,(r) + ysp(m) + z(b — 1) = d. Define y* such
that m* = y*m and let z* be an integer such that s,(m*) = y*sy(m) + z*(b — 1) by
Lemma 2.5. Letting m™ = (bl°%™ 1~ 4+ 1)m*, we see that v,(m*", llog, m*]) =
vp(m*,|log, m*|) + vy(m*,ip) —b and v,(m™, [log,m*|+ 1) = vy(m*,ip+ 1)+ 1<
b — 1. Hence, s,(m™) = 2s,(m*) — (b — 1) = 2y*sp(m) + (27* — 1)(b — 1). By Lemma
2.1, there exist nonnegative integers g and 4 such that gz* + h(2z* — 1) = z (mod s,(r)).
Let j be a nonnegative integer such that gy* + h(2y*) +j = y (mod s5(r)). Consider

g-1 h—1
7= Z i pillog, m*1+1) Z - pUog, m 1+ 1)+g(log, m” |+1)
=0

=0
j-1

4 Z mbtUog, ml+D+g(llog, m* [+ )+h(llog, m™ J+1)
=0

By construction, m is a multiple of m and

sp(m) = gsp(m”) + hsp(m™) + jisp(m)
= g0 sp(m) + 2 (b = 1)) + h(2y"sp(m) + (22" = 1)(b = 1)) + jsp(m)
= (gy" + h(2y") + jsp(m) + (82" + h(2Z" — D)(b — 1)
= ysp(m) + z(b — 1) = d (mod s,(r)).

Note that d | s,(m) since d | sp(m) and d | b — 1. Therefore, gcd(s,(m), sp(r)) =d. O

Combining Propositions 2.4 and 2.6, we obtain the following theorem.

THEOREM 2.7. Let m and r be positive integers. The arithmetic progression S, ,
contains infinitely many b-Niven numbers.

PROOF. By Proposition 2.6, there exists a multiple m of m such that

ged(sp(m), sp(r), b — 1) = ged(sp(m), sp(1)).

Hence, by Proposition 2.4, Sy ,, and thus S,, ,, contains at least one b-Niven number
since Sy, 1s a subset of S,,, . Let this b-Niven number be nm + r for some nonnegative
integer 1. Applying the same argument on the arithmetic progression, S, (.« ym+r
yields another h-Niven number and our proof is complete by induction. ]

References

[1] C. Cooper and R. E. Kennedy, ‘On consecutive Niven numbers’, Fibonacci Quart. 31 (1993),
146-151.

[2] J.-M. De Koninck, N. Doyon and I. Katai, ‘On the counting function for the Niven numbers’, Acta
Arith. 106 (2003), 265-275.

[3] J.-M. De Koninck, N. Doyon and I. Kétai, ‘Counting the number of twin Niven numbers’,
Ramanugjan J. 17 (2008), 89-105.

[4] H. Grundman, ‘Sequences of consecutive n-Niven numbers’, Fibonacci Quart. 32 (1994), 174-175.

https://doi.org/10.1017/5S0004972723000758 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972723000758

[5] b-Niven numbers 413

[51 H. Grundman, J. Harrington and T. W. H. Wong, ‘Arithmetic progressions of h-Niven numbers’,
Rocky Mountain J. Math., to appear.

[6] B. Wilson, ‘Construction of 2 *n consecutive n-Niven numbers’, Fibonacci Quart. 35 (1997),
122-128.

JOSHUA HARRINGTON, Department of Mathematics,
Cedar Crest College, 100 College Dr, Allentown, PA 18104, USA
e-mail: joshua.harrington @cedarcrest.edu

MATTHEW LITMAN, Department of Mathematics,
University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
e-mail: mclitman @ucdavis.edu

TONY W. H. WONG, Department of Mathematics,
Kutztown University of Pennsylvania,

15200 Kutztown Rd, Kutztown, PA 19530, USA
e-mail: wong @kutztown.edu

https://doi.org/10.1017/50004972723000758 Published online by Cambridge University Press


mailto:joshua.harrington@cedarcrest.edu
mailto:mclitman@ucdavis.edu
mailto:wong@kutztown.edu
https://doi.org/10.1017/S0004972723000758

	1 Introduction
	2 Main results

