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ABSTRACT. While the terms ‘glacier’ and ‘ice cap’ have distinct morphological meanings, no easily
defined boundary or transition distinguishes one from the other. Despite this, the exponent of the
power law function relating volume to surface area differs sharply for glaciers and ice caps, suggesting
a fundamental distinction beyond a smoothly transitioning morphology. A standard percolation tech-
nique from statistical physics is used to show that valley glaciers are in fact differentiated from ice
caps by an abrupt geometric transition. The crossover is a function of increasing glacier thickness, but
it owes its existence more to the nature of the underlying bedrock topography than to specifics of
glacier mechanics: the crossover is caused by a switch from directed flow that is constrained by sur-
rounding bedrock topography to unconstrained radial flow of thicker ice that has subsumed the topog-
raphy. The crossover phenomenon is nonlinear and rapid so that few if any glaciers will have geometries
or dynamics that blend the two extremes. The exponents of scaling relationships change abruptly at the
crossover from one regime to another; in particular, the volume/area scaling exponent will switch from
y = 1.375 for glaciers to y = 1.25 for ice caps, with few, if any, ice bodies having exponents that fall

between these values.
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1. INTRODUCTION

Classifications of ice bodies are typically organized by size,
geometry and dynamics. Barely flowing glacierets are ex-
ceedingly small (<1 km?) and radially flowing continental
ice sheets are large (on the order of 10° km?). In between
these two extremes are a cornucopia of ice caps, ice fields,
glacier complexes, piedmont glaciers, valley glaciers,
cirque glaciers and a host of other semantic designations;
all of these are less aptly described by size alone than by im-
portant differences in geometry and dynamics (Cogley and
others, 2011). Valley glaciers, for example, are delineated
by well-defined lateral boundaries, determined by the sur-
rounding mountain topography, across which there is no
flow. Ice caps, on the other hand, are dome-shaped bodies
that largely subsume the underlying bedrock topography
and have flow patterns that are independent of, or significant-
ly less influenced, by that topography.

Two different scales of ice thickness distinguish glaciers
and ice caps. Let h be the characteristic or average thickness
of an ice body. If h* is the characteristic vertical relief of the
surrounding bedrock topography, then glaciers exist when
h < h* and ice caps exist when h> h*. In between these
extremes is a region dominated by glacier complexes and
ice fields. As h — h*, the interaction between ice and the con-
straining bedrock leads to hybrid morphologies and dynamics
that have some characteristics of both glaciers and ice caps.

However, the distinctions between h <« h*, h— h* and
h > h* are more than taxonomic, and they delineate beha-
viors with practical ramifications. The volume/area scaling
exponent y, for example, is different for valley glaciers and
ice caps (Llthi, 2009; Bahr and others, 2015). For ice
volume V and the map-plane surface area S,

VoS, (1)
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with

_ [ 1.375, h < h*(glaciers) 2)
Y =1.250, h> h* (ice caps)

wherey =11/8 = 1.375 and y = 5/4 = 1.25 are selected from
the theoretical developments of Bahr and others (2015), and
a multiplicative scaling parameter (unnecessary to the
current development) can be defined as in Bahr and others
(2015) or Lithi (2009). All the sea level rise studies that cal-
culate volume based on surface area using Eqn (1) have to
decide to which class each and every relevant ice body
belongs. Small differences in y can lead to significant differ-
ences in total volume and estimated sea level rise (e.g. Van
de Wal and Wild, 2001; Meier and others, 2007; Bahr and
others, 2009; Leclercq and others, 2011; Radi¢ and Hock,
2011; Slangen and van de Wal, 2011; Marzeion and
others, 2012; Mernild and others, 2013; Radic and Hock,
2014). Deciding in which group to place glacier complexes
and ice fields is particularly problematic, because they are
often quite large, and these taxonomic oddities can thus
have a potentially significant influence on total ice volume
and consequent sea level rise estimates (Grinsted, 2013).
The volume/area scaling exponent y (as well as other
scaling exponents), might be expected to have a range of
size-dependent values between y=1.375 (small glaciers)
and y = 1.25 (large ice caps) with ice fields and glacier com-
plexes occupying a range of intermediate values. Large,
complexly branching, ice masses such as the Bering-
Malaspina-Hubbard complex in Alaska or the Patagonia
Ice Fields in Chile and Argentina might have intermediate
geometries that are neither wholly glacier nor wholly ice cap.
While possible, we posit that a continuum of exponent
values is unlikely for more than a very small collection of
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ice masses. No evidence or analysis has found a continuum
of values, suggesting that the exponent y shifts from the ob-
servationally supported values of 1.375 to 1.25 almost as a
discontinuous step function, presumably varying as a func-
tion of h/h* (Eqn (2)). Abrupt transitions like this are not un-
common in nature and similar to other physical processes
(e.g. Ma, 1976; Dodds and Rothman, 2000), we show how
such an abrupt transition may arise and that a smoothly
varying range of intermediate exponents and behaviors is un-
likely. A classic non-thermodynamic example of an abrupt
phase transition is fluid conductivity as a function of porosity
(e.g. Stauffer and Aharony, 1992). As the porosity p varies
smoothly from 0 to 1, the conductivity makes an abrupt tran-
sition at some critical value p.. For p < p. there is no fluid
conductivity, yet for p>p. the fluid conducts freely. As
p — pe, the fluid conductivity undergoes an abrupt transition.
The mathematics of percolation theory can be used to de-
scribe the abrupt phase transition in fluid conductivity, and
in an analogous manner we will use percolation theory to de-
scribe the abrupt transition from glaciers to ice caps.

To avoid confusion with thermodynamic phase transi-
tions, we will refer to the abrupt changes in glacier
geometry discussed here as ‘crossover phenomena’ and
‘crossover behaviors.” The crossover is understood to be
an abrupt change in some property as a function of
another parameter. In a later section we will identify this
parameter (sometimes called an order parameter) as the per-
centage of ice, v, covering a particular mountain range,
region or other designated topography. Other properties
such as the width, length or thickness of an ice body will
change abruptly as a function of v, similar to the phase tran-
sition in fluid conductivity as a function of porosity as
described above. The crossover can be a continuous func-
tion with discontinuous derivatives such as |v. —v| 7%, as
seen for example, with heat capacities and |T. — T| ™% near
the critical temperature T.

We do not attempt an exhaustive list of crossover beha-
viors for all possible exponents. Instead we demonstrate the
existence of crossover behaviors for several geometric para-
meters, and then demonstrate the consequent existence of
similarly abrupt crossovers (as a function of h/h*) in a wide
variety of glacier scaling exponents such as y. The functional
form of the crossover in the volume/area relation is not ascer-
tained (except in a special one-dimensional (1-D) case), but
neither is it necessary. The existence of an abrupt crossover
is enough to establish that vanishingly few, if any collections
of glaciers will have scaling exponents intermediate between
glaciers and ice caps. (Bahr and others (2015) discuss why
scaling relationships and exponents are derived and
observed for ensembles of glaciers rather than individual gla-
ciers; throughout this text, we will always mean that the
scaling exponents have been derived from ensembles, and
any reference to ‘few if any’ glaciers will mean insufficient
for an ensemble collection.) We do, however, offer a
generic functional form for the crossover, and show that
the generic function will be a power law, consistent with a
wide variety of other crossover phenomena in statistical
physics. For this reason, throughout the text, when we refer
to a ‘rapid’ or ‘abrupt’ crossover, we take this to mean a diver-
gent function, presumably a power law as seen in most
analogous phase transitions such as those observed in fluid
conductivity and heat capacity. In the following, a small vari-
ation in either h/h* or v at or near a critical value will lead to
the abrupt (power law) crossover.
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Although the two endmember cases of y=11/8 =1.375
for glaciers and y =5/4 =1.25 for ice caps has been ad-
equately addressed elsewhere with both theory (e.g. Lithi,
2009; Bahr and others, 2015) and data (e.g. Paterson,
1972; Chizhov and Kotlyakov, 1983; Macheret and others,
1988; Zhuravlev, 1988; Chen and Ohmura, 1990;
Grinsted, 2013; Bahr and others, 2015), there has been
little to no theoretical discussion of other values for other
exponents that may fall in between. This paper addresses
that specific gap by using percolation theory to mathematic-
ally model the rapid transition between the two
endmembers.

Percolation theory is used quite commonly to describe
the behavior of many different types of phase transitions
(e.g. Stauffer and Aharony, 1992) and in particular to
describe geometric and topographic-related transitions (e.g.
Isichenko, 1992). Our model follows in that rich tradition.
However, we do not expect our work to be the final word
in the analysis of glacier and ice cap geometries, in part
because our result is pseudo 2-D and in part because many
other statistical physics approaches are possible. Just as the
flow of a glacier can be described using many different the-
oretical approaches such as continuum mechanics, statistical
mechanics and cellular automata, we fully expect that there
are other equally valid models of the glacier to ice cap geo-
metric phase transition; a traditional phase change model
borrowed from statistical mechanics is certainly one possibil-
ity (c.f. Ma, 1976). Nevertheless, as a first attempt to fill a the-
oretical gap, our percolation model is sufficient to validate
the existence of an abrupt transition in the volume/area
scaling exponent as h/h* — 1. As such, the following analysis
provides some theoretical justification for practitioners who
want to assign either an ice cap scaling exponent or a
glacier scaling exponent without the need to consider other
rare or non-existent intermediate values.

2. HISTORICAL PERSPECTIVE

In many respects, the nearly discontinuous transition in par-
ameter values from a ‘glacier’ to an ‘ice cap’ is an intuitive
consequence of distinct differences understood to exist
between these objects: their geometry is classified as linear
versus radial, and their flow regime is constrained versus un-
constrained. Less obvious is whether physics will support a
continuum of geometries between these endmembers.
Theoretical scaling arguments (e.g. Liithi, 2009; Bahr and
others, 2015) and volume/area data (e.g. Paterson, 1972;
Chizhov and Kotlyakov, 1983; Macheret and others, 1988;
Zhuravlev, 1988; Chen and Ohmura, 1990; Grinsted,
2013) suggest that glaciers and ice caps are in fact distinct.
Data are sparse, however, with hundreds of volume/area
measurements compared with hundreds of thousands of gla-
ciers and ice caps. Theoretical considerations aside, it has
been unclear to some practitioners whether additional
volume, area and thickness measurements will reveal excep-
tions to the widely used scaling exponents. Noisy data com-
pound the uncertainties (Farinotti and Huss, 2013; Grinsted,
2013), as do occasional questions about data integrity
(Haeberli and others, 2007; Lithi and others, 2008) and dif-
ferences (and similarities) between data and modeling results
(Pfeffer and others, 1998; Adhikari and Marshall, 2012).
However, in a general sense most of the uncertainties have
revolved around finding appropriate values for the volume/
area exponent of glaciers, rather than finding an appropriate
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exponent for ice caps. For ice caps, a simple, intuitive geo-
metric argument is widely accepted as a justification for
y=1.25 (e.g. Luthi, 2009; Cuffey and Paterson, 2010;
Radic and Hock, 2010; Bahr and others, 2015).

For glaciers, we will use the theoretically derived value of
y=11/8 = 1.375. For the purposes of this paper, however,
the exact value is not nearly as important as its distinction
from the ice cap value of y=5/4 =1.25, and we could (in
the context of this paper) alternatively select a glacier value
of y = 7/5 = 1.4 from the theoretical developments of Liithi
(2009) (Liithi’s is slightly different but generally consistent
value is derived with an assumption of infinite glacier
widths). Regardless of the value, the specific behavior as
h — h* remains unknown and only the endmember cases
are established by previous theoretical developments
(Lithi, 2009; Bahr and others, 2015). Typically, Eqn (2) is
treated as a step function that jumps discontinuously from
1.375 for glaciers to 1.25 for ice caps.

Data for the characteristic glacier width w and length /
also show a split in scaled values (Bahr, 1997a). The charac-
teristic glacier width is typically defined as the average width
in the along-flow direction (e.g. Bahr, 1997a), though it can
also be defined as the width at a specific elevation as
pointed out in the discussion of characteristic values by
Bahr and others (2015). The characteristic length is typically
defined as the along-flow curvilinear length from the highest
to the lowest elevations of a glacier, but other possible char-
acteristic values include the semi-major axis of the smallest
ellipse encompassing the glacier or other lengths as dis-
cussed by Bahr and others (2015). For the typical character-
istic values of average width and curvilinear length,
extensive data in Bahr (1997a) show that

w = cy [ (3)

for some scaling parameter c,, and

~ [~06,

9= {~ 1.0,

In addition to the width data, other accumulation/area ratio

data and mass balance data also imply this same split in

the exponent g (Bahr and others, 2015). The volume/area ex-

ponent y can be derived as a function of g (Eqns (127) and

(132) of Bahr and others, 2015), so the crossover suggested
by Eqn (4) implies the crossover in Eqn (2).

Glacier area/length scaling is closely related to width/

length scaling and is expected to show similar crossover be-
havior. Multiplying each side of Eqn (3) by the length /,

h < h* (glaciers)
h > h* (ice caps)’

(4)

S oc wil oc [4T! (5)
and
| oc §* (6)
where
1
=—. 7
Tl )

In fluvial geomorphology, Eqn (6) is called Hack’s law (Hack,
1957), and the exponent a has a typical value of 0.6 and a
range of ~0.5-0.7 depending on the scale of the river
basin. However, heuristic arguments for river drainage
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networks (Dodds and Rothman, 2000) suggest that the
Hack’s law exponent a is expected to exhibit crossover phe-
nomena as the river basin size increases from a regional
channel-dominated landscape (¢~ 0.6) to a largely uncon-
strained continental-scale landscape where a~ 1. Although
the dynamics of water and ice are different, the Hack’s law
crossover behavior appears to be similar for both fluvial geo-
morphology and glaciology.

Many other geometric scaling relationships describe river
drainage networks, such as basin width to basin area scaling
and basin length to main channel length scaling (e.g.
Horton, 1945; Strahler, 1957, Peckham and Gupta, 1999).
The exponents of all these other geometric scaling relation-
ships are simple polynomial ratios of two suitably selected
scaling exponents, such as the Hack’s law exponent and the
exponent relating river basin length to main channel length
(Dodds and Rothman, 1999). As a result, any crossover behav-
jor in Hack’s law will lead to crossover phenomena in other
fluvial scaling relationships. The reduction of all scaling expo-
nents to just one or two other specific scaling exponents is a
common feature of crossover phenomena in many disciplines
such as statistical mechanics, thermodynamics and percola-
tion theory (e.g. Ma, 1976; Stauffer and Aharony, 1992). As
with these other disciplines, rapid crossover phenomena are
common and expected in fluvial geomorphology.

In a manner analogous to both thermodynamics and geo-
morphology, glacier scaling relationships for each of the
major continuum mechanical variables (width, length, thick-
ness, volume, area, velocities, stresses, time, mass balance,
etc.) have exponents that can be defined in terms of two
other scaling exponents y and q. (Glen’s flow law exponent
n is also necessary, but this is a material constant that does
not vary with any crossover phenomena.) For example, the
characteristic along-flow velocity u scales with surface area
as (Bahr, 1997b)

u oc S=1@n+1)=n/(q+1) (8)

(As discussed by Bahr (1997b) and Bahr and others (2015),
Egn (8) is valid for large ensembles of glaciers; in an
average sense, larger glaciers have higher surface velocities.
Exceptions can be found for individual glaciers, but this is ir-
relevant to the ensemble scaling relationship.) Large glaciers
are typically closer to the glacier/ice cap transition, and thus
the derivation of Eqn (8) assumes that the surface slope scales
as O h/l, as is typical of large glaciers and ice caps.

More generally, in glaciology the characteristic values for
any two geometric or dynamic continuum mechanics vari-
ables X and ¥ (characteristic values for those variables that
appear in a standard continuum mechanical description of
flow) scale as

X = oy ¥ 9 (9)

where fy is a simple quotient of two polynomials (Bahr, 1997b).
Equation (9) is an important relationship for this paper because
itallows us to define and combine a variety of scaling relation-
ships that will connect glacier widths to thickness and volume.
Moreover, if rapid crossover phenomena are observed for
width/length scaling (exponent g) and/or volume/area scaling
(exponent y) then Eqn (9) shows that crossover phenomena
are expected to be ubiquitous throughout glacier geometry
and continuum mechanical variables X and ‘P..

There is nothing unique about the choice of g and y in Eqn
(9), and we could just as easily use many other exponent
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Table 1. Power law scaling exponents for relationships of the form X o ¥**@ and X o ¥**#) where all scaling parameters X and ¥ are char-

acteristic values

X v iy, ) fxlat, @) Glacier Ice cap
w (width) / q (1 —a)a 0.6 1

V (volume) S (area) y a+te+1 1.375 1.25
I (length) S a=1/(g + 1) (Hack’s law) o 0.625 1/2
h (thickness) S y—1 a+g 0.375 0.25
6 (slope) S y—1—-a @ —-0.25 —-0.25
u (ve]ocity) S y=12n+1)—na an+1)+e2n+1) 0.75 0.25
t (time) S —y=12n+ 1)+ +Na —an—@2n+1) —-0.125 0.75
Q (flux) S 20 = Nn+ 1) — na aln+2)+2¢pn+1) 1.125 0.5
o’ (dev. stress) S 200—1)—« a+2¢ 0.125 0

b (balance rate) S Q-1 —an+1) (@+2¢)n+1) 0.5 0

Exponents are closely related to each other, and crossover phenomena in y and q (or & and ¢) will lead to crossover phenomena for all the other relationships as
well. (Slope is an exception for the specified values of g and 4; such degenerate cases are permitted by the analysis in this paper.) Specific values are listed for
glaciers (y = 1.375, ¢ = 0.6, n = 3) and ice caps (y = 1.25, g = 1, n = 3). Note that n is a material constant and is not a scaling exponent. An exponent of 0 indi-
cates that the parameter scales as a constant with respect to ‘¥ For example, the characteristic mass balance rate b of ice caps scales as a constant with respect to
size, as intuited and assumed in ice sheet scaling analyses by Vialov (1958), Weertman (1961), Paterson (1972), and others. Bahr (1997b) provides additional

details and derivations.

combinations such as y and Hack’s law exponent a. The
choice of g and y is largely historical, motivated by available
datasets for width/length and volume/area. Table 1 provides
examples, including scaling that is based on the slope/area
scaling exponent ¢ (substitute slope and area into Eqn (9))
and Hack’s law exponent a. This leads to

y=a+g¢+1

1 (10)
:q?+(ﬂ+1

which explicitly shows the relationship between the volume/
area exponent y and the width scaling exponent g (c.f. Eqns
(127) and (132) of Bahr and others, 2015). This will be espe-
cially useful when showing that a crossover in width scaling
is related to a crossover in volume scaling.

Data analysis for thousands of sub-basins of the Columbia,
Knik, Russell, Harvard, Barnard and Matanuska glaciers (all in
Alaska) show that Hack’s exponentis o = 0.466, 0.481, 0.493,
0.497, 0.513 and 0.518, respectively (Bahr and Peckham,
1996) (c.f. Table 1). Using g = (1/a) — 1 from Eqn (7), this cor-
responds to width/length scaling exponents (as derived from
the data) of g=1.15, 1.08, 1.03, 1.01, 0.95 and 0.93.
Evidently, these very large many branched glacier complexes
are behaving more like ice caps (g~ 1) than valley glaciers
(g~ 0.6). Accordingly, we should posit that all of these gla-
ciers have continuum properties (volume, thickness, veloci-
ties, stresses, etc.) that will scale like ice caps. Additional
data are needed both to support such a conjecture and to gen-
eralize to other complex multi-branched glaciers, but the ex-
istence of volume/area and width/length crossover behaviors
would make such a hypothesis reasonable.

The majority of theoretical developments in ice physics
are rooted in continuum mechanics and thermodynamics
(e.g. Cuffey and Paterson, 2010), but although less
common, statistical physics has been successfully applied
to iceberg calving (Bahr, 1995; Bassis, 2011; Astrom and
others, 2013, 2014) and crossover behaviors in the perme-
ability of sea ice (Golden and others, 1998). Other applica-
tions of statistical physics and their models include glacier
sliding (Bahr and Rundle, 1996; Fischer and Clarke, 1997;
Sergienko and others, 2009; Astréom and others, 2013),
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visco-elastic glacier flow (Bahr and Rundle, 1995; Astrém
and others, 2013) and snowpatch size distribution (Bahr
and Meier, 2000). Within most of these studies is a recurring
power law scaling relationship with an exponential tail. This
power law scaling is so common within statistical physics
that it nearly deserves elevation to the status of ‘guiding prin-
ciple’ or ‘law’ and reflects the disappearance of length scales
near crossover phenomena (power law) and the re-emer-
gence of length scales on either side of the crossover (expo-
nential tail) (Stauffer and Aharony, 1992, pp. 64 and 151). A
similar scaling relationship is reasonably expected and in fact
will be derived for the glacier and ice cap crossover.

3. OUTLINE OF THE CROSSOVER SOLUTION

It will be seen that the crossover in the relationship between
the volume and area of ice masses is ultimately derived from
the intrinsic nature of the topography in which they exist. For
a small glacier with h/h* <1 (i.e. ice thickness much less
than the characteristic scale of the surrounding topography),
the glacier width w is small compared with length and is con-
strained by the surrounding topography. If mass balance
changes cause the glacier to grow thicker with time, then
the width will also increase (except in the very unusual
case of a valley with vertical side walls). If the glacier
grows so large that h/h* — 17 (the negative indicating ‘from
below’), then the ice will begin to flow over surrounding
ridges and summits. At this point, different glaciers in adja-
cent valleys will start to merge, and the width is significantly
less constrained. When h/h* > 1, the width is completely un-
constrained and scales identically to the length.

While the crossover from constrained to unconstrained
lateral extent is easily visualized, the rate of crossover is
not obvious. Given a specific topography for a specific
mountain range, we could numerically model the growth
of glaciers, observing how the width changes with the thick-
ness scale h/h*. A more general approach would use generic
rather than specific mountain ranges, perhaps utilizing
Brownian noise topographies (e.g. Turcotte, 1997). Better
still, we can look at all possible mountain ranges simultan-
eously as an ensemble, using probabilities to guarantee that
any and all topographies are expected to have the same
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Transect in 5. Hindu Kush ( Pakistan),
approx [34° 470N 74° 22.7'E to 34 40.5'N 74° 335" E|
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Fig. 1. Atransect (or vertical cross section) perpendicular to the ice flow direction and parallel to the spine of a mountain range. The transect is
offset from the spine by some arbitrary distance. Glaciers flow downhill so ice will tend to fill valley bottoms, but this is not a requirement of
our analysis. For the separate ice bodies shown in this figure, valley side walls constrain the dynamics, and as outlined by Bahr and others
(2015), Lithi (2009) and other theoretical works, the volume/area scaling exponent will be 1.375 (or 1.4 in Lithi, 2009). However, if the
ice in this region grows thicker, the individual valleys are overtopped, and the separate ice bodies will eventually merge, covering the
entire range. Consequently, the separate glaciers will have merged into an ice cap with radial flow that is significantly less constrained by
the underlying topography, and as outlined in the referenced theories, the volume/area scaling exponent will be 1.25. Note also the

illustration in Figure 2.

w = f(h/h*) scaling behavior. By demonstrating a crossover
on all possible topographies, we know that any real topog-
raphy (the Himalaya, European Alps, Svalbard, Baffin
Island, etc.) is included as a subset.

Although rooted in statistical physics, the ensemble ap-
proach is straightforward and starts with a 1-D transect
across the surface of an arbitrary glacierized region (as
shown in Fig. 1). Some parts of the transect are covered by
glacier ice and other parts are not. Momentarily ignoring
connections that might occur somewhere out of the plane
of the transect, each ice patch on the transect is treated as
a separate glacier or ice body.

Using probabilities, the average size or ‘width’ of all of the
ice patches (i.e. ice bodies or glaciers) is calculated. As the per-
centage of ice on the transect increases, the mean width of the
glaciers also increases. Although restricted to 1-D, these initial
results will be exact and show that the width grows rapidly as a
power law (with respect to the percentage of ice on the tran-
sect). At the critical point of rapid growth (effectively a diver-
gence), a set of many small glaciers abruptly crosses over to a
single large ice cap that spans the entire transect. The specifics
of this simplified 1-D solution will differ from the final result,
but this case captures the essence of the generalized solution
and makes the overall presentation clearer.

The solution is then extended to a pseudo 2-D map-plane
surface by considering the connections that occur out of the
plane of the original transect. For example, the transect might
cross two branches of the same glacier that connect at a
downstream confluence. We retain the original transect,
but we now calculate the distances (along the transect)
over which separate ice patches on the transect are actually
connected at downstream confluences (if they are connected
at all). This connectivity (which in this pseudo 2-D solution
remains the correlation length as in the 1-D case) is calcu-
lated as a function of ice patch size — larger patches are
part of bigger and longer glaciers that can reach further and
are more likely to connect with other ice patches at some
distant (or nearby) confluence. As the amount of ice on the
map-plane surface increases, the connection (and correl-
ation) length grows rapidly and effectively diverges. In this
case, the divergence is even more rapid than the 1-D calcu-
lation and happens when a smaller percentage of ice covers
the map-plane surface. At the point of divergence, a collec-
tion of small separate glaciers suddenly coalesces into one
large ice cap.
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4. WIDTH CROSSOVER ON A TRANSECT

Consider a transect (or 2-D vertical cross section) through a
glacierized mountain range. Some parts of this transect are
covered in ice, and other parts such as high ridges, nunataks
and peaks are not covered in ice. Throughout the text, a
‘length scale’ can be understood to be in any orientation
and may refer to a glacier width, thickness or length in the
flow direction. For simplicity we will use transects that are
dominantly parallel to and at some down-flow arbitrary dis-
tance from the flow-divide or spine of a mountain range
(Fig. 1); the associated length scales in this transect are thus
glacier widths. Alternatively, if the transect is perpendicular
to the ridgeline, then the length scale along the transect is a
measure of glacier length in the along-flow down-slope dir-
ection. Other transects have other (and perhaps less useful)
length scales at arbitrary angles to the mean flow direction.
Although unnecessary, all of the following results could be
generalized for arbitrarily-oriented transects.

Let v be the percentage of a given transect that is covered
in ice. Then p =v/100 is the probability that a randomly
selected point on the transect will be covered in ice.
When p =0, none of the range is covered in ice. When
p =1, the entire range is subsumed by a single ice cap.
When 0 <p <1, a fraction p of the transect is covered in
ice and contains some number N of distinct ice patches.
For simplicity, we will refer to these N taxonomically uncate-
gorized ice patches as generic ‘ice bodies’, and these could
range from glacierets to glaciers to glacier complexes to ice
fields; by definition, however, these unclassified ice bodies
cannot be ice caps until they have subsumed the topography
(Fig. 2).

By discretizing the transect into intervals of width Ax
(Fig. 3), we can fill each interval with ice with probability
p. The randomly occupied intervals represent one possible
distribution of ice on the landscape, which we will refer to
as a landscape realization R. As Ax— 0, all possible land-
scapes with a percentage of ice, v can be generated in this
manner. If for each discretization interval we were to re-
present ice covered areas with a 1 and ice free areas with a
0, then a binary string such as

R=01111111101110000001000001100 1)

would represent the distribution of ice along the transect
(Fig. 3). In this realization, 14 out of 29 intervals are filled
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'_'"Ice cap, v=100

Isolated ice bodies,
O<v <100

AX
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Ice free, v=0

Fig. 2. A vertical cross section with some percentage v of the bedrock covered in ice. Dashed lines show v =0 (no ice), 0 <v < 100 (some

number of distinct ice bodies) and v = 100 (a single ice cap).

with glacier ice, so p~ 14/29 = 0.48 and there are four dis-
tinct glaciers with widths of 8Ax, 3Ax, TAx and 2Ax.

For every topography and associated transect with discret-
ization interval Ax, there exists a unique realization R. On the
other hand, for every R, there are an infinite number of corre-
sponding non-unique topographies (Fig. 3). For example, the
zeroes in R=01111111101110000001000001100 could
represent small ridges standing barely above the ice, or
they could represent high summits. However, this is irrele-
vant to our analysis of glacier widths as a function of p,
and as p increases (or decreases) by a small amount Ap,
the number of Ts in the string R increases (or decreases),
and the average widths of the randomly generated ice
bodies (represented by consecutive strings of 1s) will also in-
crease (or decrease). To change the average width, the corre-
sponding ice thickness will compensate as necessary (Eqn
(9); larger glaciers tend to be thicker); the thickness might
change by a small amount if the zeroes represent ridges
that are barely higher than the glacier, or the thickness
might change dramatically if the zeroes represent high
peaks. Either way, the thickness does not alter the behavior
of the width as a function of p. The thickness is simply
responding as a function of p and the width; this relationship
between thickness and width will connect the percolation
analysis to the behavior of h/h* — 1.

Reducing the distribution of ice to a 1-D binary string
allows us to use well-established arguments from 1-D percola-
tion theory (e.g. Stauffer and Aharony, 1992). In particular we
can calculate the average width of each ice body, or equiva-
lently the average size of each cluster of adjacent 1s. In
Figure 3, the average is (8 + 3 + 1 + 2) Ax/4 = 3.5 Ax. More
generally, for an arbitrary R, the probability that an interval
Ax is occupied by ice is p. The probability that m adjacent
intervals are occupied by ice is p™. Note, however, that to
form an ice body made up of m intervals (and not larger),

Alternate bedrock profile

Ice_level

80004

Fig. 3. Two possible bedrock elevation profiles (solid curve and
short dashed curve) for the arrangement of ice indicated by the
landscape realization R=01111111101110000001000001100.
An infinite number of topographies can be associated with each R.
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the occupied intervals (marked by 1s) would need to be sur-
rounded on each end by unoccupied intervals (marked by
0s). The probability that an interval Ax is not occupied by
ice is 1 — p. Therefore, the probability that an ice body on R
has width m Ax will be (1 —p)p™(1 — p). If w* is the total
width of the transect and M = w*/Ax is the total number of
intervals in the transect, then we expect that the total
number of ice bodies of width m Ax will be

Nm=M(1—p)*p™. (12)
This assumes that Ax — 0 and M — oo so that we can ignore
the effects of the end points on our finite-length transect.

From Eqn (12), the total number of all ice bodies is

Nr=> Np
m

where m runs from 1 to oo both here and in all subsequent
summations. Also from Eqn (12), m Ax N,, is the total aggre-
gate width of all the ice bodies that happen to have the exact
width of m Ax. Therefore the total width wy of all ice bodies of
any width is

(13)

wr = AX Y mN, (14)
m

and the average width of all ice bodies is

where the denominator of the final equality is a geometric
series (with m = 1 to o0) and reduces to p/(1 — p). The numer-
ator also reduces to a geometric series,

d(p™)

p
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Therefore, from Eqns (15) and (16), the average width of all
glaciers on the transect R is

w = <1—)Ax.
1-p

We are interested in the divergence of the width, and in par-
ticular the rate at which the width crosses over from separate
ice masses to a single large ice cap that spans all of R. The
presence of any 0 within R indicates bedrock, and therefore
the crossover to a single ice cap spanning all of R can only
happen when p = 1. This is referred to as the critical thresh-
old p¢, and

(17)

pe=1. (18)
Later in our 2-D solution, the critical threshold will drop to a
more useful value that is <1 so that the threshold can be
approached from both above and below. For now, as p —
pc =1 from below, Eqn (17) indicates that the width
diverges at a rate given by

w1 _. (19)

do (1 -p)

when p < p,, the rate is close to 1. On the other hand, as
p — p<, the rate dw/dp — oo, indicating a very sudden
crossover phenomena from glaciers to ice caps. The cross-
over occurs both as p — pZ and as w — w*.

5. GENERALIZATION TO A MAP-PLANE
PROJECTION

Expanding this theory from its application to features along a 1-
D transect across topography to the relationships between fea-
tures in a 2-D topography is non-trivial and requires careful
analysis. A large, complexly dendritic glacier (the Columbia
Glacier, in coastal Alaska, is a good example) may have
many branches and a high Strahler stream order (Horton,
1945; Strahler, 1957; Bahr and Peckham, 1996); if a transect
(or vertical cross section) R is just barely upstream of the con-
fluence between two branches, then the connected ice body
will intersect the transect R in two separate locations. What
looks like two separate glaciers on the transect is therefore ac-
tually one glacier, connected at an out-of-transect confluence.

For such a branched glacier, the width along a transect R is
no longer the best (or the unique) measure of the actual glacier
width. Instead, we need an effective glacier width that indicates
the distance at which apparently separate ice bodies are actu-
ally connected by a confluence that exists somewhere off the
transect. Because of these out-of-plane connections, the
average of the effective width will be larger than the previously
derived average width w and will diverge at some p. < 1. In
this case, we can model the width’s crossover behavior as
we approach it from both below and above.

Suppose two randomly selected ice bodies on the transect
R are separated by a distance d (Fig. 4). These bodies may or
may not be separate glaciers, i.e. they may or may not
connect at a downstream confluence, but a confluence
may exist in the underlying bedrock topography regardless
of whether or not the ice bodies encountered on the transect
extend all the way to that point. For all randomly selected
pairs of ice bodies, let the average distance between them
be d. The average distance d. to the nearest mutual
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Branch 1

Confluence

Fig. 4. A stylized map-plane view of a glacier with two branches
intersected by a transect (dashed line). The distance between the
two intersections (ice patches on the transect) is d. The distance to
the confluence can be different for each branch (d¢; and d.»), so
we arbitrarily choose the average and set d. = (d¢1 + d2)/2. The
text uses average distances d and d. over all pairs of ice patches.

confluence will be an increasing function of d. Call this in-
creasing function f.. Generally, the confluence linking
nearby ice bodies (glacier tributaries) will also be nearby.
Widely separated ice bodies (tributaries) will have a conflu-
ence that is further away. Any other arrangement would
violate fundamental topological constraints.

In fluvial geomorphology, most length parameters are
related by power laws to other geometric quantities such as
width and area (Peckham and Gupta, 1999; Dodds and
Rothman, 2000). Hack’s law is an example. Because glaciers
sit in the same or similar landscapes as rivers, similar power
laws may be expected to define the stream-length relation-
ships of glaciers. (Using basin statistics, Bahr and Peckham
(1996) have identified many such power laws for glaciers.)
The function f. relating d to d. is reasonably expected to
be a power law function of d:

de. = f.(d) < d* (20)
for some scaling exponent y>0. The first and more general
relationship f. is the one we use in the following derivations.
The second power law relationship in Eqn (20) is a reason-
able hypothesis only and will be used to guide our intuition
about the rate of divergence.

Consider two apparently separate ice bodies on the tran-
sect R. As p increases, the apparent width of each body on
the transect increases in accordance with Eqn (17). As the
width of each ice body increases, so does the length of that
body in accordance with Eqn (3). The length of the body is
not constrained to the transect because the ice flows down-
slope, regardless of whether or not this is in the direction of
the transect. As the mean widths and lengths of the two ice
bodies increase, they are more likely to join, forming a
single glacier, at a downstream confluence whose distance
from the transect is given by Eqn (20) (of course they could
still join at a higher elevation, but the probability of a join
increases with length).

Formally, we can combine Eqns (3), (17) and (20) to get
the distance over which one ice body is expected to be con-
nected to another on the transect. For simplicity, we recast
Eqns (3) and (17) as w = f,(/) and w = f,(p). We also note
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that because f,, is an increasing function, the average char-
acteristic width w,. of all the ice bodies that intersect the tran-
sect will be an increasing function f; of the average
characteristic length /. i.e. w. = f,(I). Furthermore W, is
clearly an increasing function f,. of the average width on
the transect w (on average, a glacier branch cannot get
wider at the point where it crosses the transect while shrink-
ing everywhere else). i.e. w. = f,(w). Therefore, combining
the above functions,

The inequality on the second line arises because £ is an in-
creasing function and because connections between
branches occur when the average length of the branch
extends at least as far as the confluence, i.e. when [ is
greater than or equal to the confluence distance d. In
other words, -1 (I) > f-'(d.) when | > d..

All the functions f,, f;', f" and f-! are monotonically
increasing. Therefore, d diverges as a function of p because
fp diverges as a function of p in Eqn (17). Furthermore,
because each functional composition is monotonic,
folof Tof Tofy(p) in Eqn (21) diverges at least as rapidly as
the average width w in Eqn (17).

Without further assumptions we cannot use Eqn (21) to
establish a more precise rate of divergence. As a practical
estimate, we can use the power law assumption in the
second part of Eqn (20). We can also assume [ = f,d(E!C)
scales as a power law with some exponent >0 (as reason-
ably expected — see the previous heuristic argument regard-
ing the power law relationships of geometric parameters in
drainage networks). Then

d = £ ofig of " of o () o< (pe —p) ™~ oc (W)F (22
where k = 1/(qyA). Equation (22) is not essential for the devel-
opment of the theory; but within the limitations of the built-in
assumptions, Eqn (22) describes (very simply) the rate of
divergence of d. We know a priori that d > w; therefore,
x> 1 and d diverges much more rapidly than the average
width w. The crossover for w is rapid, so the crossover phe-
nomenon for d is even more rapid.

6. THE CORRELATION LENGTH AND CROSSOVER
THRESHOLD

Let two randomly selected ice bodies be correlated if they are
connected. As the distance between the bodies grows, both
connections and correlations decrease. At distance r, the cor-
relation function is typically defined as
C(ry=e"? (23)

for some correlation length &.
Let two points on a transect R that are occupied by ice be
separated by distance r. In the 1-D solution, these points are
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connected (correlated) if every interval Ax between them is
also occupied by ice. If a single interval is occupied by ice
with probability p, and the number of intervals is r/Ax, then
the probability that two points on R are connected is

Clr) = p™. (24)

By combining with Eqns (23) and (17), and using In (p) ~ p —
1 (valid for small p),

Ax Ax
In(p)

£=- (25)

The correlation length or connectivity length is the same as
the average width of the glaciers (c.f. Stauffer and Aharony,
1992).

In the map-plane generalization, a correlation length can be
defined radially in all directions, or we can instead define &4 as
a new correlation length along the transect, indicating the new
distances across which ice patches are connected on the tran-
sect. Clearly, for r < d, ice patches on the transect are likely to
be connected, and for r > d ice patches are less likely to be
connected. In other words, the correlation length &4 is again
proportional to the effective average width d. Using the
assumed power law relationship between w and d in Eqn (22),

=

for some dimensionless constant a >0 and for a denominator
that normalizes the units. As expected, the correlation length
in the map-plane generalization is larger than the correlation
length of the 1-D transect.

The critical threshold for the 1-D transect R is p. = 1. The
critical crossover threshold in the map-plane generalization is

(27)

(26)

Pd < Pc-

This crossover threshold pq is reached when & is larger than any
remaining bedrock span (i.e. clusters of adjacent 0s) on the land-
scape realization R. As with our analysis of average glacier
widths (clusters of adjacent 1s), we can also estimate the
average width of bedrock spans (clusters of 0s). The probability
of an interval on R being free of ice (a ‘0") is T — p. Generalizing
from Eqn (17), the average bedrock width w, is then
R —

T=(-p)

1
=—Ax.
p

(28)

The crossover phenomenon happens when p = p4 and when
the correlation length becomes
1

éd = V_Vb =—Ax.

Pd (29)

Eqns (27), (28) and (29) are derived without assumptions.
With assumptions, we can push the derivation of pgy
further by substituting Eqns (26) and (17).

b =)
[ a < Ax )K_ aAx aAx
_<AX’H) T—pa) (T=pa)" T—xpa

(30)
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Solving for pyq,

pam o<1 (31)
Although their values are unknown, a>0 and x>T.
Therefore, the crossover threshold py is smaller than 1, and
as expected, py < pc.

This final solution for the crossover threshold p4 depends
on the reasonable but assumed power law relationship in Eqn
(22). Nevertheless, it guides our intuition and suggests that
(as expected) the crossover pq can be approached from
both above and below, unlike the less general p., which
can only be approached from below. In other words, as
p — pa™, the geometry will switch (as derived in Section 5)
from a glacier to an ice cap and vice versa.

7. THE RATE OF CROSSOVER

With pq < pc =1, the probability that an interval Ax on the
transect R is not occupied by ice is effectively reduced
from 1 —p to pq— p. Equations (12)—(19) are adjusted in
the expected manner. In particular, the number of glaciers
of width m Ax in Eqn (12) changes to

Nin = M(pg —p)*p™. (32)

Substituting z = |pg — p|m and In p =~ 1 — p, this has the pro-
mised power law exponential form (as a function of m) as
seen repeatedly in the statistical physics of crossovers.

% ~ m 272 exp(z).

(33)
Other than consistency with previous works, not too much
should be read into this rather ad hoc transformation
except that the exponential plays the role of a cutoff. For
m<1/|pa—p| and m>1/|py— p| there are two different
regimes of behavior due to the exponential that depends on
the average width, which is the generalized form of Eqn (17):

W= (Pd 17 p) Ax. (34)

For widths above and below the threshold, the behavior is that
of glaciers and ice caps; butas p — pg, the transition between
the two is power law in form (and therefore rapid).

As before, the most natural parameter for exploring
the rate of transition is the average width of the glaciers
or ice cap(s). This rate diverges near the threshold pq.
Generalizing from Eqn (19) and directly from Eqn (34),

w1 _. (35)
do - (pa—p)

Far from the transition, this rate is roughly constant, and
glacier and ice cap widths thus grow linearly. However,
near the transition, as p — pg, the rate is power law in
form. For completeness, if [I=py— p is a measure of the
distance from the threshold, then the power law rate of
divergence becomes explicit.

dw 1

ﬁOCF. (36)
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The width scaling exponent g also diverges at a power law
rate. As before, the characteristic widths in Eqn (3) are
expected to grow as an increasing function f = f,°f of the
average width w(see discussion of Eqn (21)). Therefore,

dw df dw
Similarly, the characteristic lengths grow as an increasing
function of w, and

/ _
drdw (38)
dp dp

Now consider large average (and large characteristic) widths
and lengths, as is the case near the transition. Transforming
Eqn (3), the width scaling exponent is

q= g ey (39)

because In(c,,)/In I is negligible for large / (note the discussion
in Bahr and others (2015) on the low order of multiplicative
scaling parameters such as c,,), and g may thus be expressed
as the first term only. Combining Eqns (37), (38) and (39), the
rate of change of the scaling exponent is

dg tdw1 1 dl
dowdplinl j(In/)*dp

dw (df 11 Inw
Rl I By P
dp \dpwinl"(In/)

1 df 1 1 Inw
(=
<mw<®MM/mN>
where the important term is 1/(pq — p)°. For p near the cross-
over py, the width/length scaling exponent q diverges rapidly
as a power law. Away from the crossover, w and / remain
large, and dw/dp is bounded and small so that dg/dp — 0.
In other words, away from the threshold g behaves as a con-
stant (which can differ on each side of the transition), as con-
firmed by observations in Eqn (4). Thus, Eqn (40) predicts the
observed crossover in the width/length scaling exponent.

8. THE CROSSOVER FUNCTION

We can now write a very general relationship for the cross-
over behavior that depends on the percentage of ice relative
to the critical threshold p4. From Eqn (40), g(p) resembles a
step function between two constants; in the transition zone
between the constants, dg/dp diverges, like the derivative
of a step function. As noted in Eqn (9), a power law relates
any two glaciological continuum parameters with scaling ex-
ponent fx(y, q) or equivalently f(a, ¢) where « is the Hack's
law exponent (Table 1). Therefore, Eqn (40) implies that the
scaling exponents fy(y, ) will split between two constants
¢y and ¢, (which in degenerate cases could be the same) de-
pending on the relevant value of p. Values between c; and ¢,
are possible, but rare due to the rapid crossover. The power
law scaling exponent fx(y, q) is therefore given by

<
o= (o

(41)
C2,p > Pd-
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When p <« pg we have a glacier, and when p > p4 we have
an ice cap. Although conspicuously absent from Eqn (41), the
intermediate behavior as p — pj is implied as the rapid tran-
sition between c¢; and cy; although almost straightforward
enough to intuit, this deceptively simple equation is a
direct consequence of Eqn (40).

Equation (41) shows that the crossover is sensitive to the
percentage of the topography that is covered in ice. When
comparatively little ice covers the landscape, we will have
a set of separate valley glaciers; but when the percentage
of ice covering the landscape exceeds some critical thresh-
old, the ice will change abruptly from a set of separate
valley glaciers to a single large ice cap. By definition, the
thickness h— h** as p — p7, so more intuitively, the cross-
over is sensitive to the thickness of the ice relative to the
‘thickness’ (relative vertical relief) of the topography. In
other words,

c1,h < h*
fx(y, Cl) = {C;h > h*.

(42)
When the geometry of an ice body is primarily defined by,
and constrained by, the surrounding topography (h < h*),
the ice fits the definition of a glacier. When the ice grows
thicker than the characteristic scale (relative vertical relief)
of the surrounding topography (h>> h*), then the ice buries
the landscape, and flows radially in all directions, independ-
ent of or significantly less constrained by the underlying land-
scape, fitting the definition of an ice cap.

Note that ¢; and ¢, differ for each power law relationship
shown in Eqn (9), but their values are shown in Table 1 for a
number of specific cases. Values in between c; and ¢, are
unlikely to be encountered in nature because the transition
is rapid; note Eqn (40), as well as the power law divergent
behaviors of Eqns (34), (35) and, in a general sense, Eqns
(19), (21) and (22). Equations (41) and (42) can thus be
treated as step functions for most practical purposes. In par-
ticular, we do not expect the volume/area scaling exponent
y to have values between ¢; = 1.375 and ¢, = 1.25 except
perhaps in vanishingly few instances. Noting that power
law relationships apply to statistically large samples of gla-
ciers, the presence of a very few exceptional cases need
not be accounted for (Farinotti and Huss, 2013; Bahr and
others, 2015). Therefore, as a generally valid finding for
volume/area scaling of glaciers, we have:

1375 olaci
Voc {5 ,glaciers (43)

S125 ice caps

as explicitly derived from Eqns (9), (10) and (42). Note that
the values of 1.375 and 1.25 are derived elsewhere (e.g.
Liithi, 2009; Bahr and others, 2015), and the step between
these values shown in Eqn (43) is a byproduct of the
primary percolation analysis presented above.

9. CONCLUSIONS

The crossover in scaling properties from glaciers to ice caps
(and vice versa) is highly sensitive to the thickness of the
ice relative to the thickness of the topographic relief. As the
mean ice thickness approaches the relative vertical relief of
the topography, a very small change in thickness can
trigger an abrupt step-function switch in the geometry of an
ice body. There is very little room for ‘hybrid’ ice bodies
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that exhibit a geometry ‘in between’ a glacier and an ice
cap. This is not meant to imply that such hybrid bodies do
not exist, and examples are given in the introduction, but
there will be very few of these bodies relative to the
numbers of ice caps and glaciers. Notably, with the rapid
non-linear crossover phenomena derived in Eqn (40), we
expect insufficient ice bodies to generate ensemble statistics
with volume/area scaling exponents that fall between 1.375
(for glaciers) and 1.25 (for ice caps). As implied by Table 1,
Egn (42) also shows that a wide variety of other scaling rela-
tionships will exhibit similarly rapid crossover behaviors.

Although simple in concept, the preceding analysis is
perhaps inelegant in its mathematical complexity. Our ex-
pectation is that this analysis will be treated as a first step
in the theoretical development of the transition between
glacier and ice cap geometries. More elegant solutions
using other statistical physics approaches may be possible.
However, as it stands, the preceding theory strongly supports
the notion that there are two primary volume/area scaling
exponents, one for glaciers and one for ice caps. Other stat-
istically valid exponents (generated from ensembles of gla-
ciers) are unexpected, and this can be of significant value
to practitioners who need to justify their choice of scaling
exponents for sea level rise and other studies.
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