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Let Un be an n-dimensional unitary space with inner product 

(x,y) = (y,x) . In U n let S n - ^ denote the unit sphere: 

S n - 1 = < x * <x'x> = l } • 

Let A be an arbitrary linear transformation of Un . The subset 

F(A) = {X> ! ^ = (Ax,x), x i n S n - 1 > 

of the ^ -plajae ( ^ = ^ +i»j ) i s called the field of A. 

As the image of S ^ under the continuous mapping x-* (Ax, x), 
F(A) must be compact and connected. Toeplitz proved in £4] that 
the boundary of F(A) is a convex curve, Hausdorff then showed 
C2] that F(A) actually fills the interior of this curve (i. e. , that 
F(A) is convex). Proofs of the convexity of F(A) also appear in 
[ 3 ] and C5]. 

The purpose of this note is to provide a simple inductive 
proof for the convexity of F(A) which reduces the essential com­
putation to the single case n = 2. We then dispose of this case by 
verifying directly that F(A) satisfies the definition of a convex set, 

THEOREM. F(A) is convex. 

Proof, (a) If n=l, then F(A) i s a single point. 
(b) Deferring the case n=2, we suppose n > 3 and 

consider the inductive step from n-1 to n. Let x and y be any two 
vectors of Sn -^; we must show that F(A) contains the segment 
joining the points (Ax,x) and (Ay,y) in the ^-plane. Since n > 3, 
we can find a vector u in Un such that (u,x) = (u,y) = 0. The 

unitary-orthogonal complement in l^ of the line L spanned by u 
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is a subspace l^^x °^ ^ti w ^ o s e u n i t sphere S n - 2 * s contained in 

^ n - 1 ' ^ r A e r m o r e , x and y lie in ^ . 3 * ^ n y v e c t o r w *n U n admi t s 

a unique decomposition w = v + z, with v in L and z in U , ; the 

unitary-orthogonal projection P of U^ onto Un_^ i s defined by 

Pw = z. Obviously A Q = PAP = P(AP) i s a l inear t ransformation 

of U n _i into itself. Fo r any z in Sn-2 (and thus in Sn_j) we have 

Pz = z and thus , decomposing Az = vj + z p 

(Az,z) = (v 1 +z 1 , z ) = (z j , z ) = (PAz,z) = (PAPz,z) = (AQz,z); 

since (A 0z,z) = (Az,z) , F(A0) i s a subset of F(A). Also , taking 
z = x and z = y, we see that (Ax,x) and (Ay,y) a r e in F(AQ); 
F(AQ) is convex by hypothesis , and so the segment joining (Ax,x) 
and (Ay,y) l ies in F(AQ) and thus in F(A), a s des i red . 

(c) We turn now to the case n=2. It is well known 
(see Cll» for example) that there exists a coordinate system 
(or equivalently, a basis) in U2 with respec t to which the m a t r i x 
of A takes a , fsuperdiagonal , , form 

* • ( : : ) 

so that for any vector x in the "unit c i r c l e " Sj of U2> with co­

ordinates x p X£ relat ive to the sys tem, we have 

2 2 2 2 
(Ax,x) = a | x j j + &|x2t + c x l x 2 ( l x l t + l x 2 ' = 1 ) 

2 _ 
= b + (a-b)jxj j + cxjX2« 

If, using the convention a rg (0) = 0, we le t 

cx= | a - b I (oOO) 

t = arg(a-b) 

s = | x x | 2 (0 4 s 4 1) 

0 = a rg x 2 ~ a rg Xj - t , 

and consider the set S = £F(A)-b3exp(-it), we find that 
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S = {Ç ) î = o ( s + c ( s ( l - s ) ) i exp(i8); 0 « s * 1 , 0 * 9 * 2 u"} . 

Since S is congruent t o F ( A ) , it suffices to prove that S is convex. 

If c = 0, then S is a line segment and therefore convex. 
If c f 0 then we can assume c = 1, since F(A) i s convex if and 

only if c F(A) = F(c A) is convex. Thus we can take S to be 
the union of the c i rc les 

C(s): f̂  - <*s|= ( s ( l - s ) ) i = f(s) ( 0 4 s i l ) . 

Let ^i and ^ 2 ^ e a n v points of S and let ^0 be any point 
on the line joining them: we must show that TQ l ies in S. Let 
C(si) and C(s2) be c i rc les on which ^ j_ , f ^ l i e , an<^ a s e t n e ^ a c t 

that ^ 0 can be writ ten in the form 

^ 0 = r ^ i + ( l - r ) ^ 2 ( 0 S r $ l ) 

to define s = r s i + ( l - r j s ^ . 

Consider G(s) = \^Q - o C s | -f(s). Obviously G(0) = | ^ Q | > 0 

(i. e. , \ 0 l ies outside or on C(0)). We will show that G(sQ) $ 0 

( i . e . , that ^Q l ies inside or on C(s 0)) . It follows that 

G(s*) = 0 ( i . e . , that ^Q l ies on C(s*)) for some s* with 

0 < s* < sQ ^ 1, so that ^0 l ies in S and the convexity of S will 

be proved* 

To show that G(SQ) 4 0> w e aPply t n e t r iangle inequality: 

R o - « * 8 o ! < r l f o - o t s x l + { l - r ) | ^ O .ocs 2 l = rf(sx) + ( l -p) f (s 2 ) . 

Since fM(s) < 0 for 0 < s < 1, we have 

r f ( S l ) + ( l - r ) f ( s 2 ) 4 f ( s 0 ) 

and so l $ 0 - o C s 0 | < f(sQ) ( i . e . , G(sQ) < 0). This completes the 

proof. 
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