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The Noether–Lefschetz Theorem
Via Vanishing of Coherent Cohomology

G. V. Ravindra

Abstract. We prove that for a generic hypersurface in P2n+1 of degree at least 2 + 2/n, the n-th Pi-

card number is one. The proof is algebraic in nature and follows from certain coherent cohomology

vanishing.

1 Introduction

Let X be a smooth projective variety and CHm(X) denote the Chow group of codi-

mension m cycles modulo rational equivalence. There is a cycle class map CHm(X) →
Hm,m(X, Z) := H2m(X, Z) ∩ Hm(X, Ωm

X ). The image of this map is called the m-th
Picard group and the rank of this group is called the m-th Picard number and is
denoted by Pm(X).

The main result in this paper is the following.

Theorem 1.1 (Noether–Lefschetz theorem) Let X ⊂ P2n+1 be a generic smooth

hypersurface of degree d at least 2 + 2/n. Then Pn(X) = 1.

This theorem, with the hypothesis Hn,n(X) 6= H2n(X, C) when X is a complete
intersection, appears as [5, Theorem 13.22]. In case X is a hypersurface, this is
equivalent to the hypothesis in Theorem 1.1. Our methods can easily be extended

to complete intersections, but we restrict our attention to hypersurfaces to keep the
presentation as simple as possible.

It is easy to see that the theorem above follows from the Noether–Lefschetz theo-
rem for Hodge classes (see [2]) which states that under the hypothesis of the theorem

above Hn,n(X, Q) ∼= Q . Proofs of this stronger version of the Noether–Lefschetz
theorem found in [2] as well as elsewhere in the literature, use the formalism of Lef-
schetz pencils and the action of the monodromy group on certain Hodge/coniveau
filtrations. Our proof of the weaker Noether–Lefschetz theorem is purely algebraic

and follows from the vanishing of cohomologies of certain coherent sheaves/vector
bundles and is closer in spirit to Grothendieck’s proof of the Grothendieck–Lefschetz
theorem.

The outline of the proof is as follows: in the style of [1], we first prove an in-
finitesimal Noether–Lefschetz theorem (Section 3.1). This is established using purely
coherent cohomology vanishing. We then show that this implies that the geometric
generic fibre of the universal family of hypersurfaces has middle Picard number one

and then use this to prove the global Noether–Lefschetz theorem.
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The above theorem is sharp; for n ≥ 1, any even dimensional quadric hypersur-
face has two generators (given by the classes of the linear subspaces of maximal di-

mension) in CHn(X) which are not homologically equivalent. Moreover when n = 1,
one can recover the classical Noether–Lefschetz theorem for surfaces (Pic(X) ∼= Z

when X is generic of degree at least 4). This has been done by N. Mohan Kumar and
V. Srinivas [6] and the method of proof presented here is due to them.

1.1 Conventions

We work over the field of complex numbers though our results are valid over any
algebraically closed field of characteristic zero. By a generic point of a variety, we
mean a point outside a countable union of proper closed subvarieties and by a general
point of a variety, we shall mean a point in a Zariski open set.

2 Cohomology Computations

2.1 Preliminaries

The computations in this section first appeared in [7], but we include them here for
the sake of completeness.

Let k be a field of characteristic zero, P := Pm+1
k and W = H0(P, OP(d)). Let

S := P(W ∗) denote the parameter space of all degree d hypersurfaces in P. One has

a short exact sequence

0 → V → H0(P, OP(d)) ⊗ OP → OP(d) → 0,

where V is the kernel of the evaluation map W ⊗ OP → OP(d). It is not hard to
see that X := P(V∗) → S is the universal family of all degree d hypersurfaces. Let

X ⊂ P be a smooth degree d hypersurface corresponding to a closed point s ∈ S. Let
V := T∗

S,s, the dual of the Zariski tangent space at the point s ∈ S. If A := OS,s/m
2
s =

k ⊕V ∗, we will denote by Xǫ, the universal hypersurface over Spec A. It is easy to see
that Ω

1
A ⊗ k ∼= V ∗.

Let PA := P × Spec A and p : PA → P, q : PA → Spec A denote the two projec-
tions. Consider the cotangent sheaf sequence for the inclusion ιǫ : Xǫ →֒ PA,

OXǫ
(−d) → Ω

1
PA

⊗ OXǫ
= p∗

Ω
1
P ⊗ OXǫ

⊕ q∗Ω1
A ⊗ OXǫ

→ Ω
1
Xǫ

→ 0.

On restricting this sequence to X, we have

(2.1) 0 → OX(−d)
(α,β)
−−−→ Ω

1
P ⊗ OX ⊕V ∗ ⊗ OX

(γ,δ)
−−→ Ω

1
Xǫ
⊗ OX → 0.

Let F denote the polynomial defining Xǫ ⊂ PA. On taking cohomology of the

sequence 0 → OP → OP(d) → OX(d) → 0, we get 0 → k → W → V → 0. Choose
a splitting θ : V → W , so that θ ∈ W ⊗ V ∗. Since W ⊗ A = W ⊕ W ⊗ V ∗, we
have F = ( f , θ) ∈ W ⊗ A = H0(PA, OPA

(d)) where f is the polynomial defining X.
The map dF is then given by (α̃, β̃). It is easy to see that α̃|X = α = d f . By local
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computations, we can verify that β̃|X
= β : OX(−d) → V ∗ ⊗ OX is dual to the

evaluation map. Notice that the injectivity of δ follows from the injectivity of α.

We can also identify δ with the natural map obtained as follows. We have an exact
sequence q∗Ω1

A → Ω
1
Xǫ

→ Ω
1
Xǫ/A → 0, which is the relative cotangent sheaf sequence

of the family q : Xǫ → Spec A. On restricting this sequence to X, we get

0 → Ω
1
A ⊗ OX

δ
−→ Ω

1
Xǫ
⊗ OX → Ω

1
Xǫ/A ⊗ OX = Ω

1
X → 0 .

The exactness of sequence (2.1) implies that γα = −δβ and as a consequence, we
have the following.

Lemma 2.1 ([6]) There is a commutative diagram:

0 // OX(−d)
α

//

−β

��

Ω
1
P ⊗ OX

//

γ

��

Ω
1
X

// 0

0 // V ∗ ⊗ OX

δ
// Ω

1
Xǫ
⊗ OX

// Ω
1
X

// 0

where the two rows come from the inclusions X ⊂ P and X ⊂ Xǫ and the map β is the

natural map.

Taking the ℓ-th exterior power, we get a commutative diagram

(2.2) 0 // Ω
ℓ−1
X (−d) //

��

Ω
ℓ
P ⊗ OX

//

��

Ω
ℓ
X

// 0

0 // Ω(ℓ) // Ω
ℓ
Xǫ
⊗ OX

// Ω
ℓ
X

// 0

where Ω(ℓ) (see [4, 5.16 (d), p. 126]) comes equipped with a decreasing filtration

F∗
Ω(ℓ) satisfying the properties F1(Ω(ℓ)) = Ω(ℓ), Fℓ+1(Ω(ℓ)) = 0 and gr

j
F Ω(ℓ) :=

F j(Ω(ℓ))/ F j+1(Ω(ℓ)) = Λ
jV ∗ ⊗ Ω

ℓ− j
X for j ≥ 1.

Lemma 2.2 For a smooth hypersurface X ⊂ P2n+1, Hn(X, Ω(n)) = 0.

Proof The proof follows by analysing the sequences

(2.3) 0 → F j+1(Ω(n)) → F j(Ω(n)) → gr
j
F Ω = Λ

jV ∗ ⊗ Ω
n− j
X → 0.

For j ≥ 1, Hn(X, Ω
n− j
X ) = 0. Thus on taking cohomology, we have a surjection

Hn(X, F j+1
(

Ω(n))
)

։ Hn(X, F j
(

Ω(n))
)

∀ j ≥ 1.

Since Hn(X, Fn
Ω(n)) = Hn(X, ΛnV ∗ ⊗ OX) = 0, we are done.
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Lemma 2.3 Let X ⊂ P2n+1 be a smooth hypersurface. Then there are isomorphisms

Hn+1(X, Ωn−1
X (−d)) ∼= H2n(X, OX(−nd)),

Hn+1(X, Ωn−1
X ) ∼= H2n(X, OX((−n + 1)d).

Proof We consider the exterior powers of the cotangent bundle sequence for the

inclusion X ⊂ P

0 → Ω
ℓ−1
X (−d) → Ω

ℓ
P ⊗ OX → Ω

ℓ
X → 0

together with the sequences

0 → Ω
ℓ
P(−d) → Ω

ℓ
P → Ω

ℓ
P ⊗ OX → 0.

Using the fact that Hi(P, Ω
j
P

(∗)) = 0 for i 6= j, we get isomorphisms

Hn+ℓ(X, Ωn−ℓ
X (−t)) ∼= Hn+ℓ+1(X, Ωn−ℓ−1

X (−t + d)) ∀ 1 ≤ ℓ < n.

This finishes the proof.

Lemma 2.4 Let X ⊂ P2n+1 be a smooth hypersurface. Then the map

φ : Hn+1(X, Ωn−1
X (−d)) → V ∗ ⊗ Hn+1(X, Ωn−1

X )

is injective for d ≥ 2 + 2
n

.

Proof The map φ is induced by the composite map of sheaves

Ω
n−1
X ⊗ OX(−d) = Ω

n−1
X (−d) → Ω(n) → Ω

n−1
X ⊗V ∗

in diagram (2.2) with ℓ = n. This map is clearly 1 ⊗−β. Using the identifications in
the previous lemma, we can identify the map φ with the dual of the cup product map

H2n(X, OX(−nd)) → V ∗ ⊗ H2n(X, OX(−(n − 1)d).

The lemma now follows by noting that the cup product map

V ⊗ H0(OX(nd − 2n − 2)) → H0(OX(nd + d − 2n − 2))

is surjective as soon as H0(OX(nd−2n−2)) 6= 0, which happens for all d ≥ 2+ 2
n

.

Proposition 2.5 Let X ⊂ P2n+1 be a smooth hypersurface. If d ≥ 2 + 2
n

,

Hn(X, Ωn
P ⊗ OX) ∼= Hn(X, Ωn

Xǫ
⊗ OX).
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Proof Consider the cohomology diagram associated to (2.2) when ℓ = n.
(2.4)

Hn(X, Ωn−1
X (−d)) // Hn(X, Ωn

P|X) //

��

Hn(X, Ωn
X) // Hn+1(X, Ωn−1

X (−d))

Hn(X, Ω(n)) // Hn(X, Ωn
Xǫ
|X) // Hn(X, Ωn

X) // Hn+1(X, Ω(n)).

By Lemma 2.2, we have Hn(X, Ω(n)) = 0. Furthermore, by the Kodaira–Akizuki–

Nakano theorem (see [3, p. 154]), Hn(X, Ωn−1
X (−d)) = 0. This implies that

Hn(X, Ωn
P ⊗ OX) → Hn(X, Ωn

Xǫ
⊗ OX)

is injective. To prove surjectivity, it is enough to prove that the right-most vertical

arrow i.e., the map Hn+1(X, Ωn−1
X (−d)) → Hn+1(X, Ω(n)) is injective. By Lemma

2.4, the composite map φ

Hn+1(X, Ωn−1
X (−d)) → Hn+1(X, Ω(n)) → V ∗ ⊗ Hn+1(X, Ωn−1

X )

is injective. Thus we are done.

3 The Noether–Lefschetz Theorem

3.1 The Infinitesimal Noether–Lefschetz Theorem

Let X ⊂ P2n+1 be a smooth general hypersurface of degree at least 2 + 2/n.

Lemma 3.1 There exists an exact sequence

0 → Hn(X, Ωn
Xǫ
|X) → Hn(X, Ωn

X)
κ
−→ V ∗ ⊗ Hn+1(X, Ωn−1

X ).

Proof The bottom horizontal sequence in diagram (2.4) together with the fact that

Hn(X, Ω(n)) = 0, yields an exact sequence

0 → Hn(X, Ωn
Xǫ
|X) → Hn(X, Ωn

X) → Hn+1(X, Ω(n)).

From sequence (2.3), one can easily see that the map

Hn+1(X, Ω(n)) → V ∗ ⊗ Hn+1(X, Ωn−1
X )

is injective. The map κ in the statement of the lemma is just the composite map
Hn(X, Ωn

X) → Hn+1(X, Ω(n)) → V ∗ ⊗ Hn+1(X, Ωn−1
X ).

Remark 3.2 It is standard that the map κ is the Kodaira–Spencer map. Thus
Hn(X, Ωn

Xǫ |X
) can be identified with the subspace of cohomology classes of type (n, n)

in X which deform infinitesimally, i.e., they remain of type (n, n) under infinitesimal
deformations.
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Using the isomorphisms

H2n(P, C) ∼= Hn(P, Ωn
P) ∼= Hn(X, Ωn

P|X) ∼= Hn(X, Ωn
Xǫ
|X),

one sees that such a class actually lifts to a cohomology class in the ambient projective
space.

Lemma 3.3 Let Z be a homologically non-trivial cycle in X. If Z deforms as an al-

gebraic cycle infinitesimally, then Z is homologically equivalent to a multiple of a codi-

mension n linear section Hn
X where HX := H ∩ X, H ⊂ P is a hyperplane section.

Proof Let η denote the cohomology class of Z in Hn(X, Ωn
X). Since Z deforms in-

finitesimally, η ∈ Hn(X, Ωn
Xǫ
|X). From the discussion preceding the statement of the

lemma, it is clear that η lifts to a class in Hn(P, Ωn
P). Furthermore, since η is the class

of an algebraic cycle, this implies that η lifts to a class in Hn(P, Ωn
P)∩H2n(P, Q). The

latter is a one dimensional Q-vector space generated by the class Hn. This finishes

the proof.

3.2 Global Noether–Lefschetz Theorem

In this section, we shall consider the universal family X → S defined over k = Q .

Proposition 3.4 For a smooth hypersurface X in P2n+1 of degree at least 3, let Xη

denote the geometric generic fibre. Then Pn(Xη) = 1.

Proof Let h be the class of the hyperplane section of X and hn denote the class of
a codimension n linear section. Since X and h are algebraic, they are defined by a
bunch of polynomials. Let K be the field obtained by adjoining the coefficients of

all these polynomials to Q . Since the number of equations are finite, K is finitely
generated over Q . Thus X, hn are defined over a finitely generated field K/Q . Let
K denote the algebraic closure of K and K(η) denote the rational function field in
h0(OP(d))−1 variables over K, i.e., K(η) is the function field of S×

Q
K over the field

K. Since Q(η) ⊂ K(η), we have a map η := Spec K(η) → Spec Q(η). Composing
this map with the natural inclusion Spec Q(η) →֒ S, defines a point η → S which we
will call the K-generic point of S. The corresponding K-geometric generic point of S

is η := Spec K(η).

Let Z ∈ CHn(Xη) be any cycle. Since K(η) is algebraically closed, the inclusion
Z →֒ Xη is defined over a finite field extension of the function field K(η). Let R be
the ring obtained by “clearing denominators”. Then we see that there exists an étale

morphism U = Spec R → S such that Z “spreads” out to a codimension n cycle Z

on XU . By shrinking U further, we may assume that (i) the image of U in S is an
open set which does not meet the discriminant locus of the linear system H0(OP(d))
in S and (ii) Z is flat over U . Now we restrict Z to the fibres of XU → U . Since

the map U → S is étale, we note that OU /m
i
u
∼= OS/m

i
s, where s is the image of

u under the map U → S. Thus by the infinitesimal Noether–Lefschetz theorem,
we see that the restriction of Z to the fibres over u ∈ U (which by definition lifts to
the first infinitesimal thickenings) is homologically equivalent to a constant multiple,
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say m, of the class of a linear section in CHn(Xu). By shrinking U further, we may
assume that for π : XU → U , H2n(XU , Z) ∼= H0(U , R2n π∗Z) (for instance if U is

affine, then the higher cohomologies Hi(U , R2n−i π∗Z) = 0 for i > 0 and so the
only contribution from the Leray spectral sequence is from the zero-th cohomology
H0(U , R2n π∗Z)).

Let C := Z − mH where H is a hyperplane section of XU . Since the restriction

of C to each fibre is homologically trivial, this implies that the global section defined
by C is zero at every stalk. This implies that the class of C is itself zero in H2n(XU , Z).
From this we conclude that the cycle Z on XU must be homologically equivalent to a
multiple of the class of a linear section and in particular this holds for the cycle Z in

Xη as well.

Lemma 3.5 Let X be a smooth k-variety, where k is an algebraically closed field of

characteristic zero. Assume that the image CHn(X) → Hn(X, Ωn
X/k) is generated by

hn where h is the class of the hyperplane section. Let L be any finitely generated field

extension of k and let ZL ∈ CHn(XL). Then cl(ZL) ∈ L[hn] ⊂ Hn(X, Ωn
XL/L)

Proof Let V := Hn(X, Ωn
X/k) and let hn, ρ1, . . . , ρr be a basis for V as well as

VL := V ⊗k L. Because L is finitely generated over k, we may assume that L =

k(x1, . . . , xp)(y) where the xi ’s are algebraically independent over k and y is alge-
braic over k(x1, . . . , xp). By clearing denominators of equations defining ZL, we may
assume that ZL is defined over the ring R := k[x1, . . . , xp](y). So ZL is a cycle in

X := X × Spec R. By localising at an element of f ∈ k[x1, . . . , xp], we may assume
that R := k[x1, . . . , xp] f (y) and that ZL →֒ X is a relative n-cycle over S = Spec R

and that X → S is a smooth S-scheme. We have a commutative diagram

CHn(XL)

��

CHn
rel(X/S)oo

��

CHn(X)oo

��

Hn(XL, Ω
n
XL

) Hn(X, Ωn
X/S)oo Hn(X, Ωn

X)oo

V ⊗k L V ⊗k Roo Voo

where the top vertical arrows are the cycle class maps, the leftmost left arrows are the
restriction maps and the rightmost left arrows are induced by the projection X → X.

By construction, ZL is in CHn(XL) and CHn

rel(X/S). Hence

cl(ZL) = Image(clS(ZL)) = a1hm + a2ρ2 + · · · + arρr ∈ V ⊗k R,

where a1, . . . , ar ∈ R. Now for a general point p = Spec K ∈ S, given by a surjection
R ։ k, let Zp be the fibre over the point p. Then by functoriality of the cycle class

map, cl(Zp) = ā1hm + ā2ρ2 + · · · + ārρr ∈ V where ā1, . . . , ār ∈ k. Here, we use the
fact that the composite X× p →֒ X → X is the identity. By assumption, cl(Zp) = thn

for some t ∈ k. This implies that for a general point, āi = 0 for i ≥ 2 which in turn
implies that ai = 0 for i ≥ 2.
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Finally we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Let V be the subset of SC obtained by removing all the divi-
sors of SC, defined over K. Thus we have removed a countable set of closed subva-
rieties. If p ∈ V is a closed point, the map Spec(C(p)) → S factors through the

inclusion of the geometric generic point η →֒ S. Thus, we have an inclusion of al-
gebraically closed fields K(η) →֒ C(p) ∼= C. If X is the fibre over p ∈ SC, then
X ∼= Xη ×K(η) C. In this case, it follows from the above Lemma (see also [8]) that
Pn(X) = Pn(Xη) = 1.
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