CONVEXITY OF THE FIELD
OF A LINEAR TRANSFORMATION
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Let U, be an n-dimensional unitary space with inner product

(x,y) ={y,x). 1In U, let S,,_; denote the unit sphere:

5,17 {x\(x,%) = 1} .

Let A be an arbitrary linear transformation of U,. The subset
FA)={% | 3§ =(Ax,x), xin Sn-l}
of the 3 -plane (Y =% +in ) is called the field of A.

As the image of S _; under the continuous mapping x > (Ax,x),
F(A) must be compact and connected. Toeplitz proved in [4] that.
the boundary of F(A) is a convex curve. Hausdorff then showed
£21 that F(A) actually fills the interior of this curve (i.e., that

F(A) is convex). Proofs of the convexity of F(A) also appear in
{3} and (5].

The purpose of this note is to provide a simple inductive
proof for the convexity of F(A) which reduces the essential com-
putation to the single case n = 2. We then dispose of this case by
verifying directly that F(A) satisfies the definition of a convex set.

THEOREM. F(A) is convex.

Proof. (a) If n=1, then F(A) is a single point.
(b) Deferring the case n=2, we suppose n 3 3 and
consider the inductive step from n-1 to n. Let x and y be any two
vectors of S _); we must show that F(A) contains the segment

joining the points (Ax,x) and (Ay,y) in the g -plane. Since n > 3,
we can find a vector u in U, such that (u,x) = (u,y) = 0. The

unitary-orthogonal complement in U, of the line L. spanned by u
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is a subspace U,_; of U, whose unit sphere S;_, is contained in

Sp-1s
a unique decomposition w = v+ z, with vin L and z in Uu_1 ; the

furthermore, x and y lie in § _, . Any vector w in Ujyadmits

unitary-orthogonal projection P of U, onto U, _; is defined by
Pw = z. Obviously A ;= PAP = P(AP) is a linear transformation
of U, _; into itself. For any z in S;-2 (and thus in S,-1) we have

Pz = z and thus, decomposing Az = v] + z,

(Az,z) = (vi+zy,2) = (z1,2) = (PAz,z) = (PAPz,z) = (Agz,z);

since (Agz,z) = (Az,z), F(Ag) is a subset of F(A). Also, taking
z = xand z = y, we see that (Ax,x) and (Ay,y) are in F(A):
F(A,) is convex by hypothesis, and so the segment joining (Ax, x)
and (Ay,y) lies in F(A,) and thus in F(A), as desired.

(c) We turn now to the case n=2. It is well known
(see [1], for example) that there exists a coordinate system

(or equivalently, a basis) in U, with respect to which the matrix
of A takes a '""'superdiagonal' form

a-c
A= (
0 b
so that for any vector x in the '"unit circle” SI of U,, with co-

ordinates x 1 X2 relative to the system, we have
2 —
(Ax,x) = alxil™ + b(x212+ cx1x, ((xliz-HleZ:l)
2 —_—
= b+ (a-b)[x;1 + exx,.

If, using the convention arg (0) = 0, we let

x= |a-b | (X 20)
t = arg(a-b)
s=lxll‘7' (0£s<€1)

. 8=argx,-arg x;-t,
and consider the set S = [F(A)-b]exp(-it), we find that
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1 —
S={3 1% =cts+c(s(l-5))Z exp(if); 0ss<1,0¢ D 27W}.
Since S is congruent to F(A), it suffices to prove that S is convex.

If ¢ = 0, then S is a line segment and therefore convex.
If ¢ # 0 then we can assume ¢ = 1, since F(A) is convex if and

only if c'lF(A) = F(c'lA) is convex. Thus we can take S to be
the union of the circles

Cls): |5 - oksl= (s(1-5) )2 = £(s) (0< s <1).

Let {; and 32 be any points of S and let 3, be any point
on the line joining them: we must show that T, lies in S. Let
C(s1) and C(s) be circles on which I3, j2lie, and use the fact

that Yo can be written in the form

30 =731+ (1-1)3; (0€rgl)
to define s, = rs; + (l-r)sz.

Consider G(s) = Ro - s| -f(s). Obviously G(0) = Ro‘ > 0
(i.e., Yo lies outside or on C(0)). We will show that G(sg) £ 0
(i.e., that §° lies inside or on C(sy)). It follows that

G(s*) = 0 (i.e., that {_lies on C(s*)) for some s* with

0 € s* g 5o € 1, so that Io lies in S and the convexity of S will
be proved,

To show that G(s,) € 0, we apply the triangle inequality:
[Ro=-tsol € T Ro~ k81l + (1-7)| 35-%spl = rf(sy) + (1-1)i(s}).
Since f'(s) L 0 for 0 <s <1, we havé |
rf(sl) + (l-r)f(sz) < i(sy)

and so |§o-o(sb|$ f(s;) (i.e., G(s)) € 0). This completes the

proof,
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