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Abstract

We prove an upper bound for the sum of values of the ideal class zeta-function over nontrivial zeros of the
Riemann zeta-function. The same result for the Dedekind zeta-function is also obtained. This may shed
light on some unproved cases of the general Dedekind conjecture.
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1. Introduction

Let K be a number field of degree n with ring of integers OK . Let C be an ideal class
of K. The ideal class zeta-function ζK(C; s) is defined by

ζK(C; s) �
∑
a∈C

integral

1
N(a)s

for�(s) > 1, where the sum is taken over the nonzero integral ideals from the class C.
The sum of all such ideal class zeta-functions is equal to the Dedekind zeta-function
ζK , a generalisation of the Riemann zeta-function ζ = ζQ. It is known that the Riemann
zeta-function ζ divides the Dedekind zeta-function ζK for any quadratic number field
K (in the sense that the quotient ζK/ζ is an entire function). This fact is a particular
case of the Dedekind conjecture [9] which states that if K/L is an extension of number
fields, then the quotient ζK/ζL is entire. This conjecture has been proved when the
number field K/L is Galois [2] or solvable [15, 16].

In this article, we shall consider a number field K of degree n. A complex variable
is denoted by s = σ + it, and a nontrivial zero of the Riemann zeta-function by
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ρ = β + iγ. If the number field K is Galois or solvable over Q, then∑
ρ

ζK(ρ) = 0,

where the sum is taken over all nontrivial zeros of the Riemann zeta-function. There
are many similar results for the sum of the values of some functions over the nontrivial
zeros of the Riemann zeta-function. For example, Steuding [11] studied the sum
of values of the Hurwitz zeta-function over the nontrivial zeros of the Riemann
zeta-function. Garunkštis and Kalpokas [6] did the same for the periodic zeta-function
associated with a rational parameter. Recently, Tongsomporn et al. [14] did the same
for an irrational parameter. The proof of these results (without assuming the Riemann
hypothesis) made use of the method of Conrey et al. [5]. The basic idea is to interpret
the sum in question as a sum of residues and then apply Cauchy’s residue theorem and
the method of contour integration in combination with the functional equation of the
zeta-function and Gonek’s lemma [7, Lemma 2]. The following is our main result.

THEOREM 1.1. Let K be a number field of degree n. Let r1 and r2 be the number of its
real embeddings and pairs of complex conjugate embeddings, respectively, and d be
the absolute value of its discriminant. Let C be any ideal class of the number field K
and c′m be the number of integral ideals of norm m from the ideal class which is the
complement of C. Then, as T tends to infinity,
∑

0<γ<T

ζK(C; ρ) = − ir1+r2

d1/2nn1/2 exp
(
−iπ

n + 1
4

)

×
∑

k≤d (T/2π)n

1
k(n−1)/2n exp

(
2πin
( k
d

)1/n)∑
� | k

c′�Λ
(k
�

)
+ O(max{Tn/2+ε, T165/146+ε}),

where the sum is taken over the nontrivial zeros ρ = β + iγ of the Riemann
zeta-function, Λ denotes the von Mangoldt function and ε > 0 is arbitrary but fixed.
In particular, ∑

0<γ<T

ζK(C; ρ) � T (n+1)/2+ε.

A corresponding result for the Dedekind zeta-function is an immediate conse-
quence.

COROLLARY 1.2. Let K be a number field of degree n. Then, as T tends to infinity,∑
0<γ<T

ζK(ρ) � T (n+1)/2+ε,

where the sum is taken over the nontrivial zeros ρ = β + iγ of the Riemann
zeta-function.

In Section 2, we review some background and useful facts which are related to the
Riemann zeta-function and the ideal class zeta-function. The proof of the main result
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(Theorem 1.1) is provided in Section 3. Finally, Section 4 contains a few concluding
remarks.

2. Preliminaries

We first recall some useful facts about the Riemann zeta-function. Then we do the
same for the ideal class zeta-function. Finally, we recall some techniques and state
some lemmas that are useful in Section 2.3.

2.1. Riemann zeta-function. The Riemann zeta-function in the half-plane σ > 1 is
defined by

ζ(s) �
∑
m≥1

1
ms =

∏
p

(1 − p−s)−1,

where the product runs through all primes. In this half-plane, the logarithmic
derivative of the Riemann zeta-function can be written as a Dirichlet series,

ζ′

ζ
(s) = −

∑
j≥2

Λ(j)
js

,

where the von Mangoldt function is defined by

Λ(j) �

⎧⎪⎪⎨⎪⎪⎩
log p if j = pk for some prime p and positive integer k,
0 otherwise.

The Riemann zeta-function can be continued analytically to a meromorphic
function on the whole complex plane with a single singularity at s = 1 which is a
simple pole. This continuation satisfies the functional equation

ζ(s) = 2(2π)s−1Γ(1 − s) sin
(
πs
2

)
ζ(1 − s) � Δ(s)ζ(1 − s).

This implies that the logarithmic derivative of the Riemann zeta-function satisfies

ζ′

ζ
(s) =

Δ′

Δ
(s) − ζ

′

ζ
(1 − s),

where by Stirling’s formula,

Δ′

Δ
(1 − s) =

Δ′

Δ
(s) = − log

t
2π
+ O
(1

t

)

for t > 1. Since the Riemann zeta-function has a simple pole at s = 1, so does its
logarithmic derivative and in the neighbourhood of s = 1,

ζ′

ζ
(s) = − 1

s − 1
+ O(1).

It follows from the functional equation that any negative even integer is a zero for the
Riemann zeta-function; these zeros are called trivial zeros. All further zeros lie in the
strip 0 ≤ t ≤ 1, and are called nontrivial zeros. Let N(T) be the number of nontrivial
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zeros of the Riemann zeta-function whose positive imaginary part does not exceed the
number T, that is,

N(T) � {ρ = β + iγ | 0 < γ ≤ T}.

The Riemann–von Mangoldt formula provides asymptotic formulae:

N(T) =
T
2π

log
T

2πe
+ O(log T)

and

N(T + h) − N(T) � log T

for any fixed positive real number h. (Here, every multiple zero is counted according to
its multiplicity. For more details, see [13, Ch. 9]). By an approximation formula for the
logarithmic derivative of the Riemann zeta-function [13, Theorem 9.6] together with
the Riemann–von Mangoldt formula, in the strip −1 ≤ σ ≤ 2,

ζ′

ζ
(σ + it) � (log t)2 (2.1)

for |t − γ| ≥ c/log t, where c is a constant independent of t.

2.2. Ideal class zeta-function. Recall that the ideal class zeta-function associated
to the ideal class C in the half-plane σ > 1 can be written as

ζK(C; s) =
∑
m≥1

cm

ms ,

where cm is the number of integral ideals of norm m from the class C. According to
[10], one can show that cm � mε and∑

m≤x

cm = κx + E(C; x),

where

E(C; x) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x23/73(log x)315/146 if n = 2,
x1−2/n+8/n(5n+2)(log x)10/(5n+2) if 3 ≤ n ≤ 6,
x1−2/n+3/2n2

(log x)2/n if n ≥ 7,
(2.2)

and

κ �
2r1+r2πr2 R

wd1/2 .

Here, r1, r2, R, w and d are the number of real embeddings, the number of pairs of
complex conjugate embeddings, the regulator, the number of roots of unity and the
absolute value of the discriminant of the number field K, respectively.

The ideal class zeta-function can also be continued analytically to a meromorphic
function on the whole complex plane with only a simple pole at s = 1. This
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continuation satisfies the functional equation

ζK(C; s) = ZK(s)ζK(C′; 1 − s), (2.3)

where

ZK(s) = d1/2−s(√2
)n(Γ(1 − s)

(2π)1−s

)n(√
2 sin

(
π

s
2

))r1

(sin(πs))r2

and C′ is the ideal class of K which is the complement of C (with respect to the trace)
(see [8, Ch. 13] for more details). In addition, in a neighbourhood of s = 1,

ζK(C; s) =
κ

s − 1
+ O(1).

The functional equation, together with Stirling’s formula and the Phragmén–Lindelöf
principle [12, Section 5.65] implies that

ζK(C;σ + it) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
tε if σ > 1,
tn(1−σ)/2+ε if − 1/log t ≤ σ ≤ 1 + 1/log t,
tn(1/2−σ)+ε if σ < 0,

(2.4)

as t tends to infinity.

2.3. Some useful lemmas. As a preparation for the proof of the main result
(Theorem 1.1), we state three useful lemmas.

LEMMA 2.1 (Abel’s summation formula). Let a1, a2, . . . be a sequence of real (or
complex) numbers and suppose f (x) has a continuous derivative on the interval [y, x],
where 0 < y < x. Define

A(x) =
∑
m≤x

am,

where A(x) = 0 if x < 1. Then,
∑

y<m≤x

am f (m) = A(x) f (x) − A(y) f (y) −
∫ x

y
A(t) f ′(t) dt.

PROOF. See [1, Theorem 4.2]. �

LEMMA 2.2 (The first derivative test). Let f (x) and g(x) be real functions such that
g(x)/ f ′(x) is monotonic and f ′(x)/g(x) ≥ m > 0, or f ′(x)/g(x) ≤ −m < 0. Then,

∣∣∣∣∣
∫ b

a
g(t) exp(i f (t)) dt

∣∣∣∣∣ ≤ 4
m

.

PROOF. See [13, Lemma 4.3]. �

The following lemma is generalised from Gonek’s lemma [7, Lemma 2].
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LEMMA 2.3 (Generalised Gonek lemma). Let a be a fixed real number. For large T,
let J be the unique positive integer such that 2−JT < 1 ≤ 21−JT. Then,∫ T

1

(( t
2π

)a−1/2
exp
(
it log

t
re

))n
dt

=
2π
√

n

(2π
r

)(n−1)/2−an
exp
(
−i
(
nr − π

4

))
χ(2−JT ,T](r) +

J∑
j=1

E(r; 2−jT , 21−jT)

with the characteristic function

χI(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ I,
0 otherwise,

and the error term

E(r; A, B) � An(a−1/2) +
An(a−1/2)+1

|A − r| + A1/2 +
Bn (a−1/2)+1

|B − r| + B1/2 .

PROOF. Substituting t 	→ t/n together with Gonek’s lemma [7, Lemma 2] yields∫ B

A

(( t
2π

)a−1/2
exp
(
it log

t
re

))n
dt

=
1

nn(a−1/2)+1

∫ nB

nA

( t
2π

)n(a−1/2)
exp
(
it log

t
nre

)
dt

=
2π
√

n

(2π
r

)(n−1)/2−an
exp
(
−i
(
nr − π

4

))
χ(A,B](r) + E(r; A, B)

for large A and A < B ≤ 2A. Then,∫ T

1

(( t
2π

)a−1/2
exp
(
it log

t
re

))n
dt

=

J∑
j=1

∫ 21−jT

2−jT

(( t
2π

)a−1/2
exp
(
it log

t
re

))n
dt + O(1)

=
2π
√

n

(2π
r

)(n−1)/2−an
exp
(
−i
(
nr − π

4

))
χ(2−JT ,T](r) +

J∑
j=1

E(r; 2−jT , 21−jT). �

3. Proof of Theorem 1.1

In this section, let C be an ideal class of the class group, C′ the class containing
the complements of the members of the class C, and cm and c′m the number of integral
ideals of norm m from the class C and C′, respectively.

By the Riemann–von Mangoldt formula, for a given number to ≥ 3, there is a
positive integer t ∈ [to, to + 1) such that

|t − γ| ≥ c
log t

,
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where γ is any imaginary value of a nontrivial zero ρ = β + iγ of the Riemann
zeta-function and c is a constant (independent of t). Now, let ε > 0 and T ≥ 3 be such
that

|T − γ| ≥ c
log T

.

Note that the least imaginary value γ of a nontrivial zero of the Riemann zeta-function
ρ = β + iγ in the upper half-plane is a little larger than 14 and the logarithmic
derivative ζ′/ζ of the Riemann zeta-function has simple poles at the zeros of the
Riemann zeta-function and is analytic elsewhere except for a simple pole at s = 1.
By Cauchy’s theorem,

∑
0<γ<T

ζK(C; ρ) =
1

2πi

∫
C

ζ′

ζ
(s)ζK(C; s) ds,

where the counter-clockwise oriented contour C is a rectangle with vertices a + i,
a + iT , 1 − a + iT , 1 − a + i with a � 1 + 1/log T . We rewrite the contour integral as

1
2πi

{ ∫ a+iT

a+i
+

∫ 1−a+iT

a+iT
+

∫ 1−a+i

1−a+iT
+

∫ a+i

1−a+i

}
ζ′

ζ
(s)ζK(C; s) ds �

4∑
j=1

Ij.

First, we start with the lower horizontal integral. We obtain

I4 =
1

2πi

∫ a+i

1−a+i

ζ′

ζ
(s)ζK(C; s) ds � 1 (3.1)

since this integral is independent of T.
Next, we consider the vertical line segment on the right, which lies inside

the half-plane of absolute convergence for the Dirichlet series. By interchanging
integration and summation, it follows that

I1 =
1

2πi

∫ a+iT

a+i

ζ′

ζ
(s)ζK(C; s) ds

=
1

2π

∫ T

1

(
−
∑
j≥2

Λ( j)
ja+it

)(∑
m≥1

cm

ma+it

)
dt

= − 1
2π

∑
j≥2

Λ( j)
ja
∑
m≥1

cm

ma

∫ T

1
( jm)−it dt.

It is easy to see that the latter integral is bounded. By the Laurent expansion of the
ideal class zeta-function and the logarithmic derivative of the Riemann zeta-function
at s = 1,

I1 �
ζ′

ζ
(a)ζK(C; a) � (log T)2. (3.2)

In view of the estimates for the logarithmic derivative of the Riemann zeta-function
and the ideal class zeta-function, (2.1) and (2.4), we obtain the upper horizontal
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integral

I2 =
1

2πi

∫ 1−a+iT

a+iT

ζ′

ζ
(s)ζK(C; s) ds � Tn/2+ε (3.3)

by the trivial estimation.
It remains to consider the vertical integral on the left. By the functional equation

(2.3) and substituting s 	→ 1 − s,

I3 =
1

2πi

∫ 1−a+i

1−a+iT

ζ′

ζ
(s)ζK(C; s) ds

=
1

2πi

∫ 1−a+i

1−a+iT

ζ′

ζ
(s)ZK(s)ζK(C′; 1 − s) ds

=
1

2πi

∫ a−iT

a−i

ζ′

ζ
(1 − s)ZK(1 − s)ζK(C′; s) ds.

By the Schwarz reflection principle, the conjugate of this integral is

I3 = −
1

2πi

∫ a+iT

a+i

ζ′

ζ
(1 − s)ZK(1 − s)ζK(C′; s) ds

= − 1
2πir1+r2+1

∫ a+iT

a+i

(
Δ′

Δ
(s) − ζ

′

ζ
(s)
)(
Γ(s)
(2π)s

)n
ds−1/2EK(s)ζK(C′; s) ds,

where the function EK(s) is defined by

EK(s) � (2i)r1+r2

(
sin
(
π

1 − s
2

))r1

(sin(π(1 − s)))r2 =

n∑
k=−n

ek exp
(
iπk

1 − s
2

)
(3.4)

for some integers ek with en = 1 and e−n = (−1)r1+r2 . Observe that the ideal class
zeta-function and logarithmic derivative of the Riemann zeta-function can be repre-
sented as absolutely convergent Dirichlet series. By Stirling’s formula, for s = σ + it
and a real number �,

Γ(s)
(2π)s exp

(
iπ�

s
2

)
=

( t
2π

)σ−1/2+it
exp
(
−πt(� + 1)

2
− i
(
t − π(� + 1)σ

2
+
π

4

))(
1 + O

(1
t

))
.

Now, based on (3.4), we split I3 into a sum of integrals and estimate each integral as
follows.

Case I: −n ≤ k < n. The integrals with exp(iπk(1 − s)/2) contribute to the error term.
More precisely,

∫ a+iT

a+i

Δ′

Δ
(s)
(
Γ(s)
(2π)s

)n
ds−1/2ek exp

(
iπk

1 − s
2

)
ζK(C′; s) ds

�
∑
m≥1

c′m
ma

∫ T

1

(
− log

t
2π
+ O
(1

t

))
tn(a−1/2) exp

(
−πt(n − k)

2n

)
dt � log T
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since the integral is bounded and the last asymptotic formula follows from the Laurent
expansion of the ideal class zeta-function at s = 1. In a similar way,

∫ a+iT

a+i

ζ′

ζ
(s)
(
Γ(s)
(2π)s

)n
ds−1/2ek exp

(
iπk

1 − s
2

)
ζK(C′; s) ds � (log T)2

since the ideal class zeta-function and the logarithmic derivative of the Riemann
zeta-function have a simple pole at s = 1.

Case II: k = n. It remains to evaluate the integral with exp(iπn(1 − s)/2). We write the
integral as the difference of one with Δ′/Δ(s) and the other with ζ′/ζ(s), and estimate
each of those integrals as follows.

Subcase I: the logarithmic derivative Δ′/Δ(s). By the fundamental theorem of calculus,

I3,Δ �
∫ a+iT

a+i

Δ′

Δ
(s)
(
Γ(s)
(2π)s

)n
ds−1/2 exp

(
iπn

1 − s
2

)
ζK(C′; s) ds

= i exp
(
iπ

n
2

) ∫ T

1

Δ′

Δ
(a + iτ) dJ(τ), (3.5)

where the function J(τ) is defined by

J(τ) �
∫ τ

1

((d1/nt
2π

)a−1/2+it
exp
(
−i
(
t +

π

4

))(
1 +

bt

t

))n∑
m≥1

c′m
ma+it dt

for some real numbers bt (which are bounded as functions of t). Now, we consider the
function J(τ). It can be rewritten as

J(τ) = da−1/2 exp
(
−iπ

n
4

)∑
m≥1

c′m
ma

∫ τ

1

(( t
2π

)a−1/2
exp
(
it log

d1/nt
2πm1/ne

)(
1 +

bt

t

))n
dt.

Applying the generalised Gonek lemma (Lemma 2.3), the function J(τ) is equal to

2π
d1/2nn1/2 exp

(
iπ

1 − n
4

)∑
m≥1

c′m
m(n−1)/2n exp

(
−2πin

(m
d

)1/n)
χ(2−Jτ,τ]

(
2π
(m

d

)1/n)
+ O

=
2π

d1/2nn1/2 exp
(
iπ

1 − n
4

) ∑
d((2−Jτ)/2π)n<m≤d(τ/2π)n

c′m
m(n−1)/2n exp

(
−2πin

(m
d

)1/n)
+ O,

whereJ is the unique positive integer such that 2−Jτ < 1 ≤ 21−Jτ, and the error term
O = O(τn(a−1/2)) can be estimated similarly to [7, Lemma 4].

Now, the method of partial summation and the asymptotic formula for the number
of nonzero integral ideals in the class C′ with norm up to a given number can be applied
to evaluate the above series. For convenience, let x = d(τ/2π)n, y = d(2−Jτ/2π)n and∑

m≤X

c′m = κX + O(Xα(log X)β),
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where α, β are determined in (2.2). By Abel’s partial summation (Lemma 2.1),

∑
y<m≤x

c′m
m(n−1)/2n exp

(
−2πin

(m
d

)1/n)

=
κ exp(−2πin(x/d)1/n)

x−(n+1)/2n − κ exp(−2πin(y/d)1/n)
y−(n+1)/2n

+

∫ x

y

κ exp(−2πin(t/d)1/n)
t(n−1)/2n

(
2πi
( t
d

)1/n
+

n − 1
2n

)
dt + O(xα−(n−3)/2n(log x)β).

Integration by parts yields
∫ x

y

κ exp(−2πin(t/d)1/n)
t(n−1)/2n 2πi

( t
d

)1/n
dt = −κ exp(−2πin(x/d)1/n)

x−(n+1)/2n

+
κ exp(−2πin(y/d)1/n)

y−(n+1)/2n +
κ(n + 1)

2n

∫ x

y

exp(−2πin(t/d)1/n)
t(n−1)/2n dt.

This implies that

∑
y<m≤x

c′m
m(n−1)/2n exp

(
−2πin

(m
d

)1/n)

=

∫ x

y

κ exp(−2πin(t/d)1/n)
t(n−1)/2n dt + O(xα−(n−3)/2n(log x)β) � τnα−(n−3)/2(log τ)β,

where the last asymptotic estimate follows from the integral term by applying the
first derivative test (Lemma 2.2). More precisely, let f (t) = −2πn(t/d)1/n and g(t) =
1/t(n−1)/2n. Then for y ≤ t ≤ x,

∣∣∣∣∣ f
′(t)

g(t)

∣∣∣∣∣ =
( 2π
d1/n

)
t(1−n)/2n ≥

( 2π
d1/n

)
x(1−n)/2n.

By the first derivative test (Lemma 2.2),
∣∣∣∣∣
∫ x

y
g(t) exp(i f (t)) dt

∣∣∣∣∣ ≤ 2d1/n

π
x(n−1)/2n � x(n−1)/2n � xα−(n−3)/2n.

Therefore,

J(τ) � max{τn(a−1/2), τ165/146(log τ)315/146}.

Substituting J(τ) into (3.5),

I3,Δ � max{Tn/2 log T , T165/146(log T)461/146}.

Subcase II: the logarithmic derivative ζ′/ζ(s). By Stirling’s formula and the gener-
alised Gonek lemma (Lemma 2.3),
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I3,ζ�
∫ a+iT

a+i

ζ′

ζ
(s)
(
Γ(s)
(2π)s

)n
ds−1/2 exp

(
iπn

1 − s
2

)
ζK(C′; s) ds

= −i exp
(
iπ

n
4

)
da−1/2

∑
j≥2

Λ(j)
ja
∑
m≥1

c′m
ma

×
∫ T

1

(( t
2π

)a−1/2
exp
(
it log

d1/nt
2π(jm)1/ne

)(
1 + O

(1
t

)))n
dt

= − 2πi
d1/2nn1/2 exp

(
iπ

n + 1
4

) ∑
d(2−JT/2π)n<k≤d(T/2π)n

1
k(n−1)/2n exp

(
−2πin

( k
d

)1/n)

×
∑
� | k

c′�Λ
(k
�

)
+ O(Tn/2 log T), (3.6)

whereJ is the unique positive integer such that 2−JT < 1 ≤ 21−JT and the error term
follows as in [7, Lemma 4] together with the Laurent expansion of the logarithmic
derivative of the Riemann zeta-function and the ideal class zeta-function at s = 1. After
conjugation, we obtain the first desired result.

Next, we focus on (3.6). Applying the fact that c′k � kε,Λ(k) � kε and the
number-of-divisors function σo(k) � kε for any ε > 0,

∑
� | k

c′�Λ
(k
�

)
� kε,

and then

I3,ζ �
∑

d(2−JT/2π)n<k≤d(T/2π)n

1
k(n−1)/2n−ε + O(Tn/2 log T) � T (n+1)/2+ε

by applying Abel’s summation formula (Lemma 2.1). Hence,

I3 � T (n+1)/2+ε. (3.7)

The same estimate holds for I3. Summing up (3.1), (3.2), (3.3) and (3.7), we obtain∑
0<γ<T

ζK(C; ρ) � T (n+1)/2+ε.

4. Concluding remarks

The results we have obtained are not trivial. To see this, we first deduce from
Theorem 1.1 that ∑

T<γ≤2T

ζK(C; ρ) � T (n+1)/2+ε. (4.1)

In fact, this estimate also implies the one given in Theorem 1.1. Note that the
hypothetical zeros of the Riemann zeta-function off the critical line appear in pairs,
that is, if ρ = β + iγ is one, then 1 − β + iγ is another (as follows from the functional
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equation). If now 1
2 < β < 1, then, in view of the bound (2.4), the contribution of this

zero to the sum in question would be of size

ζK(C; ρ) � Tnβ/2+ε

for γ ∈ (T , 2T]. Multiplying this by the number of all zeros ρ = 1
2 + iγwith T < γ ≤ 2T

yields ∑
T<γ≤2T

ζK(C; ρ) � T1+n/2+ε log T .

Comparing this with (4.1) shows that Theorem 1.1 gives a better bound. One
should mention that there are techniques available to find unconditional bounds for
ζK(C; 1

2 + it) which may improve (4.1); however, the authors are not aware of any such
result in the literature and their derivation would not be too easy.

The proof of Theorem 1.1 is of interest also for another reason. It should be
mentioned that, at least to the best knowledge of the authors, the above reasoning
is the first application of the method of Conrey et al. to a zeta-function of degree n > 1
(in the sense of the extended Selberg class). Note that Conrey et al. [3–5] rewrote the
first derivative of a Dedekind zeta-function ζK(s) = ζ(s)L(s,ψ) of a quadratic number
field at s = ρ as

ζ′K(ρ) = ζ′(ρ)L(1 − ρ,ψ),

where the symmetry of the zeros of the Dirichlet L-function L(s,ψ) for a real character
ψ (by the functional equation) is used. This allowed them to evaluate the sum over the
values ζ′K(ρ). Their reasoning is then based on an evaluation of the integral∫

ζ′(s)L(1 − s,ψ) ds,

or rather a variation of it after applying the functional equation. On both vertical sides
of the path of integration, the integrand is of order O(t1/2+ε) (as for a degree-one
element of the Selberg class on the left). The underlying symmetry, however, does
not apply to our case in general.

In principle, the method can be extended further, for example, to consider the mean
square. It is to be expected that, as in our note, the bound comes from the integral over
the left vertical line segment.
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