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In classical analysis ordinary differential equations and partial differential 
equations are distinct concepts, and the transition from one derivation to 
several partial derivations changes some of their properties distinctly. On the 
other hand, the algebraic theories of modified ordinary and partial differential 
equations (5; 6), based on the differentiations in the sense of Hasse (2) and 
Schmidt (3) and the multidifferentiations in the sense of Jaeger (4), turn out 
to be strikingly similar in the case of fields of prime number characteristic. 
However, the differential equations in fields of prime number characteristic in 
the usual, unmodified sense are special cases of the modified ones because of 
the relations between their respective operators; hence this similarity must 
also appear in the unmodified case. In the following, an easy explanation for 
this similarity is given, provided that only derivations of a separably generated 
algebraic function field F in n independent indeterminates over its ground 
field K are considered. For in this case it is shown that all partial differential 
equations can be replaced by ordinary differential equations in a suitable 
derivation D of F over K. This D is simply constructed in such a way that the 
set 

(D,Bp,Dpm,...,ir-i) 

is a basis for the F-module of all derivations of F over K. An explicit example 
of such a * 'replacing derivation" is given in this paper. 

Let F be a separably generated algebraic function field of n independent 
indeterminates of prime number characteristic p > 0 with a separating 
transcendence basis x = (xi, x2, . . . , xn) over its ground field K. Let Dt 

(i = 1, 2, . . . , n) be the partial derivations of F over K uniquely defined 
(1) by Di(xj) = ôij where ôtj denotes the Kronecker delta. The linear map
pings Di of F into itself are commutative under multiplication; the abbreviation 

Da= fi m 

will be used for their general products where a — (au a2i . . . , an) is a vector 
whose components are non-negative integers and 

D°t (i= 1 , 2 , . . . , » ) 

denotes the identity mapping 1. The multisequence [D"} is called a multi-
differentiation of dimension n\ if n — 1 it is also called a differentiation. 
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The formal expressions A = ^adaDa {da Ç F) where the sum is extended 
over finitely many distinct vectors a whose components are non-negative 
integers are called multidifferential operators in D (or also differential operators 
if n = 1). They define mappings 

y-+A{y) = T,aaaD«(y) 

of F into itself and form a ring 0 = 0(X>, F) of mappings when addition is 
defined in the usual way and multiplication by Dty = Dt{y) D^ + yDt {y Ç F; 
i = 1, 2, . . . , n). The zero element of this ring is denoted by 0. 

LEMMA 1. The operators 

D\ {i = 1, 2, . . . , n) 

where q = p* and t is any positive integer, map every element of F onto zero. 

Proof. The operator defines a derivation of F over K. It has the property 
that 

D'tixj) = 0 {j = 1 , 2 , . . . , » ) ; 

hence, its restriction to K[x] is the trivial derivation (i.e. the zero operator). 
But the prolongation of a derivation of K[x] to F is unique (1), and hence 
this prolongation is a zero operator. 

Let P be the two-sided ideal of £l generated by 

Dl Dl..., Dl 
If aa 7^ 0 and Da $P the number £ ai is called the order ofaaD

a. Let A = I ] a a a I> 
be a multidifferential operator which does not lie in P , then the minimum 
of the orders of the additive terms aaD

a for which aa 9e 0 and Da $P holds is 
called the minimal order mA of A. If all terms aaD

a of A with aa 9e 0 have the 
same order the operator A is called homogenous of order mA. Order and minimal 
order are not defined for elements of P. 

LEMMA 2. No multidifferential operator A = X ! a ^ of minimal order 
m A > 1 defines a derivation. 

Proof. We have obviously A (xt) = 0 {i = 1, 2, . . . , n). Suppose now that 
A is a derivation, then it must follow that also A {x») = 0 where 

n 

X* = I l *?» M = (Ml, M2, . . • , Mn) 
1 = 1 

can be chosen such that 
n 

all ixi < p and aM 9e 0. But it can be seen easily that 

| > 0 i f « = M 
Da{xfi)i = 0 if 2>* = mAi but a ^ /z 

[ = 0 if X>i > raA. 

Hence we have A {x») = J2aaaD
a{xli) 9e 0, a contradiction. 
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COROLLARY 1. Let H be the set of all multidifferential operators of minimal 
orders greater than 1. Then I = H\J P is a left-ideal of 0. 

COROLLARY 2. A multidifferential operator A is a zero operator if and only if 

A e p. 
Since two multidifferential operators A and B define the same mapping 

of F into itself if and only if A = B (mod P), it is sufficient to consider the opera
tor ring 0,/P. A multidifferential operator A = Y^aaaD

a is called reduced with 
respect to P if none of its non-zero terms aaD

a lies in P ; the reduced operators 
can be taken as representatives of the residue classes of Q/P. Furthermore 
we can identify the additive group, consisting of the operator 0 and all homo
genous multidifferential operators of order 1, with the F-module M = M(D, F) 
of all derivations of F over K. 

COROLLARY 3. If AQ = A\ (mod I) holds with a = pl for some positive 
integer t and Ax G M, then AQ == Ax (mod P). 

Proof. A q and A i and hence, Aq — A i define derivations. Since all derivations 
induced by elements of I are trivial it follows that Aa — Ai Ç P. 

THEOREM. There exists a differentiation d of F over K such that for each 
multidifferential operator A of ti(D, F) there exists a differential operator Â of 
£l(dt F) which defines the same mapping of F into itself as A. 

Proof. It is sufficient to show the existence of a basis d = (di, d2, . . . , dn) 
of the jP-module M such that dq = dt+1 (mod P) holds for a = p\ t = 1, 2, . . . , 
» - 1. 

Example. Take d — J^Xip+1Du then it follows that 

of = S x*v+1Di (mod / ) 

(k any positive integer), and, by using Corollary 3, we have especially 

(?s itx^Di (modP). 

But the elements 
n 

dk = 52 ocf+1Di k = 1, 2, . . . , n 
i=l 

form a basis of the ^-module M since 

det(x/ f c + 1) , ,^ l t 2 , . . . ,M^0. 

COROLLARY. Every partial differential equation in F over K can be written as 
an ordinary differential equation in F over K. 
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