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Abstract

Boston, Bush and Hajir have developed heuristics, extending the Cohen–Lenstra
heuristics, that conjecture the distribution of the Galois groups of the maximal
unramified pro-p extensions of imaginary quadratic number fields for p an odd prime. In
this paper, we find the moments of their proposed distribution, and further prove there
is a unique distribution with those moments. Further, we show that in the function field
analog, for imaginary quadratic extensions of Fq(t), the Galois groups of the maximal
unramified pro-p extensions, as q → ∞, have the moments predicted by the Boston,
Bush and Hajir heuristics. In fact, we determine the moments of the Galois groups
of the maximal unramified pro-odd extensions of imaginary quadratic function fields,
leading to a conjecture on Galois groups of the maximal unramified pro-odd extensions
of imaginary quadratic number fields.

1. Introduction

We fix an odd prime p throughout the paper. The Cohen–Lenstra heuristics [CL84] predict
the distribution of abelian p-groups that show up as the p-primary part of the class group of
an imaginary quadratic number field as we vary the field. In particular, there is a measure
µCL on finite abelian p-groups, such that µCL(G) > 0 for every finite abelian p-group G, that is
uniquely characterized by the fact that for anyG1, G2 finite abelian p-groups µCL(G1)/µCL(G2) =
|Aut(G2)|/|Aut(G1)|. We let DX denote the set of imaginary quadratic fields of absolute
discriminant less than X, and let CK denote the p-primary part of the class group of a field
K, called the p-class group of K. Cohen and Lenstra then conjecture the following.

Conjecture 1.1 (Cohen–Lenstra, [CL84, 8.1]). For any ‘reasonable’ function f on isomorphism
classes of finite abelian p-groups, we have

lim
X→∞

∑
K∈DX

f(CK)

#DX
=

∫
G
f(G) dµCL.

By class field theory, the p-class group of a number field K is isomorphic to the Galois group
AK of the maximal abelian unramified p-extension of K. We use this perspective in which Cohen–
Lenstra predicts the distribution of Galois groups of such extensions to consider a generalization
of the above conjecture to non-abelian unramified extensions of imaginary quadratic fields K,
as follows.
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Non-abelian Cohen–Lenstra heuristics over function fields

Let GK be the Galois group of the maximal unramified pro-p extension of K, also called its
p-class tower group. Boston et al. [BBH16] have made predictions about how often one should
expect a given group to appear as GK . Unlike AK , it turns out that GK can be infinite and this
introduces new features in the non-abelian case, for example, the measure on candidate groups is
no longer discrete. We put a measure µBBH on the set of finitely generated pro-p groups (see § 3
for the precise definition), so that the conjecture of Boston, Bush and Hajir is the following.

Conjecture 1.2 (Boston–Bush–Hajir, cf. [BBH16]). For any ‘reasonable’ function f on isomor-
phism classes of pro-p groups, we have

lim
X→∞

∑
K∈DX

f(GK)

#DX
=

∫
G
f(G) dµBBH.

Of such reasonable f , certain are particularly interesting, and their averages
∫
G f(G) dµBBH

we call the moments of the measure µBBH. To define these f , first note that the p-class tower
group GK has a generator-inverting automorphism σ coming from the action of Gal(K/Q). If
G and H are both profinite groups for which we have a chosen automorphism (we call both
automorphisms σ), then we write Surσ(G,H) for the continuous ‘σ-equivariant’ surjections from
G to H. The measure µBBH is supported on groups G with a unique, up to conjugation, generator-
inverting automorphism, which we also denote as σ. The average

∫
G |Surσ(G,H)| dµBBH is called

the H-moment of the measure dµBBH, and we determine these moments. (See § 7 for the simple
relationship between these moments and the analog without the σ-equivariant condition.)

Theorem 1.3 (Moments of µBBH). For every finite p-group H with a generator-inverting
automorphism σ, we have ∫

G
|Surσ(G,H)| dµBBH = 1. (1)

Theorem 1.3 will be proven as part of Theorem 4.1 below. Further, we show that these
moments characterize the measure dµBBH.

Theorem 1.4 (Moments characterize µBBH). If ν is a measure (for the σ-algebra Ω generated by
groups with a fixed p-class c quotient; these terms will be defined in § 3) on the set of isomorphism
classes of finitely generated pro-p groups such that∫

G
|Surσ(G,H)| dν = 1

for every finite p-group H with a generator-inverting automorphism σ, then ν = µBBH.

In fact, in Theorem 4.9 we prove a slightly stronger version of Theorem 1.4 in which we only
use some of the moments. If we take H in (1) to be abelian and note that under abelianization
µBBH pushes forward to µCL, then we recover the observation of Ellenberg et al. [EVW16, § 8.1]
that the A-moments of µCL are 1 for every abelian p-group A. They have also shown that these
A-moments characterize µCL [EVW16, Lemma 8.2]. The collection of moments given by averaging
|Surσ(−, H)| is a fixed upper triangular transformation from the averages of |Homσ(−, H)|. For
finite abelian groups, these latter averages are the mixed moments (of the standard invariants
of the group) in the usual sense (see [CKLPW15, § 3.3]).

In this paper, we prove a theorem towards the function field analog of Conjecture 1.2. We
consider the function field Fq(t), where q is a prime power. We say K/Fq(t) is imaginary quadratic
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if K is a degree-2 extension of Fq(t) that is ramified at the place corresponding to 1/t, or
equivalently, the smooth, projective hyperelliptic curve corresponding to K is ramified over
∞. For a quadratic extension K/Fq(t), we let Kun,∞ be the maximal unramified extension of
K that is split completely over every place of K that lies over the place ∞ in Fq(t), and let
Gun,∞
K = Gal(Kun,∞/K), with a generator-inverting automorphism σ coming from the action of

Gal(K/Fq(t)) (see § 2).

Theorem 1.5. Let H be a finite odd-order group with a generator-inverting automorphism such
that the center of H contains no elements fixed by σ except the identity. Let

δ+
q := lim sup

m→∞

∑
K∈Em

|Surσ(Gun,∞
K , H)|

#Em
and δ−q := lim inf

m→∞

∑
K∈Em

|Surσ(Gun,∞
K , H)|

#Em
,

where Em denotes the set of imaginary quadratic extensions Fq(t) with discriminant of norm
q2m+2. Then as q→∞ among prime powers relatively prime to 2|H| and with (q − 1, |H|) = 1,
we have

δ+
q , δ−q → 1.

In light of Theorems 1.3 and 1.4, this is good evidence for Conjecture 1.2. When H is a
p-group, the surjections in Theorem 1.5 factor through the maximal pro-p quotient of Gun,∞

K ,
which is analogous to the GK defined above. If we have an analogy between Fq(t) and Q for any
q, then the q limits in Theorem 1.5 should not matter, and after that limit we get agreement
with the µBBH moments by Theorem 1.3. Since these moments determine a unique measure by
Theorem 1.4, that suggests Conjecture 1.2 for general f , though technically the GK do not have
to be distributed according to a measure, but only a limit of measures.

Further, if we assume a vanishing conjecture on the homology of Hurwitz spaces, then under
the hypotheses of Theorem 1.5 we would in fact obtain that for q > N(H) we have δ+

q = δ−q = 1
(see Theorem 6.6). Theorem 1.5 suggests the following conjecture, extending Conjecture 1.2 from
pro-p groups to pro-odd groups, at least in the case of the moments.

Conjecture 1.6. For any imaginary quadratic number field K, let GK be the maximal pro-odd
quotient of the Galois group of the maximal unramified extension of K. Then for every finite
odd group H with a generating-inverting automorphism

lim
X→∞

∑
K∈DX

Surσ(GK , H)

#DX
= 1.

Bhargava [Bha14, § 1.2] has asked what we should expect for the average number of H
quotients of Gun,∞

K , for any H. Conjecture 1.6 suggests the answer for odd H. (See § 7 for the
translation from our conjecture for σ-equivariant quotients to the consequence for more general
quotients.) Bhargava [Bha14, § 1.2] has proven some intriguing moments for H = A3, A4, A5, S3,
S4, S5.

It would be interesting to have a concrete description of an underlying measure on pro-odd
groups that gives the moments on Conjecture 1.6, as µBBH does in the pro-p case. However,
before making a conjectural analog of Conjecture 1.2, one should note it is an open question
whether GK is (topologically) finitely generated or not, let alone finitely presented.

In order to prove Theorem 1.5, in § 5, we translate the sum of counts of surjections to a
count of extensions of Fq(t) with certain properties. We then, in § 6, apply the recent powerful
results of Ellenberg et al. [EVW16, EVW12] on homological stability of Hurwitz spaces and
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the components of Hurwitz spaces along with their Galois action over Fq in order to count the
extensions. A main motivation for the work of Ellenberg, Venkatesh and Westerland is to prove
function field analogs of Conjecture 1.1. In particular, [EVW16, Theorem 8.8] gives the case
of Theorem 1.5 when H is an abelian p-group. The analysis of components of Hurwitz spaces
in [EVW12] gives the number of components in terms of certain group-theoretically defined
quantities, which we compute in the cases necessary for our application. We apply results on
Hurwitz spaces from [EVW16, EVW12], the Grothendieck–Lefschetz trace formula, and our
group theory computation to count Fq points of a moduli space that parametrize the relevant
extensions of Fq(t).

Finally, we make some remarks on the hypotheses in Theorem 1.5. The condition on the
center of H comes from a technical limitation of [EVW12]. The requirement that (q−1, |H|) = 1
ensures that the base field does not have ‘extra roots of unity.’ The case of extra roots of unity
is one in which even the Cohen–Lenstra heuristics are expected to be wrong [Mal08] and new
heuristics have been proposed by Garton [Gar15] and Adam and Malle [AM15] for that case. To
the authors’ knowledge, there is no work on even the Cohen–Lenstra heuristics in the function
field setting when (q, |H|) > 1 or 2 | q.

2. Background on non-abelian analogs of class groups

Let Q be a global field and ∞ a place of Q. In this paper, we are interested in the cases Q = Q
or Fq(t) with the usual infinite place. For a separable, quadratic extension K/Q, we let Kun,∞

be the maximal unramified extension of K that is split completely over all places of K over ∞,
and let Gun,∞

K = Gal(Kun,∞/K). We let GK be the maximal pro-p quotient of Gun,∞
K .

Remark 2.1. While it looks like we have added the condition at∞ compared with the definition
of GK for number fields in the introduction, we could in fact add this condition to the definition of
GK for a quadratic number field K without effect because, for an archimedean place, unramified
is the same as split completely. Also, if Q = Fq(t) and OK is the integral closure of Fq[t] in K,
then class field theory gives that the abelianization (Gun,∞

K )ab is isomorphic to the class group
Cl(OK) of ideals modulo principal ideals, so Gun,∞

K is the natural function field analog of a
‘non-abelian class group’.

Lemma 2.2. If K/Q is a separable, quadratic extension, then all inertia subgroups of
Gal(Kun,∞/Q) and the decomposition group at infinity are contained in

{1} ∪ {r ∈ Gal(Kun,∞/Q)\Gun,∞
K | r2 = 1}.

Proof. The intersection withGun,∞
K of any inertia subgroup or the decomposition group at infinity

is trivial by the definition of Kun,∞, which also implies they have order at most 2. 2

If Q is a global field and ∞ is a place of Q such that Q has no non-trivial finite extensions
unramified everywhere and split completely over ∞ (such as in our cases of interest Q = Q or
Fq(t)), we call Q,∞ rational-like. Then we have that {r ∈ Gal(Kun,∞/Q)\Gun,∞

K | r2 = 1} is
non-empty. So the exact sequence

1→ Gun,∞
K → Gal(Kun,∞/Q)→ Gal(K/Q)→ 1

splits. Any lift of the generator of Gal(K/Q) gives an order-2 automorphism of Gun,∞
K by

conjugation.
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Proposition 2.3. Let Q,∞ be rational-like and K/Q a separable, quadratic extension. The
action of an element τ ∈ Gal(Kun,∞/Q)\Gun,∞

K of order 2 on Gun,∞
K by conjugation inverts a set

of (topological) generators of Gun,∞
K .

Proof. We write Gal(Kun,∞/Q) = Gun,∞
K o 〈τ〉. Let R be the closed subgroup of Gal(Kun,∞/Q)

generated by {r ∈ Gal(Kun,∞/Q)\Gun,∞
K | r2 = 1}. From the definition, it follows that R is

normal. So R corresponds to a subfield M of Kun,∞, which is Galois over Q, and such that
in Gal(M/Q) all inertia groups are trivial and the decomposition group at infinity is trivial
by Lemma 2.2. It follows that M = Q. The order-2 elements of Gal(Kun,∞/Q)\Gun,∞

K are the
(gi, τ), for gi ∈ Gun,∞

K such that gτi = g−1
i . So the words in {(gi, τ) | gi ∈ Gun,∞

K , gτi = g−1
i } are

dense in Gal(Kun,∞/Q). An element of Gun,∞
K equivalent to one of these words is a word in the

symbols {gi ∈ Gun,∞
K | gτi = g−1

i }, and such elements are a dense subgroup of Gun,∞
K . Thus

the set {gi ∈ Gun,∞
K | gτi = g−1

i } topologically generates Gun,∞
K . 2

In light of Proposition 2.3, we pick a lift τ of the generator of Gal(K/Q) to Gal(Kun,∞/Q) and
let conjugation by τ be our chosen generator-inverting automorphism σ of Gun,∞

K . Further, the
Schur–Zassenhaus theorem [Wil98, Proposition 2.3.3] guarantees that all the lifts of the generator
of Gal(K/Q) to the pro-p quotient GK of Gal(Kun,∞/Q) (or the pro-odd quotient) are conjugate.
Thus for an odd finite group H with automorphism σ, we then have that |Surσ(Gun,∞

K , H)| does
not depend on the choice of τ .

3. Boston–Bush–Hajir heuristics: background and notation

Koch and Venkov [KV75] have shown that for an imaginary quadratic extension K/Q, the
group GK satisfies certain properties we will now outline. For a pro-p group G, let d(G) :=
dimZ/pZH

1(G,Z/pZ) and r(G) := dimZ/pZH
2(G,Z/pZ). These are, respectively, the generator

rank and the relation rank of G as a pro-p group. For a pro-finite group G, we define a GI-
automorphism of G to be a σ ∈ Aut(G) such that σ acts as inversion on a set of (topological)
generators. For a pro-p group, this is equivalent to requiring that σ2 = 1, which σ are called
involutions, and σ acts as inversion on the abelianization of G [Bos91].

Definition. A Schur -σ group is a finitely generated pro-p group G with finite abelianization
such that:

(a) d(G) = r(G) (then called just the rank of G);

(b) G admits a GI-automorphism.

Koch and Venkov [KV75] have shown that for an imaginary quadratic extension K/Q, the group
GK is a Schur-σ group. The groupsGK we are considering in the function field case are also Schur-
σ groups when p - q− 1. This follows by class field theory, Proposition 2.3 above, and the upper
bound on r(GK) − d(GK), namely 0, due to Shafarevich, given as [HM01, Theorem 2.2]. Note
that r(GK)−d(GK) > 0 since Gab

K is finite and so the upper bound of 0 yields r(GK)−d(GK) = 0.
We will put a measure on the set of isomorphism classes of Schur σ-groups in order to state

the Boston–Bush–Hajir heuristics. For this, we first need to define a σ-algebra (in the sense of
measure theory – not our automorphism σ) on this set. Since many infinite Schur σ-groups are
expected to occur as GK with density 0, it makes sense to focus on certain finite quotients of
these groups.

Any pro-p group G has a lower p-central series defined as P0(G) := G and for n > 0, we
let Pn+1(G) be the closed subgroup generated by [G,Pn(G)] and Pn(G)p. The groups P0(G) >
P1(G) > P2(G) > · · · form a descending chain of characteristic subgroups of G called the lower
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p-central series. The p-class of a finite p-group G is the smallest c > 0 for which Pc(G) = {1}.
Note that for a finitely generated pro-p group G, the successive quotients Pn(G)/Pn+1(G) are
finite abelian groups of exponent p, and so, in particular, if Pc(G) = {1}, then G must be finite.
The lower p-central series and p-class can be thought of as analogous to the lower central series
and nilpotency class, respectively. Note that P1(G) is also the Frattini subgroup Φ(G).

For a pro-p group G, we define Qc(G) := G/Pc(G), the maximal quotient of G with p-class
at most c. So Qc(GK) is the Galois group of the maximal unramified p-extension of K among
extensions of Galois group with p-class at most c. Note that since a Schur σ-group G (such as
GK) is finitely generated, we have that Qc(G) is finite. It may be that Qc(G) has p-class strictly
less than c: certainly when G itself has p-class strictly less than c, this happens, but in fact since
the subquotients of the lower p-central series for G and for Qc(G) are the same up to index c,
this is the only way it can happen.

Let Ω be the σ-algebra on the set of isomorphism classes of Schur σ-groups generated by the
sets

{G | Qc(G) ' P} (2)

for each finite p-group P and fixed c. For example, we can fix a Schur σ-group G0 and take
the intersection over all c of {G | Qc(G) ' Qc(G0)} to see that Ω contains the singleton set
containing the class of G0.

We will next define a measure on the set of isomorphism classes of Schur σ-groups for a
σ-algebra containing Ω. Any Schur σ-group of rank g can be presented as a quotient of the free
pro-p group Fg on g generators x1, . . . , xg (with GI-automorphism σ(xi) = x−1

i ) by g relations
chosen from X = {s ∈ Φ(Fg) | σ(s) = s−1}. Since X is a closed subset of the profinite group Fg,
we have a natural profinite probability measure µ on X from the limit of the uniform measures
on finite quotients of Fg, on the σ-algebra generated by fibers of these quotients.

The Boston–Bush–Hajir probability measure µBBH will be given by randomly selecting such
relations. However, this only gives a measure for a fixed rank g of Schur σ-groups. Since, however,
the rank of a Schur σ-group is the rank of its abelianization (in fact, of the quotient of the
abelianization G/Φ(G), by the Burnside basis theorem), we can use the Cohen–Lenstra heuristics
to predict how often each rank g occurs. Let

µCL(g) :=
∑

G fin. ab., rk g p-gp

µCL(G) = p−g
2

g∏
k=1

(1− p−k)−2
∞∏
i=1

(1− p−i).

The above formula is from [CL84, Theorem 6.3]. Let A be a set of isomorphism classes of
rank g Schur σ-groups. Then we define

µBBH(A) := µCL(g)µ({(r1, . . . , rg) ∈ Xg | Fg/〈〈r1, . . . , rg〉〉 ∈ A}),

whenever {(r1, . . . , rg) ∈ Xg | Fg/〈〈r1, . . . , rg〉〉 ∈ A} is measurable, where the double angle
brackets denote the closed normal subgroup generated by the elements. We can think of this
measure as generating a random group by picking a rank g according to the Cohen–Lenstra
measure and then independently creating a random Schur σ-group of rank g by taking the
quotient of the free pro-p group Fg on g generators by g randomly chosen relations in X. Note
that this process does not necessarily produce a Schur σ-group, as there may be redundancy
among the relations and so the resulting group may not have relation rank g. However, such
redundancy happens with probability 0 (the abelianization would be infinite, and, as noted by
Friedman and Washington [FW89], this occurs with zero probability under µCL, which is induced
on abelianizations from µBBH [BBH16, Theorem 2.20]).
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Let Xc = {s ∈ Φ(Qc(Fg)) | σ(s) = s−1}. Note that Xc is a finite set and has a uniform discrete
probability measure µc that pulls back to µ on X. If P is a fixed finite p-group with d(P ) = g,
we define µBBH,c(P ) := µBBH({G | Qc(G) ' P}), and then

µBBH,c(P ) = µCL(g)µc({(r1, . . . , rg) ∈ Xg
c | Qc(Fg)/〈〈r1, . . . , rg〉〉 ' P}).

In particular {G | Qc(G) ' P} is measurable for µBBH.
If P ' Qc(G) for some Schur σ-group G, we call P a Schur σ-ancestor group. Note that

a Schur σ-ancestor group is necessarily a finite p-group with a GI-automorphism (though
these conditions are not sufficient). The Schur σ-ancestor groups are exactly those presented
as Qc(Fg)/〈〈r1, . . . , rg〉〉 for some r1, . . . , rg ∈ Xc. This is because one can choose an irredundant
lift of the relations from Xc to X to give a Schur σ-group [BBH16]. In particular, for any Schur
σ-ancestor group G of p-class c, we have that µBBH,c(G) > 0.

3.1 Choice of GI-automorphisms
It might seem strange at first that we do not include the choice of GI-automorphism with our
data of a Schur σ-group or Schur σ-ancestor group. However, we have the following proposition.

Proposition 3.1 [Hal34, § 1.3]. Any two GI-automorphisms of a finitely generated pro-p group
G are conjugate in Aut(G).

If G and H are finitely generated pro-p groups, we define Surσ(G,H) to be the continuous
surjections from G to H that take some particular choice of GI-automorphism for G to some
particular choice of GI-automorphism for H. We define Autσ(G) similarly. These definitions
of course depend on the particular choice of GI-automorphisms, but in this paper we will be
concerned mostly with the size of these sets, and by Proposition 3.1 their sizes do not depend
on these choices.

3.2 Choice of generators
The description of µBBH above actually gives a finer measure on the set of isomorphism classes of
Schur σ-groups with a choice of GI-automorphism and minimal generating set inverted by that
automorphism. We will later take advantage of this generating set, though for simplicity we do
not introduce notation for this finer measure.

4. Boston–Bush–Hajir moments

We now determine the moments of the measure µBBH as stated in Theorem 1.3.

Theorem 4.1 (Moments of µBBH). Let H be a finite p-group of p-class c with a GI-
automorphism σ. Then∫

G
|Surσ(G,H)| dµBBH =

∑
G Schur σ-ancestor of p-class c

µBBH,c(G)|Surσ(G,H)| = 1.

Note the hypothesis that σ is GI on H does not place any real restriction, because if we have
a surjection G → H that takes a GI-automorphism σG on G to any automorphism σH on H,
then σH must also be GI.

Let H be a finite p group with an order-2 automorphism σ. We write

Z(H) = {g ∈ H | σ(g) = g}
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and Y (H) = {g ∈ H | σ(g) = g−1}. This notation implicitly depends on σ. We now prove several
lemmas that will be used in the proof of Theorem 4.1.

Lemma 4.2. Let G be a finite p-group with an order-2 automorphism σ. Then |G| =
|Y (G)| |Z(G)|.

Proof. This is [Gor07, Theorem 3.5 (p. 180) of ch. 5]. 2

Lemma 4.3. Let G and H be finite p-groups, each with an order-2 automorphism σ, and let
φ : G→ H be a σ-equivariant surjection. Then φ : Z(G)→ Z(H) is a surjection.

Proof. Associated to the exact sequence 1→ ker(φ)→ G→ H → 1 is the exact sequence

· · ·→ H0(〈σ〉, G)→ H0(〈σ〉, H)→ H1(〈σ〉, ker(φ))→ · · · .

The first and second terms are Z(G) and Z(H) respectively. The last term is H1(〈σ〉, ker(φ)),
which vanishes by the Schur–Zassenhaus theorem since p is odd. 2

Lemma 4.4. Let G and H be finite p-groups, each with an order-2 automorphism σ, and let
φ : G→ H be a σ-equivariant surjection with kernel K. Then Z(K) = K ∩ Z(G) and Y (K) =
K ∩ Y (G), and |Y (K)| = |Y (G)|/|Y (H)|.

Proof. The first two claims are clear. Using the above two lemmas, we then observe

|Y (K)| = |K|
|Z(K)|

=
|G|/|H|

|Z(G)|/|Z(H)|
=
|Y (G)|
|Y (H)|

,

which proves the final claim. 2

Lemma 4.5. Let H be a finite p-group with GI-automorphism σ. Then the elements of Y (H)
are equidistributed in H/Φ(H). That is, any two cosets in H of Φ(H), when intersected with
Y (H) have the same number of elements.

Proof. We consider the maps of sets f : H → Y (H) given by f(g) = g−1σ(g) and π : Y (H)→
H/Φ(H) the composition of the inclusion and quotient maps Y (H)→ H → H/Φ(H).

Then the composition πf : H → H/Φ(H) sends g 7→ g−2 since σ acts by inversion on
H/Φ(H). This is a homomorphism since H/Φ(H) is abelian, and a surjection since H/Φ(H) has
odd order. Thus the fibers of πf are of equal size. Further, the fibers of f are cosets of Z(H)
and thus are also of equal size. Also, since for any g ∈ H, gΦ(H)∩ Y (H) = π−1(g), it suffices to
show the fibres of π have equal sizes, which now follows. 2

Lemma 4.6. Let H be a finite p-group of generator rank r with a GI-automorphism σ. Then

|Surσ(Fd, H)| = |Y (H)|d(pd − pr−1) · · · (pd − 1)

pdr
.

Proof. A homomorphism Fd→ H is σ-equivariant if and only if it sends each of the d generators
of Fd to an element of Y (H), and so there are |Y (H)|d such maps. By the Burnside basis
theorem, such a homomorphism is surjective if and only if its composition with the quotient
map is surjective to H/Φ(H). Since the elements of Y (H) are equidistributed in H/Φ(H),
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the proportion of σ-equivariant homomorphisms Fd → H that are surjective is the same as the
proportion of d-tuples from H/Φ(H) ' (Z/pZ)r that span this Z/pZ-vector space, which is easily
computed to be (pd − pr−1) · · · (pd − 1)/pdr. 2

Proof of Theorem 4.1. Since a surjection from G to H factors through Qc(G), we see that f(G) =
|Surσ(G,H)| is in fact a measurable function and that the first equality is by definition of the
two measures.

Let H have generator rank r. The random group G is constructed first by picking a random
generator rank d for G according to the Cohen–Lenstra measure, and then taking a random quo-
tient of Fd. Certainly, any surjection G → H lifts uniquely to a surjection Fd → H. From
Lemma 4.6 we see there are |Y (H)|d(pd−pr−1) · · · (pd−1)/pdr σ-equivariant surjections Fd→H.
A surjection φ : Fd → H factors through G if and only if the d random relations in Y (Φ(Fd))
that present G are in ker(φ), the probability of which we now compute. Since H is p-class c, we
may equivalently take the random relations in Y (Φ(Fd)/Pc(Fd)).

Let F := Fd/Pc(Fd). The probability that a random relation in Xc = Y (Φ(F )) is in ker(φ) is
|ker(φ) ∩ Y (Φ(F ))|/|Y (Φ(F ))|. Applying Lemma 4.4 to the surjection φ : Φ(F )→ Φ(G), we see
that |ker(φ) ∩ Y (Φ(F ))|/|Y (Φ(F ))| = |Y (Φ(G))|−1. Also, applying Lemma 4.4 to the quotient
G→ G/Φ(G), we have that |Y (Φ(G))| = |Y (G)|/pr, since σ acts on all of G/Φ(G) by inversion.
Thus, the probability that d random relations are in ker(φ), and so the map φ factors through
the random G, is pdr/|Y (H)|d.

Multiplying by the number of σ-equivariant surjections Fd → H, we find that among
generator rank d groups G, the expected number of σ-equivariant surjections to H is
(pd − pr−1) · · · (pd − 1), which is the number of surjections from a rank d abelian p-group to
(Z/pZ)r. Thus the expected number of σ-equivariant surjections is∑

d>0

µCL(d)(pd − pr−1) · · · (pd − 1) =
∑
A

µCL(A)|Sur(A, (Z/pZ)r)| = 1,

by the moments formula for the Cohen–Lenstra measure. 2

In fact, we will see in Theorem 4.9 that the moments where H is a Schur σ-ancestor group
characterize µBBH as a measure on Ω. At each p-class, showing the moments characterize the
measure amounts to inverting an infinite-dimensional matrix. Our method to invert this matrix
can be seen as a generalization of the method of [EVW16, Lemma 8.2], which proves that the
moments characterize the Cohen–Lenstra measure on finite abelian p-groups. First we need an
infinite-dimensional linear algebra lemma, since our infinite matrices are not quite as simple as
those in [EVW16, Lemma 8.2].

Lemma 4.7. Let ai,j be non-negative real numbers indexed by pairs of natural numbers i, j, such
that for all i we have ai,i = 1, and also supi

∑
j aij < 2. Let xj , yj be non-negative reals indexed

by natural numbers j. If for all i, ∑
j

ai,jxj =
∑
j

ai,jyj = 1,

then xj = yj for all j.

Proof. Note that xi = aiixi 6
∑

j ai,jxj 6 1. Similarly 0 6 yi 6 1. Let di = xi − yi. Let a =
supi

∑
j aij < 2. Let s = supi |di|, so 0 6 s 6 1. For each i, we have

∑
aijdj = 0, so di =

−
∑

j 6=i aijdj . So, |di| 6
∑

j 6=i aij |dj |. Taking the supremum over i yields s 6 (a − 1)s. Since
a− 1 < 1, so s = 0. Thus xi = yi for all i. 2
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Next, we will prove a formula for µBBH({G | Qc(G) ' P}) for a given Schur σ-ancestor group
P . The formula combines [BBH16, Theorems 2.25 and 2.29], which are subject to a further
conjecture called KIP, but we prove below that the combined formula is not conjectural. For
the formula, we will need one further invariant of p-groups. For a finite p-group G of p-class c
presented as F/R, where F is a free group of d(G) generators, then h(G) is defined to be the
dimension of the quotient of R by the topological closure of the subgroup Rp[F,R]Pc(F ) (by
[O’B90] and [BBH16, Remark 2.4] the quantity does not depend on the choice of presentation).

Alternatively, the p-groups of p-class 6c form a variety of groups whose free objects are
precisely the groups Qc(Fd). For a group G in this variety, we can let hc(G) be the number of
relators required to present G in this variety. If G is p-class c, then hc(G) = h(G) and if G is
p-class smaller than c, then hc(G) = r(G).

Lemma 4.8. Fix a c. Let g = d(G) and h = hc(G). We have

µBBH({G | Qc(G) ' P})
µCL(g)

=
pg

2

|Autσ(G)|

g∏
k=1

(1− p−k)
g∏

k=1+g−h
(1− p−k).

Proof. Let Fc = Qc(Fg). We need to compute the sum of the probabilities that a given g-tuple of
relations v ∈Xg

c generates R as a normal subgroup of Fc, where R runs over all normal subgroups
of Fc with quotient G. The key thing to note here is that since each element of Xc is inverted
by σ, any subgroup generated by elements of Xc is σ-invariant, as is the normal closure of such
a subgroup. Thus if R is a normal subgroup of Fc that is not σ-invariant, then the probability
that is generated as a normal subgroup by relations from Xc is 0. In [BBH16], the conjectural
property KIP (kernel invariance property) was assumed to ensure that every normal subgroup
with quotient G is σ-invariant. We do not assume this, since by the above remark we can restrict
our attention to the set of σ-invariant normal subgroups with quotient G.

The number of σ-invariant normal subgroups of Fc with quotient G is |Surσ(Fc, G)|/
|Autσ(G)|, by counting the quotient maps and dividing by how often maps give isomorphic
quotients. (There are similarly |Sur(Fc, G)|/|Aut(G)| normal subgroups with quotient G, but if
there are any that are not σ-invariant we have already seen they have 0 probability of being
generated by our relations in Xg.) The probability that a g-tuple of relations v ∈ Xg

c generates
a σ-invariant R as a normal subgroup can be computed by the earlier methods of [BBH16]. We
give a slightly alternative treatment here.

First note that by Lemma 4.6, |Surσ(Fc, G)| = |Y (G)|g
∏g
k=1(1 − p−k), since every such

surjection from the free pro-p group Fg on g generators factors through Fc. As for the probability
that v ∈ Xg

c normally generates R, this happens if and only if its image generates the Fp-vector
space V = R/R

∗
, where R is the preimage of R in Fg, R

∗ is the topological closure of Rp[Fg, R],
and R

∗
= Pc(Fg)R

∗/Pc(Fg) [Gru76, Proposition 2.8]. When G is p-class c, the dimension of V is h
(by definition of h). When G is p-class < c, we have Pc−1(Fg) ⊂ R and so Pc(Fg) is a subgroup of
R∗. Then V = R/R∗, which has dimension r(G). Let s = dimV , which we have just determined
in each case. The number of g-tuples generating V is

∏s
k=1(pg − ps−k) and so we just need the

size of the intersection of Xc with a fiber of the quotient map r : R→ V .
We claim each of these has |R∗|/|Z(R)| elements. This follows by considering the map f of

Lemma 4.5, defined by f(g) = g−1σ(g). Since V is abelian, f ◦ r = −2r, whose fibers have the
same size as those of r, namely |R∗|, since p is odd. On the other hand, f ◦ r = r ◦ f , the size
of the fibers of which are the size of those of r times those of f . This latter term is |Z(R)| by
Lemma 4.2. Putting these facts together establishes the claim.
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To recap, the desired measure is the sum over |Y (G)|g
∏g
k=1(1 − p−k)/|Autσ(G)| terms of

the number of v in Xg
c normally generating each R, which we just found to be

∏s
k=1(pg −

ps−k)(|R∗|/|Z(R)|)g, divided by the total number of v, namely |Xc|g. In other words,

s∏
k=1

(pg − ps−k)
g∏

k=1

(1− p−k)(|R∗|/|Z(R)|)g|Y (G)|g

|Autσ(G)| |Xc|g
.

It remains to show that |Y (G)| |R∗|/(|Z(R)| |Xc|) = pg−s. This follows from Lemma 4.4,
which says that |Y (Fc)|= |Y (G)| |Y (R)| and |Y (Fc)|= |Y (Φ(Fc))| |Y (Fc/Φ(Fc))|= |Xc|pg. Thus,
|Xc| = |Y (G)| |Y (R)|p−g. Combining this with |Y (R)| |Z(R)| = |R| (Lemma 4.2) and |R|/|R∗| =
ps gives the result. 2

Theorem 4.9 (Moments characterize µBBH). Let ν be a measure on Ω such that for every Schur
σ-ancestor group H, ∫

G
|Surσ(G,H)| dν = 1.

Then ν = µBBH.

Note that Schur σ-ancestor groups are a proper subset of finite p-groups with GI-
automorphisms, so this theorem does not require all of the moments determined in Theorem 4.1.

Proof. By Carathéodory’s theorem, a measure ν on Ω is determined by the measures
ν({G | Qc(G) ' S}) for all Schur σ-ancestor groups S. If G is a Schur σ-group, then Qc(G) is
either a Schur σ-ancestor group of p-class c or a Schur σ-group of p-class < c. (This is because
if Qc(G) is p-class < c then Qc(G) = G.) Let S be the set of isomorphism classes of groups that
are either a Schur σ-ancestor group of p-class c or a Schur σ-group of p-class <c.

For H a Schur σ-ancestor group of p-class c, we have that∑
S∈S

ν({G | Qc(G) ' S})|Surσ(S,H)| = 1

and ∑
S∈S

µBBH({G | Qc(G) ' S})|Surσ(S,H)| = 1.

We can index S by natural numbers S1, S2, . . . . We then apply Lemma 4.7 with

ai,j =
|Surσ(Sj , Si)|
|Autσ(Sj)|

and xj = ν({G | Qc(G) ' Sj})|Autσ(Sj)| and yj = µBBH({G | Qc(G) ' Sj})|Autσ(Sj)|, which
will prove the proposition. We must verify that

∑
j ai,j < 2.

Using the explicit formulae for µCL(d) (from [CL84]) and for µBBH (from Lemma 4.8), we
have that

µBBH({G | Qc(G) ' Sj})

=
µCL(d(Sj))p

d(Sj)2

|Autσ(Sj)|

d(Sj)∏
k=1

(1− p−k)
d(Sj)∏

k=1+d(Sj)−hc(Sj)

(1− p−k)
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=

∏
k>1(1− p−k)

∏d(Sj)
k=1 (1− p−k)−2

|Autσ(Sj)|

d(Sj)∏
k=1

(1− p−k)
d(Sj)∏

k=1+d(Sj)−hc(Sj)

(1− p−k)

=
1

|Autσ(Sj)|
∏
k>1

(1− p−k)
d(Sj)∏
k=1

(1− p−k)−1

d(Sj)∏
k=1+d(Sj)−hc(Sj)

(1− p−k).

When Sj is p-class c, we have that hc(Sj) = h(Sj), and since Sj is a Schur σ-ancestor, it is Qc(G)
for some Schur σ-group G. Since r(G) = d(G) = d(Sj), and r(G) > h(Sj) [BN06, Proposition 2],
we have d(Sj) > hc(Sj). When Sj is a Schur σ-group, we have that hc(Sj) = r(Sj) = d(Sj). In
either case, we conclude that

µBBH({G | Qc(G) ' Sj}) >
1

|Autσ(Sj)|
∏
k>1

(1− p−k).

For all p > 3, we have that
∏
k>1(1− p−k) > 0.53 and so

1

|Autσ(Sj)|
< 1.9µBBH({G | Qc(G) ' Sj}).

Thus,

sup
i

∑
j

ai,j = sup
i

∑
j

|Surσ(Sj , Si)|
|Autσ(Sj)|

6 1.9 sup
i

∑
j

µBBH({G | Qc(G) ' Sj})|Surσ(Sj , Si)| 6 1.9. 2

5. Moments as an extension counting problem

Let Q be a global field with a choice of place ∞. (We are mainly interested in Q = Q or Fq(t)
with the usual infinite place.) We fix a separable closure Q̄∞ of the completion Q∞. Then, inside
Q̄∞ we have the separable closure Q̄ of Q. This gives a map Gal(Q̄∞/Q∞)→ Gal(Q̄/Q), and
in particular distinguished decomposition and inertia groups in Gal(Q̄/Q) at ∞ (as opposed to
just a conjugacy classes of subgroups).

As in § 2, when K ⊂ Q̄ with K/Q a separable, quadratic extension, we let Kun,∞ ⊂ Q̄ be
the maximal extension of K that is unramified everywhere and split completely at ∞. We let
Gun,∞
K := Gal(Kun,∞/K). We note that in Gal(Kun,∞/Q) the inertia group at ∞ has order

dividing 2 by Lemma 2.2. Thus if K is ramified at ∞, we have a distinguished non-trivial
inertia element iK,∞ ∈Gal(Kun,∞/Q). As noted earlier, an automorphism that has order dividing
2 is called an involution. Conjugation by iK,∞ gives an involution of Gun,∞

K , and we let this
conjugation be our chosen automorphism σ of Gun,∞

K . (Note this is a more specific choice than
we made in § 2 under different hypotheses.)

Recall, for any finite group H with an involution σ, we write Surσ(Gun,∞
K , H) for the

continuous surjections taking conjugation by iK,∞ to σ. We let G = H oσ C2, and we denote
the generator of C2 by σ (a convenient overloading of notation). Let c be the set of elements of
G\H of order 2.

We define (as in [EVW12, § 10.2]) a marked (G, c) extension of Q to be (L, π,m) such
that L/Q is a Galois extension of fields, π is an isomorphism π : Gal(L/Q) ' G such that all
inertia groups in Gal(L/Q) (except for possibly the one at ∞) have image in {1} ∪ c, and m,
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the marking, is a homomorphism L∞ := L ⊗Q Q∞ → Q̄∞. Note that restriction to L gives a
bijection between homomorphisms L∞ → Q̄∞ and homomorphisms L → Q̄. Also, note that
the condition that an inertia group in Gal(L/Q) has image in {1} ∪ c is equivalent to requiring
that it has trivial intersection with π−1(H) because any element in G\({1} ∪ c) is either in H
or has square non-trivial in H. Two marked (G, c) extensions (L1, π1,m1) and (L2, π2,m2) are
isomorphic when there is an isomorphism L1→ L2 taking π1 to π2 and m1 to m2. The marking
m in a marked (G, c) extension (L, π,m) gives a map Gal(Q̄∞/Q∞)→ Gal(L/Q). Composing
with π we get an infinity type Gal(Q̄∞/Q∞)→ G. Such a homomorphism is called ramified if
the image of inertia is non-trivial.

Note that in each isomorphism class of marked (G, c) extensions of Q, there is a distinguished
element such that L ⊂ Q̄ and m|L is the inclusion map.

Theorem 5.1. Let Q be a global field with a choice of place ∞. Let H be a finite group
with involution σ, let G := H oσ C2, and let c be the set of order-2 elements of G\H. Let
φ : Gal(Q̄∞/Q∞) → G be a ramified homomorphism with image 〈(1, σ)〉. There is a bijection
between {

(K, f)|K ⊂ Q̄, [K : Q]

= 2,K∞/Q∞ the quadratic extension given by ker(φ), f ∈ Surσ(Gun,∞
K , H)

}
and

{isomorphism classes of marked (G, c) extensions (L, π,m) of Q with infinity type φ}.

In this bijection, we have Disc(L) = Disc(K)|H|.

Proof. Given a (K, f), we have that ker(f) gives a subfield of L ⊂ Kun,v ⊂ Q̄ and we have
f : Gal(L/K) ' H. We see that Gal(L/K) is an index 2 subgroup of Gal(L/Q), and iK,∞ is an
order-2 element of Gal(L/Q)\Gal(L/K). From the condition on the surjection f , we have that
f takes the conjugation action of iK,∞ on Gal(L/K) to the involution σ on H. Thus we can lift f
to π : Gal(L/Q) ' G with iK,∞ 7→ (1, σ). We let the marking m be the map L∞→ Q̄∞ induced
by the identity on L ⊂ Q̄ ⊂ Q̄∞. Since L ⊂Kun,∞, all inertia subgroups of Gal(L/Q) have image
under π in {1} ∪ c. The infinity type Gal(Q̄∞/Q∞)→ G factors through the map π. Since the
index 2 subgroup Gal(Q̄∞/K∞) has trivial image (it factors through Gal(L/K), and L/K is
split completely at ∞), the infinity type of m factors through the order-2 group Gal(K∞/Q∞).
Since, by construction of π, the inertia group Gal(Q̄∞/Q∞) has image 〈(1, σ)〉, it follows that
the infinity type is Gal(Q̄∞/Q∞)→ Gal(K∞/Q∞) ' 〈(1, σ)〉, which is φ.

Given an isomorphism class of marked (G, c) extensions (L, π,m) of Q with infinity type φ,
we take the representative for which L ⊂ Q̄ and m|L is the identity map. Then we let K ⊂ Q̄
be the fixed field of π−1(H). From the infinity type, we see that L/K is split completely at
∞, and that K/Q is ramified at ∞ such that K∞ corresponds to ker(φ). By the fact that
(L, π,m) is a (G, c) extension of infinity type φ, it follows that L ⊂Kun,∞, so we get a surjection

f : Gun,∞
K → Gal(L/K)

π
→ H. From the infinity type, we see that π takes iK,∞ 7→ (1, σ), so we

get that f ∈ Surσ(Gun,∞
K , H).

If we start with (K, f), then by construction the fixed field of the π−1(H) from our
constructed (L, π) is K, and the restriction of π to Gal(L/K) is f . So if we apply both these
constructions we return to the same (K, f). On the other hand, if we start with (L, π,m) (such
that m is the identity), L is the fixed field of the constructed morphism f , and π is determined
by the constructed f and the image of iK,∞, and so if we apply both these constructions we
return to (L, π,m). 2
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6. Applying methods of Ellenberg–Venkatesh–Westerland to the extension
counting problem

Theorem 1.5 will follow from Corollary 6.5 in this section. We will prove this result using a method
and many results due to Ellenberg, Venkatesh and Westerland in papers [EVW16, EVW12]. The
method counts extensions of function fields by considering this as a problem of counting Fq
points on a moduli space of curves with maps to P1, applying the Grothendieck–Lefschetz trace
formula to count these points, and using results from topology to bound the dimensions of the
cohomology groups.

6.1 Group theory computation
In this section, we will prove a lemma in group theory that will be central to proving Theorem 1.5.
This lemma will count Fq-rational components in a moduli space on which we will eventually
count points.

First we will define the universal marked central extension G̃ of a finite group G for a union
c of conjugacy classes of G, following [EVW12, § 7]. Let C be a Schur cover of G so we have an
exact sequence

1→ H2(G,Z)→ C → G→ 1

by the Schur covering map. For x, y ∈ G that commute, let x̂ and ŷ be arbitrary lifts to C, and
let 〈x, y〉 be the commutator [x̂, ŷ] ∈ C, which actually lies in H2(G,Z) since x and y commute.
It we take the quotient of the above exact sequence by all 〈x, y〉 for x ∈ c and y commuting with
x, we obtain an exact sequence

1→ H2(G, c)→ G̃c→ G→ 1,

which is still a central extension. Let Gab denote the abelianization of H. The universal marked
central extension is G̃ = G̃c ×Gab Zc/G, where c/G denotes the set of conjugacy classes in c and
the map Zc/G → Gab sends each standard generator to an element of the associated conjugacy
class. We have a map G̃→ G, given through projecting to the first factor. (See [EVW12, § 7] for
why this is called a universal marked central extension.)

Lemma 6.1. Let H be an odd finite group with a GI-automorphism σ, and G = H oσ C2. Let
c be the (single) conjugacy class of order-2 elements. Let q be a power of a prime and n be an
odd integer. If (q, 2|H|) = 1 and (q − 1, |H|) = 1, then for each y ∈ c, there is exactly 1 element
x ∈ G̃c such that (x, n) ∈ G̃, and x has image y in G, and xq = x.

Proof. We have that |G̃c| = 2|H||H2(G, c)| and that H2(G,Z) is a quotient of H2(H,Z) by
[EVW12, Example 9.3.2]. Thus since |H| is relatively prime to 2(q− 1), we have that |H2(G,Z)|
is as well and thus |H2(G, c)| is as well. Since |G̃c|/2 is relatively prime to q − 1, we have that
for x ∈ G̃c, xq = x if and only if x2 = 1.

Let w ∈ G̃c be in the inverse image of y. Then we ask for which k ∈ H2(G, c) is wk of
order 2. Since H2(G, c)→ G̃c is central, we have (wk)2 = w2k2, and note w2 ∈ H2(G, c) since
y2 = 1. Since H2(G, c) is an odd abelian group, there is exactly one k ∈ H2(G, c) such that
w2k2 = 1. Let x = wk for this k, which is the only possible x satisfying the conditions of the
lemma. Also, note that (x, n) ∈ G̃ since x and n have image of the class of y in Gab, proving
the lemma. 2

6.2 Properties of the Hurwitz scheme constructed by Ellenberg, Venkatesh and
Westerland

In this theorem, we recall the Hurwitz scheme constructed by Ellenberg, Venkatesh and
Westerland to study extensions of Fq(t) and its properties.
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Theorem 6.2 (Ellenberg, Venkatesh and Westerland). Let H be an odd finite group with GI-
automorphism σ, and let G := H oσ C2. Let c be the elements of G of order 2. Let Fq be a finite
field with q relatively prime to |G|. When G is center-free, there is a Hurwitz scheme CHurG,n
over Z[|G|−1] constructed in [EVW12, § 8.6.2]1 with the following properties.

(i) We have CHurG,n is a finite étale cover of the relatively smooth n-dimensional configuration
space Confn of n distinct unlabeled points in A1 over SpecZ[|G|−1].

(ii) The scheme CHurG,n has an open and closed subscheme CHurc,cG,n such that there is a
bijection between:

(a) isomorphism classes of marked (G, c)-extensions L of Fq(t) of Nm Disc(L) = q(n+1)|H|

and an infinity type φ such that φ(F∆) = 1 and imφ is of order 2 and in c∪{1} (where
F∆ is a lift of the Frobenius automorphism to Gal(Q̄∞/Q∞) that acts trivially on
Fq((t−1/∞)));

(b) points of CHurc,cG,n(Fq) [EVW12, § 10.4].

(iii) We have CHurG,n(C) is homotopy equivalent to a topological space CHurG,n [EVW12,
§ 8.6.2], such that for any field k of characteristic relatively prime to |G|, there is a constant
C such that for all i > 1 and for all n we have dimH i(CHurG,n, k) 6 Ci [EVW16,
Proposition 2.5 and Theorem 6.1].

(iv) Given G, for n sufficiently large and all q with (q,G) = 1, the Frob fixed components of
CHurc,cG,n ⊗Z[|G|−1] F̄q are in bijection with elements (x, n) ∈ G̃ such that xq = x and x has

image of order 2 in G [EVW12, Theorem 8.7.3]. (The requirement that x has image of
order 2 in G ensures the monodromy at ∞ is in c.)

Remark 6.3. The scheme CHurc,cG,n ⊂ CHurG,n comes from restricting to the parametrization of

covers of P1 all of whose local inertia groups have image in c ∪ {1}. We use two c superscripts
because [EVW12] uses a single c superscript to denote when this restriction is made only over
points in A1 ⊂ P1. The argument that CHurc,cG,n ⊂ CHurG,n is an open and closed subscheme is

as in [EVW16, § 7.3]. Our description of the components requires a bit of translation from that

in [EVW12, Theorem 8.7.3]. They biject the components with Ẑ× equivariant functions from
topological generators of lim

←−µn (taken over n relatively prime to q) to the preimage of c in G̃
that are fixed by the discrete action of Frob. By choosing any topological generator of lim

←−µn,

its image under a function to G̃ gives us a corresponding element of G̃. Using the definition of
the discrete action and [EVW12, (9.4.1) and 9.3.2], we can see that under this correspondence
(x, n) 7→ (xq, n) describes the inverse of Frob.

6.3 Counting Fq points
In this section, we will count the Fq points of CHurc,c in Theorem 6.4, and then use our
Theorem 5.1 to translate that into a result about surjections from Galois groups GK in
Corollary 6.5, which will finally prove Theorem 1.5.

Theorem 6.4. Given G and c as in Theorem 6.2, we have a constant C and a constant nG such
that for q > C2, with (q, |G|) = 1 and (q − 1, |G|/2) = 1, and odd n > nG,

|#CHurc,cG,n(Fq)− qn ·#c| 6
qn

√
q/C − 1

.

1 The paper [EVW12] has been temporarily withdrawn by the authors because of a gap which affects §§ 6, 12 and
some theorems of the introduction of [EVW12]. That gap does not affect any of the results from [EVW12] that
we use in this paper.
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Proof. Our theorem will follow by applying the Grothendieck–Lefschetz trace formula to
X := CHurc,cG,n ⊗Z[|G|−1] Fq. By Theorem 6.2(i), we have that X is smooth of dimension n. We

have that dimH i
c,ét(XF̄q

,Q`) = dimH2n−i
ét (XF̄q

,Q`) by Poincaré duality.

Next, we will relate dimHj
ét(XF̄q

,Q`) to dimHj(CHurc,cG,n(C),Q`) for some ` > n. To compare

étale cohomology between characteristic 0 and positive characteristic, we will use [EVW16,
Proposition 7.7]. The result [EVW16, Proposition 7.7] gives an isomorphism between étale
cohomology between characteristic 0 and positive characteristic in the case of a finite cover
of a complement of a reduced normal crossing divisor in a smooth proper scheme. Though
[EVW16, Proposition 7.7] is only stated for étale cohomology with coefficients in Z/`Z,
the argument goes through identically for coefficients in Z/`kZ, and then we can take the
indirect limit and tensor with Q` to obtain the result of [EVW16, Proposition 7.7] with Z/`Z
coefficients replaced by Q` coefficients. So we apply this strengthened version to conclude that
dimHj

ét(XF̄q
,Q`) = dimHj

ét((CHur
c,c
G,n)C,Q`). (As in [EVW16, proof of Proposition 7.8], we

apply comparison to CHurc,cG,n ×Confn PConfn, where PConfn is the moduli space of n labeled

points on A1 and is the complement of a relative normal crossings divisor in a smooth proper
scheme [EVW16, Lemma 7.6]. Then we take Sn invariants to compare the étale cohomology of
CHurc,cG,n across characteristics.) By the comparison of étale and analytic cohomology [SGA4(3),

Exposé XI, Theorem 4.4] dimHj(CHurc,cG,n(C),Q`) = dimHj
ét((CHur

c,c
G,n)C,Q`).

By Theorem 6.2(iii), there is a constant C such that for all j > 1 and for all n, we have

dimHj(CHurc,cG,n(C),Q`) 6 Cj . Thus dimHj
ét(XF̄q

,Q`) 6 Cj for all j > 1. Thus using Poincaré

duality, dimH i
ét,c(XF̄q

,Q`) 6 C2n−i for all i < 2n. By Theorem 6.2(iv) and Lemma 6.1, we have
that X has #c components fixed by Frob for odd n > nG for some fixed nG.

Then by the Grothendieck–Lefschetz trace formula we have

#X(Fq) =
∑
j>0

(−1)j Tr(Frob|
Hj

c,ét(XF̄q ,Q`)
)

and also we know Tr(Frob|H2n
c,ét(XF̄q ,Q`)

) is qn times the number of components of X fixed by Frob.

Since X is smooth, we have that the absolute value of any eigenvalue of Frob on Hj
c,ét(XF̄q

,Q`)

is at most qj/2. Thus, for odd n > nG,

|#X(Fq)− qn ×#c| =
∣∣∣∣ ∑
06j<2 dimX

(−1)j Tr(Frob|
Hj

c,ét(XF̄q ,Q`)
)

∣∣∣∣
6

∑
06j<2 dimX

qj/2C2n−j

6 qn
∑
16i

(
√
q/C)−i.

The theorem follows. 2

We have Q = Fq(t) and Q∞ = Fq((t−1)), for q odd. Unlike in the number field case, in
which there is only one possible ramified quadratic extension of Q∞ = R, here there are two
ramified quadratic extensions of Q∞ = Fq((t−1)). If K/Fq(t) is a quadratic extension, we say it
is imaginary quadratic of type I if K∞ ' Fq((t−1/2)) and of type II if K∞ ' Fq(((αt)−1/2)) for
an α ∈ Fq\F2

q . Let IQn be the set of K ⊂ Q̄ such that K is imaginary quadratic of type I and
Nm Disc(K) = qn+1. Let IQ′n be the set of K ⊂ Q̄ such that K is imaginary quadratic of type II
and Nm Disc(K) = qn+1.
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Corollary 6.5. Let H be an odd finite group with GI-automorphism σ such that H oσ C2 is
center-free. As q ranges through powers of primes such that (q, 2|H|) = 1 and (q − 1, |H|) = 1,
we have

lim
q→∞

lim sup
n→∞
n odd

∑
K∈IQn

|Surσ(Gun,∞
K , H)|

#IQn
= 1.

The same result holds if we replace lim sup by lim inf and/or replace IQn by IQ′n.

Theorem 1.5 then follows from Corollary 6.5 after noting that H oσ C2 is center-free if and
only if the center of H contains no elements fixed by σ except the identity.

Proof. By Theorem 6.2(ii) the points CHurc,cG,n(Fq) are in bijection with isomorphism classes of
marked (G, c) extensions (L, π,m) of Q with certain infinity types φ. These infinity types are
all G-conjugate, and there are #c of them. Let φ0 be the infinity type such that φ(F∆) = 1 and
imφ = 〈(1, σ)〉. Note that Fq((t−1/2)) is the imaginary quadratic extension given by ker(φ0).

Let φ : Gal(Q̄∞/Q∞)→ G be a ramified homomorphism with image 〈(1, σ)〉, let g ∈ G, and
let φg denote the conjugation. Then isomorphism classes of marked (G, c) extensions (L, π,m)
of Q with infinity type φ of a given discriminant are in bijection with isomorphism classes of
marked (G, c) extensions (L, π,m) of Q with infinity type φg and that discriminant by sending
(L, π,m) to (L, πg,m). So, we have that

#CHurc,cG,n(Fq) = #c ·#
{

isomorphism classes of marked (G, c)-extensions L/Fq(t) of infinity

type φ0 and Nm Disc(L) = q(n+1)|H|}.
Further, by Theorem 5.1, we then conclude that

#CHurc,cG,n(Fq) = #c ·
{

(K, f) | K ⊂ Q̄,K imaginary quadratic type I,

f ∈ Surσ(Gun,∞
K , H),Nm Disc(K) = qn+1

}
.

So by Theorem 6.4, we have a constant C, only depending on H, such that for q > 4C2 and
odd n > nG ∣∣∣∣ ∑

K∈IQn

|Surσ(Gun,∞
K , H)| − qn

∣∣∣∣ 6 2Cqn−1/2.

Thus, for q > 4C2 and all odd n > nG∑
K∈IQn

|Surσ(Gun,∞
K , H)|

#IQn
=
qn +O(qn−1/2)

qn − qn−1
= 1 +O(q−1/2).

It follows that the limit as q→∞, of the of lim sup or lim inf, in odd n, of the lefthand side are
both 1. For the case of IQ′n, we have a bijection K 7→K⊗Fq(t)Fq(t) (where the map Fq(t)→ Fq(t)
is given by t 7→ αt, for some α ∈ Fq\F2

q) between IQn and IQ′n that preserves Gun,∞
K . 2

6.4 Further results assuming a conjecture on the homology of Hurwitz spaces
The program developed by Ellenberg, Venkatesh and Westerland in [EVW12] aims to prove
stronger results on the topology of Hurwitz spaces, from which corresponding stronger results
on the point counts would follow. For example, HSα [EVW12, § 11.1] is a conjecture on the
homology of Hurwitz spaces for a given group G and conjugacy invariant subset c.

Theorem 6.6. Let H be an odd finite group with GI-automorphism σ such that H oσ C2 is
center-free. If HSα holds for G = H oσ C2 and c the order-2 elements of G, then there is a q0

such that for q > q0, with (q, 2|H|) = 1 and (q − 1, |H|) = 1, we have
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lim sup
n→∞
n odd

∑
K∈IQn

|Surσ(Gun,∞
K , H)|

#IQn
= 1.

The same result holds if we replace IQn by IQ′n.

Proof. We apply Theorem 5.1 and [EVW12, Theorem 11.1.1]. Lemma 6.1 shows that the quantity
B(L∞,m) appearing in [EVW12, Theorem 11.1.1] is 1. Finally, we use that an étale G-extension
L∞ has |G|/|AutG(L∞)| corresponding infinity types and a G-extension has |G| markings. 2

7. Non-equivariant moments

While in this paper, we have asked about the equivariant moments, or averages of
|Surσ(Gun,∞

K , H)|, one could naturally ask about non-equivariant moments, or averages
of |Sur(Gun,∞

K , H)|. It turns out these non-equivariant moments reduce in a simple way to
equivariant moments.

Let G be a group with a GI-automorphism σ. Then we have an injection

Sur(G,H)→ Homσ(G,H ×H)

f 7→ f × fσ,

where the automorphism σ of H × H is switching the factors. In fact, this is a bijection onto
the subset of Homσ(G,H ×H) that surject onto the first factor. Let F be the set of σ-invariant
subgroups of H ×H that surject onto the first factor. Then

|Sur(G,H)| =
∑
F∈F
|Surσ(G,F )|. (3)

Note since σ is GI on G, if it is not GI on F , then |Surσ(G,F )| = 0. Thus (3) would still hold if
we restrict the sum on the right to F such that switching factors in H ×H is GI on F (i.e. F
generated by elements of the form (h, h−1) for h ∈ H).
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Lecture Notes in Mathematics, vol. 305 (Springer, New York, NY, 1973); avec la collaboration
de P. Deligne et B. Saint-Donat.

Wil98 J. S. Wilson, Profinite groups (Clarendon Press, Oxford, 1998).

Nigel Boston boston@math.wisc.edu

Department of Mathematics, University of Wisconsin-Madison,
480 Lincoln Drive, Madison, WI 53706, USA

Melanie Matchett Wood mmwood@math.wisc.edu

Department of Mathematics, University of Wisconsin-Madison,
480 Lincoln Drive, Madison, WI 53706, USA

and

American Institute of Mathematics, 600 East Brokaw Road,
San Jose, CA 95112, USA

1390

https://doi.org/10.1112/S0010437X17007102 Published online by Cambridge University Press

http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
http://www.arxiv.org/abs/1212.0923
https://doi.org/10.1112/S0010437X17007102

	1 Introduction
	2 Background on non-abelian analogs of class groups
	3 Boston–Bush–Hajir heuristics: background and notation
	3.1 Choice of GI-automorphisms
	3.2 Choice of generators

	4 Boston–Bush–Hajir moments
	5 Moments as an extension counting problem
	6 Applying methods of Ellenberg–Venkatesh–Westerland to the extension counting problem
	6.1 Group theory computation
	6.2 Properties of the Hurwitz scheme constructed by Ellenberg, Venkatesh and Westerland
	6.3 Counting Fq points
	6.4 Further results assuming a conjecture on the homology of Hurwitz spaces

	7 Non-equivariant moments
	Acknowledgements
	References



