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Motivated by the need for accurate determination of wall shear stress from profile
measurements in turbulent boundary layer flows, the total shear stress balance is
analysed and reformulated using several well-established semi-empirical relations.
The analysis highlights the significant effect that small pressure gradients can
have on parameters deduced from data even in nominally zero pressure gradient
boundary layers. Using the comprehensive shear stress balance together with the
log-law equation, it is shown that friction velocity, roughness length and zero-plane
displacement can be determined with only velocity and turbulent shear stress profile
measurements at a single streamwise location for nominally zero pressure gradient
turbulent boundary layers. Application of the proposed analysis to turbulent smooth-
and rough-wall experimental data shows that the friction velocity is determined
with accuracy comparable to force balances (approximately 1 %–4 %). Additionally,
application to boundary layer data from previous studies provides clear evidence
that the often cited discrepancy between directly measured friction velocities (e.g.
using force balances) and those derived from traditional total shear stress methods is
likely due to the small favourable pressure gradient imposed by a fixed cross-section
facility. The proposed comprehensive shear stress analysis can account for these
small pressure gradients and allows more accurate boundary layer wall shear stress
or friction velocity determination using commonly available mean velocity and shear
stress profile data from a single streamwise location.

Key words: turbulent boundary layers, boundary layer structure

1. Introduction
The turbulent boundary layer is ubiquitous, occurring commonly in both nature and

engineering applications. It is important in geophysical flows where better weather
prediction models require more accurate representations of surface layer physics
and in transportation where drag reduction could lower fuel costs and greenhouse gas
emissions. The most important physical quantity characterizing wall-bounded turbulent
boundary layers is the skin friction drag. The topic of experimental determination
of skin friction drag is closely linked to a fundamental understanding of the total
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momentum balance in turbulent boundary layers. Much has been learned over a
long history of research on these related topics and reviews of various skin friction
determination techniques can be found in Winter (1979), Haritonidis (1989), Klewicki
et al. (2007) and Walker (2014).

The most widely used analysis techniques to determine skin friction are based
on measurements of the streamwise mean velocity profile at various heights above
the surface. The data are then compared to the assumed log-law equation (Clauser
1954) in order to estimate the friction velocity, roughness function and zero-plane
displacement. The log-law equation reads

U+ ≡
U
uτ
=

1
κ

ln
[
(y− d)uτ

ν

]
+ A−1U+. (1.1)

In this equation U is the mean streamwise velocity, κ is the Kármán constant and A is
the log-law intercept for smooth walls. The unknown scaling parameter is the friction
velocity, uτ , and the + superscript indicates normalization by uτ . When roughness is
present, both d and 1U+ are non-zero and unknown as well. Here, d is a shift in
the effective origin of the log law due to the roughness, and the roughness function,
1U+, models a change in the mean flow velocity due to the roughness. Case-by-
case comparisons of these parameters remain an important way to describe differences
among turbulent boundary layers. However, these parameters are difficult to determine
accurately based on a single mean velocity profile due to the number of unknowns and
possible dependencies between them.

Clauser was the first to use (1.1) to determine these parameters by fitting mean
velocity profiles to the equation. He developed a graphical log-law fitting method
for determining friction velocity and roughness function known as the Clauser chart
method (Clauser 1954). Perry & Joubert (1963) extended this method for rough walls
to include the shift in effective origin in what Perry & Li (1990) later termed the
modified Clauser chart method.

There are clear shortcomings to these log-law fitting approaches. Perry & Joubert
(1963) and Castro (2007) note that many different combinations of friction velocity,
roughness function and effective origin can give equally good fits to experimental
data. Also, Wei, Schmidt & McMurtry (2005) have shown that specific assumptions
about the value of the Kármán constant and the fitting procedure used can often mask
subtle dependencies on other variables such as the Reynolds number, Re. Nonetheless,
many researchers still use fitting procedures due to the lack of a better alternative.
To address the shortcomings of the fitting procedures, many researchers measure
additional quantities in an attempt to reduce the number of unknowns for fitting.

The most important unknown is the friction velocity, uτ , because it relates directly
to the surface drag. Direct measurement of wall shear stress, which is related to
friction velocity by uτ ≡

√
τw/ρ, is possible using a force balance among other

methods. Sensitive floating element force balances have been successfully employed
in many experiments such as Krogstad & Efros (2010), Baars et al. (2016) and
Ferreira, Rodriguez-Lopez & Ganapathisubramani (2018). However, these balances
are usually expensive, normally require careful surface preparation and alignment
and typically only measure wall shear stress at a single downstream location in the
experimental facility. These are significant challenges which limit the widespread
experimental application of force balances, even at laboratories where they are
available.

Friction velocity determination methods that require only fluid velocity measure-
ments are necessary since direct, force balance measurement is not always feasible.
Additionally, fluid velocity measurement methods can serve as cross-verification of
direct measurement results. The traditional total shear stress method assumes that the
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total shear stress near the wall is composed of only two significant components: the
viscous shear stress and the Reynolds shear stress. This method was in common use
by the mid-1980s and is still used presently (Li, Henbest & Perry 1986; Schultz &
Flack 2007; Walker 2014). However, discrepancies between expected and measured
results were noted early on. Initial investigations by Li et al. (1986) and Raupach,
Antonia & Rajagopalan (1991) concluded that discrepancies were due to measurement
limitations inherent in the hot-wire equipment utilized. Later studies by Cheng
& Castro (2002) and Cheng et al. (2007), which compared direct measurement
methods and laser Doppler velocimetry flow measurements, reasonably attributed the
discrepancy to unmeasured fluid dynamic effects.

Several recent studies have attempted to quantify these previously unaccounted
fluid dynamic effects including Fukagata, Iwamoto & Kasagi (2002), Mehdi &
White (2011), Mehdi et al. (2014) and Volino & Schultz (2018). These shear stress
methods attempt to quantify additional measurable shear stress terms by using the
Reynolds-averaged, streamwise momentum equation for two-dimensional flows. These
methods require additional fluid velocity measurements or assumptions for unknown
or uncertain information. For example, Mehdi & White (2011) and Mehdi et al.
(2014) are able to calculate friction velocity based on the measured streamwise mean
velocity and Reynolds shear stress profiles. However, they find that the method is
sensitive to unknown and noisy data near the wall. They overcome this limitation by
assuming a shape for the total shear stress profile and by smoothing the measured
data. Volino & Schultz (2018) derive a transformed version of the Reynolds-averaged,
streamwise momentum equation for two-dimensional flows. They are then able to
calculate friction velocity based on the measured streamwise velocity and Reynolds
shear stress profiles. However, multiple streamwise profile locations are required
because some significant terms are affected by streamwise gradients.

The complexity of these methods, the required high and often impractical experi-
mental accuracy and the lack of required data pose a barrier for common adoption.
Left with a difficult problem, recent studies by Reynolds & Castro (2008) and
Placidi & Ganapathisubramani (2015) have concluded that traditional total shear
stress methods require an evidence-based adjustment of approximately 12 % in order
to match direct (force balance) wall stress measurements.

The present paper aims to develop a more complete understanding of each of
the terms in the momentum equation and to approximate missing terms using
well-established semi-empirical relations and non-dimensionalizations. These insights
enable the development of a more comprehensive shear stress method that improves
the agreement with direct wall stress measurements and circumvents the need for
empirical a posteriori adjustments to the wall stress calculated with fluid velocity and
shear stress profile measurements. The proposed comprehensive shear stress method
requires no more data than traditional total shear stress methods and aims to describe
the turbulent shear stress throughout much of the boundary layer. Increased utility
with less data is accomplished by extending the Volino & Schultz (2018) equation
and supplementing it with semi-empirically justified assumptions about the streamwise
development of a boundary layer.

It is shown that coupling this new friction velocity equation with log-law fitting
provides an accurate method for determining friction velocity in nominally zero
pressure gradient boundary layers. The accuracy of the method is demonstrated
on several recent data sets including Cheng & Castro (2002) which is often cited
for demonstrating this discrepancy between traditional total shear stress methods
and direct measurements. The proposed new method reasonably accounts for the
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discrepancy by demonstrating the effect of a small favourable pressure gradient
caused by a fixed tunnel cross-section on turbulent shear stress and avoids the need
for empirical adjustment of experimental data. The improved accuracy in friction
velocity determination demonstrates the importance of including as many of the
terms affecting the mean momentum balance as possible.

Section 2 describes the reformulated momentum balance in developing boundary
layers and tests the accuracy of the proposed form using various shear stress data
sets. Also, an iterative method to combine this analysis with the log-law equation for
the mean velocity is described. The comprehensive shear stress method is then applied
to several recent experimental data sets in § 3 to demonstrate the performance of the
proposed method of analysis, leading to more accurate friction velocity determination.
Results are summarized in § 4, and conclusions are presented in § 5.

2. Method
The present approach is based on two equations which can be fit to the mean

streamwise velocity profile and the Reynolds shear stress profile in zero or nominally
zero pressure gradients. The two equations each have dependencies on friction
velocity and roughness function which allow iterative convergence to a unique result
for friction velocity, roughness function and zero-plane displacement.

The first equation is an extension to the Volino & Schultz (2018) equation which
allows calculation of friction velocity. Section 2.1 presents the derivation of this
extended Volino & Schultz equation which calculates friction velocity, uτ , maintains
the advantages of the original method and expands its applicability by adding
dispersive shear stress and allowing calculation of streamwise gradients from a
single two-component profile. The second equation is the log-law equation for the
mean velocity. Section 2.2 describes the fitting of the log-law equation. Roughness
function and zero-plane displacement are calculated by a two-parameter fit of the
overlap region of the boundary layer mean velocity profile. Section 2.3 summarizes
the comprehensive shear stress method and the iterative approach combining both
equations.

2.1. Rescaled mean momentum balance equation
For steady, two-dimensional flow with constant properties, the integral form of the
Reynolds-averaged and spatially averaged streamwise momentum equation is

τw

ρ
−

(
ν
∂〈U〉
∂y
− 〈u′v′〉 − 〈ũṽ〉

)
+

1
ρ

d〈P〉
dx

y

−〈U〉
∫ y

0

∂〈U〉
∂x

dy+ 2
∫ y

0
〈U〉

∂〈U〉
∂x

dy+
∫ y

0

∂〈u′2〉
∂x

dy= 0, (2.1)

when integrated from the wall to any arbitrary height, y. Here, x and y are the
streamwise and wall-normal directions, and U and V are the time-averaged streamwise
and wall-normal velocities, respectively. Here, τw is the wall shear stress, ρ is the
density, ν is the kinematic viscosity, P is the pressure, −u′v′ is the Reynolds shear
stress and u′2 is the streamwise Reynolds normal stress. The overbars denote time
averaging, and the angle brackets denote spatial averaging. The primes denote time
fluctuating components from the Reynolds decomposition, u = U + u′, and tildes
denote spatially fluctuating components from a further spatial average decomposition,
U = 〈U〉 + ũ.
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For boundary layer profiles, spatial averaging of multiple data points at the
same wall-normal distance, y, can be advantageous. The most common context
for such averaging is particle image velocimetry where time-averaged statistics
from a two-dimensional vector field may be further spatially averaged into a
single better converged one-dimensional profile. Examples of this approach can
be found in Nakagawa & Hanratty (2001), Wu & Christensen (2007) and Placidi
& Ganapathisubramani (2015). Additionally, spatial averaging may be important for
hot-wire or laser Doppler velocimetry measurements as well. Cheng & Castro (2002)
and Cheng et al. (2007) studied several urban-like roughnesses. They measured
several cross-wire anemometry profiles over a single repeating unit for each surface.
The spatially averaged profile was then a more representative profile which could
be considered homogeneous on scales larger than the repeating unit itself for each
surface.

Equation (2.1) can be used to calculate τw directly as was done successfully by
Brzek et al. (2007) in a zero pressure gradient (ZPG) boundary layer. However, Volino
& Schultz (2018) noted that its accuracy depends largely on the ability to accurately
measure the streamwise gradient terms. This is difficult given experimental constraints
and uncertainties in most circumstances. To mitigate this challenge, Volino & Schultz
(2018) transformed the equation to wall coordinates in the wall-normal, y-direction,
only and separate the streamwise gradient terms into various groups. They use the
standard definitions for non-dimensional terms

y+ =
yuτ
ν
, U+ =

U
uτ
, u′v′+ =

u′v′

u2
τ

, u′2
+

=
u′2

u2
τ

,
1
ρ

dP
dx
=−

KU3
e

ν
,

K =
ν

U2
e

dUe

dx
and

cf

2
=

(
uτ
Ue

)2

,

 (2.2)

where Ue is the free-stream velocity, K is the acceleration parameter and cf is the skin
friction. Equation (2.1) can be rewritten in the transformed variables as follows:

− 〈u′v′〉+ − 〈ũṽ〉+ = 1−
∂〈U〉+

∂y+︸ ︷︷ ︸
I

−
K

(cf /2)3/2
y+︸ ︷︷ ︸

II

+

[
K√
cf /2
+

ν

Ue(cf /2)
d
√

cf /2
dx

] ∫ y+

0
〈U〉+2 dy+︸ ︷︷ ︸

III

+
ν

Ue
√

cf /2

(
2
∫ y+

0
〈U〉+

∂〈U〉+

∂x
dy+ − 〈U〉+

∫ y+

0

∂〈U〉+

∂x
dy+
)

︸ ︷︷ ︸
IV

+

[
K√
cf /2
+

ν

Ue(cf /2)
d
√

cf /2
dx

](
y+〈u′2〉+ +

∫ y+

0
〈u′2〉+ dy+

)
︸ ︷︷ ︸

V

+
ν

Ue
√

cf /2

∫ y+

0

∂〈u′2〉
+

∂x
dy+︸ ︷︷ ︸

VI

. (2.3)
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Equation (2.3) is the extended Volino & Schultz equation and differs from that
of Volino & Schultz (2018) in that the spatial averaging operators, 〈· · ·〉, and
the dispersive stress term, −〈ũṽ〉+, are included here. The dispersive stress term
arises because of the spatial averaging and becomes significant when time-averaged
velocities vary significantly over the area being spatially averaged.

Terms in (2.3) are ordered according to their relative significance in the near-wall
region as in Volino & Schultz (2018). For turbulent smooth-wall data from
Morrill-Winter et al. (2015), Volino & Schultz (2018) found that term I was the
only significant term from the wall to y/δ = 0.04, term II is zero for ZPG flow,
terms I and III are the only significant terms up to y/δ= 0.2 and terms I, III and IV
provided a good fit to data up to y/δ= 0.4. In the above ranges, wall-normal distance
was normalized by boundary layer thickness, δ. Terms V and VI are derived from
the Reynolds normal stress term and have been found to be insignificant (Volino &
Schultz 2018).

The goal of the derivation presented next is to extend the usefulness of (2.3) to
experiments where data from only a single streamwise location are available. This
requires that terms with streamwise gradients are reformulated so that they may be
calculated indirectly using only the velocity profile data from a single streamwise
location, rather than directly by using multiple profiles as in Volino & Schultz
(2018). The derivation that follows will consider only nominally ZPG boundary
layers. Additionally, terms V and VI have been found to be insignificant and will
subsequently be neglected (Volino & Schultz 2018).

2.1.1. Determining the friction velocity gradient
Term III contains the streamwise friction velocity gradient, (d/dx)

√
cf /2, or

equivalently, (d/dx)(uτ/Ue). This term is of primary concern because Volino &
Schultz (2018) have shown that it is significant for determining uτ from data between
approximately 0.046 y/δ6 0.2. This is also the region where there is the best chance
of accurately determining uτ from (2.3) because experimental Reynolds shear stress
measurements are more accurate outside of the immediate vicinity of the wall and
because experimental errors which may build up in the integrals of terms III and
IV are minimized. A convenient reformulation of this term is possible through the
skin friction law and the momentum integral equation (MIE) by extending work
of Clauser (1954), Rotta (1962) and Castro (2007). The derivation is more easily
completed using an alternate form of (1.1) (expressed with the roughness length) and
the wake function

U+ ≡
U
uτ
=

1
κ

ln
(

y
y0

)
+
Π

κ
W
(y
δ

)
. (2.4)

Roughness length, y0, is related to 1U+ by

1U+ = A+
1
κ

ln
(y0uτ
ν

)
. (2.5)

In velocity-defect form, equation (2.4) is

Ue −U
uτ

=−
1
κ

ln
(y
δ

)
+
Π

κ

(
2−W

(y
δ

))
. (2.6)

The addition of the wake function, W(y/δ), to model the outer flow was first
proposed by Coles (1956). The wake function is normalized so that the wake
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strength parameter, Π , accurately characterizes the strength of the wake relative
to other turbulent boundary layers. This paper will use the most common definition
of the boundary layer thickness, δ, namely the wall-normal distance where velocity
reaches 99 % of the free-stream velocity (so that U(δ)= 0.99Ue). Coles (1956) does
not utilize this definition of δ but rather defines it based on normalizing conditions
for the wake function. Therefore, Coles’ δ is approximately 10 % to 30 % larger
than the 99 % δ depending upon the specific wake function. Additionally, Coles
(1956) hypothesized that W(y/δ) is a universal function. This allowed him to define
Π by the normalizing conditions as well. In an effort to avoid the assumption of
a universal wake function in this work, Π will be defined by the wake function’s
maximum departure from the extrapolated log law so that

Π =
κ

2
max

[
U+(y)−

1
κ

ln
(

y
y0

)]
. (2.7)

This approach also avoids the wake strength’s definition being tied to any single
definition of boundary layer thickness while the maximum deviation typically still
occurs very near the 99 % δ (so that Wmax(y/δ ≈ 1)= 2).

Assuming that (2.4) and (2.6) accurately model a turbulent boundary layer velocity
profile in an overlap region, Clauser (1954) and Rotta (1962) both show that a skin
friction law is derived from substituting (2.4) into (2.6). The result is

Ue

uτ
=

1
κ

ln
(
δ

y0

)
+

2Π
κ
. (2.8)

Equation (2.8) is the skin friction law but is not yet expressed in more customary
terms with the local skin friction and momentum thickness. In order to do that,
recall that cf /2≡ (uτ/Ue)

2 and shape factor, H ≡ δ∗/θ , where δ∗ is the displacement
thickness and θ is the momentum thickness.

If the definition of displacement thickness is applied to (2.6), δ∗ is related to δ by

δ∗

δ

Ue

uτ
=
δ∗

δ

√
2
cf
=

1+Π
[
2−

∫ δ
0 Wd(y/δ)

]
κ

≈
1+Π
κ

. (2.9)

Coles (1956) imposed
∫ 1

0 W d(y/δ) = 1 as one of the wake function normalization
criteria and derived the final expression on the right with exact equivalence. Here,∫ 1

0 W d(y/δ) = 1 is assumed (rather than imposed) for the standard definition of δ,
which for ZPG boundary layer flows is of sufficient accuracy for present purposes.
With these relations, the skin friction law, equation (2.8), can be rewritten as in Castro
(2007) according to√

2
cf
=−

1
κ

ln
(

1
H

√
cf

2

)
+

1
κ

ln
(
θ

y0

)
+KΠ , (2.10)

where KΠ = 2Π/κ − (1/κ) ln [(1+Π)/κ]. Castro further showed that this expression
can be rearranged to

θ

y0
=

s− I
s2

eκ(s−KΠ ), (2.11)
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Skin friction law Π = 0.55
Skin friction law Π = 0.70

FIGURE 1. (Colour online) Skin friction law modelled by (2.11) with experimental data
from multiple sources. Blue circles (u) indicate Castro (2007) mesh, cubes, rectangular
blocks and sand-grain surfaces, magenta up triangles (q) indicate Morrill-Winter et al.
(2015) smooth-wall surfaces, green down triangles (s) indicate Squire et al. (2016)
P36 sandpaper surfaces and red squares (p) indicate Placidi & Ganapathisubramani (2015)
LEGOr block surfaces.

where s =
√

2/cf and I is Clauser’s integral parameter (defined as G in Clauser
(1954)). It is defined as

I =
∫
∞

0

(
Ue −U

uτ

)2

dy
/∫

∞

0

Ue −U
uτ

dy=
H − 1

H

√
2
cf
. (2.12)

Here, I can be calculated from the measured velocity profile using (2.12). However,
to test the validity of (2.11), it is convenient to assume a particular functional shape
for the wake function, W(y/δ), so that I can be expressed as a function of Π only.
Castro (2007) showed that I(Π)= (2+ 3.2Π + 1.522Π 2)/[κ(1+Π)] for Coles’ wake
function. Using this expression for I, it is then possible to plot (2.11) together with
experimental data to test its validity because

√
cf /2 remains a function of only θ/y0

and Π .
Figure 1 shows

√
cf /2 versus θ/y0, as determined implicitly via (2.11) with Π =

0.55 and Π = 0.70, plotted together with recent experimental data. For the plotted
curves, I(Π) is calculated using Castro’s expression for Coles’ wake function, but it
can be shown that the particular choice of ZPG wake function has minimal effect
on the plotted curve. The experimental data show that (2.11) models a wide variety
of surfaces quite well, from smooth to various types of rough surfaces. For instance,
data from Morrill-Winter et al. (2015) are from smooth surfaces, Squire et al. (2016)
are from sand-grain surfaces, Placidi & Ganapathisubramani (2015) are from LEGOr

block surfaces and Castro (2007) are from mesh, cubes, rectangular blocks and sand-
grain surfaces.

Figure 1 also shows that Π = 0.55 appears to model the data more closely
than Π = 0.70. This is expected at lower skin frictions but interesting at higher
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skin frictions. Since higher skin frictions are generally those with more aggressive
roughness which generally have larger wake strengths (Keirsbulck et al. 2002), one
would expect the experimental data to match the Π = 0.70 curve more closely
at higher skin frictions. This deviation from the expectation may be due to the
assumption

∫ 1
0 W d(y/δ) = 1 which led to the approximate expression of (2.9) being

used in the subsequent derivation. The authors have tried various definitions of δ
to evaluate the integral explicitly; however, none of these efforts yielded a better
agreement with the experimental data in figure 1. If this is true, it may be best
to assume a value of Π = 0.55 in (2.11) regardless of the actual measured value
from (2.7). However, the deviation may also be due to the small favourable pressure
gradient imposed by the fixed cross-section tunnels used in both Castro (2007) and
Placidi & Ganapathisubramani (2015). This small favourable pressure gradient would
tend to reduce the wake strength causing these data points to potentially follow a
lower wake strength curve. Due to the ambiguity, the present work uses Π calculated
by (2.7) rather than an assumption at each step in the solution process. There is one
exception explicitly documented for comparison in figure 5.

The ultimate goal of this derivation is to calculate the friction velocity gradient,
(d/dx)

√
cf /2. Now that a clear relationship between

√
cf /2 and θ/y0 has been

demonstrated (note that (2.11) defines an implicit equation for s=
√

2/cf as function
of θ/y0), it remains to link θ with x. For ZPG boundary layers, the classical
momentum integral analysis yields such a link, namely cf /2 = dθ/dx (see also
Castro (2007)). It follows that

d
√

cf /2
dx

=

d
ds

√
cf /2

dx/ds
=−

e−κ(s−KΠ )

y0s2

[
1+ (s− I)

(
κ −

2
s

)]−1

, (2.13)

where (d/ds)
√

cf /2=−1/s2 and dx/ds= s2 dθ/ds have been used.
Equation (2.13) shows that (d/dx)

√
cf /2 = f (s, y0, Π, I) and provides a condition

relating these quantities that will be used as part of an iterative process. Initially,
uτ and y0 (and therefore s from Ue/uτ , Π from (2.7), and I from (2.12)) may be
unknown, but an initial guess of approximate values for these quantities may be
obtained from the measured velocity profile and then further refined iteratively as
described in § 2.3.

2.1.2. Determining the velocity gradient profile
Term IV from (2.3) contains the streamwise velocity gradient profile, ∂〈U〉+/∂x|y+ .

By making evidence-based assumptions about the streamwise development of the
boundary layer, it is possible to evaluate this term from a single mean velocity
profile. Empirical evidence supporting the steps to follow are provided from studies
such as Castro (2007), Sillero, Jiménez & Moser (2013), Morrill-Winter et al. (2015)
and Squire et al. (2016). Starting from (2.4) and taking a derivative with respect to
x yields

∂〈U〉+

∂x

∣∣∣∣
y+
=

1
κ

∂

∂x

[
ln
(

y
y0

)]
y+
+

W
κ

∂Π

∂x
+
Π

κ

∂

∂x

[
W
(y
δ

)]
y+
. (2.14)

The first term can be neglected by recognizing that y/y0 = y+/y+0 and hence that
(∂/∂x)[ln(y/y0)]y+ = 0 if ∂y+0 /∂x= 0. From (2.5), the latter condition is equivalent to
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assuming that 1U+ and A are independent of x, which is consistent with the empirical
evidence that a set of normalized profiles separated by a streamwise distance over a
homogeneous surface collapses in the log-law region once the flow is fully developed.
This can be seen also in figure 2(a) on both smooth- and rough-wall data sets. Thus
the streamwise gradient of the logarithmic term, (∂/∂x)[ln(y/y0)]y+ , can be neglected.

The second term in (2.14) is discussed next. Careful examination of currently
available sources yielded no theory or experimental fit which allowed the magnitude
of ∂Π/∂x to be calculated accurately for a generic boundary layer. It is clear from
Sillero et al. (2013) that this term is positive at low Reynolds numbers and becomes
negligible in fully developed smooth-wall turbulent boundary layers above about
Reθ & 6000. It should also be negligible for any fully rough turbulent boundary layer.

The remaining term contains ∂W/∂x. The strategy for evaluating this term with a
mean streamwise velocity profile from only one streamwise location is to link it with
dθ/dx through the chain rule. Defining η= y/δ, the derivative becomes

∂

∂x

[
W
(y
δ

)]
y+
=

dW
dη

∂

∂x

[
y+

δ+

]
y+
=

dW
dη

(
−y+

δ+2

)
∂δ+

∂x

=

(
−

y+

δ+2

)(
uτ
ν

dδ
dθ

dθ
dx
+
δ

ν

duτ
dx

)
dW
dη
. (2.15)

The relation, cf /2≡ (uτ/Ue)
2, can be substituted to obtain a result consistent with the

terms of (2.3). Also, an additional relation is required for dδ/dθ . An approximation
of this term can be found by noting that the plots seen in figures 2(b) and 2(c) of
streamwise velocity profiles in the form of U/Ue versus y/δ from Morrill-Winter et al.
(2015) and Squire et al. (2016) nearly collapse under this scaling. These velocity
profiles are separated by a streamwise distance of approximately 20δ. A δ-scale
differential streamwise distance would be expected to show even better collapse. This
gives evidence that the integral

∫
∞

0 U/Ue(1−U/Ue) dη is approximately constant.
Noting ∫

∞

0

U
Ue

(
1−

U
Ue

)
d
(y
δ

)
=

1
δ

∫
∞

0

U
Ue

(
1−

U
Ue

)
dy=

θ

δ
≈C, (2.16)

it may be concluded that δ/θ is approximately constant and thus equal to dδ/dθ . The
momentum thickness grows proportionally with the boundary layer thickness for a
fully developed boundary layer. This is consistent with often cited derivations from
Schlichting (1979) in which a 1/7 power-law model was used to derive θ/δ = 7/72.
The difference here is that, instead of assuming a velocity profile model, the data
from the measured profile can be used to approximate the ratio. Momentum and
boundary layer thickness are again assumed to grow proportionally over a differential
streamwise distance, and the measured δ/θ is substituted for dδ/dθ .

The above substitutions result in the final expression

∂〈U〉+

∂x

∣∣∣∣
y+
= −

Πy
κδ

[
1
θ

dθ
dx
+

√
2
cf

d
√

cf /2
dx

]
dW
dη

= −
Πy+

κ

[
1
θ

dθ
dx
+

√
2
cf

d
√

cf /2
dx

]
∂W
∂y+

. (2.17)
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FIGURE 2. (Colour online) Scaled boundary layer profiles developing over increasing
fetch. Circles (u) are from Morrill-Winter et al. (2015) smooth surface, and diamonds (f)
are from Squire et al. (2016) sandpaper surface. Profile locations are magenta at x=4.5 m,
green at x= 7.0 m, red at x= 11.9 m and blue at x= 18.0 m. Black dashed line is the
smooth-wall log law, and black dash-dot line is the rough-wall log law.

The first term in brackets captures the effect of boundary layer growth (note that
(2.15) requires that W scales with δ), and the second term arises because the vertical
length scale changes as uτ changes with fetch. The magnitude of these two terms can
be easily compared for ZPG flows adding some insight. The bracketed part of the
equation is equivalently θ−1dθ/dx + (1/2)(dθ/dx)−1d2θ/dx2. Using the well-known
scaling θ ∼ x4/5 for turbulent boundary layers, the first term in the brackets is about
eight times larger than the second and has an opposite sign. The changing length
scale has an order of magnitude smaller effect on the derivative when compared to
the boundary layer’s growth.

The ZPG MIE is dθ/dx = cf /2 and can be substituted for dθ/dx in (2.17). Thus,
with ∂〈U〉+/∂x|y+ expressed in terms of Π , θ , s =

√
2/cf and (d/dx)

√
cf /2 =

f (s, y0, Π, I), the integration over y+ required to evaluate term IV can be performed.

2.1.3. Test on DNS data from smooth-wall turbulent boundary layers
The present analysis and approximations described in the prior sections are used to

evaluate the terms of (2.3), and the resulting profiles are compared with data from
direct numerical simulation (DNS) of Sillero et al. (2013). This database provides
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FIGURE 3. (Colour online) Terms of (2.3) as indicated in the legend for turbulent smooth-
wall ZPG DNS of Sillero et al. (2013) at Reθ = 6000. Black diamonds (6) are measured
Reynolds shear stress. Dashed curves utilize directly calculated streamwise gradient terms.
Solid curves with markers utilize the present method for indirectly calculating streamwise
gradient terms.

detailed statistics for ZPG smooth-wall turbulent boundary layers from Reθ of 4000
to 6500 in increments of 500. Figure 3 shows the terms of (2.3) calculated from the
Reθ =6000 profile statistics. The study’s published uτ was used to normalize all values.
The Reynolds shear stress, −u′v′+, is the only non-zero term on the left-hand side of
(2.3) since there was no spatial averaging required for this study. The left-hand side
of (2.3) is plotted in the figure with black diamonds. The right-hand side terms of
(2.3) which were calculated directly from multiple streamwise profiles are plotted in
the figure with different dashed line styles. Profiles at Reθ of 5500, 6000 and 6500
were used to calculate the streamwise gradients directly using a second-order accurate
central difference numerical method at constant y+. The right-hand side terms of (2.3),
which were calculated indirectly using the present techniques described in this paper
for a single streamwise profile, are plotted with solid lines with markers. Equation
(2.13) requires κ and y0 as parameters. κ = 0.41 and A = 5.1 were assumed, and
y0 = (ν/uτ )e−κA was used as appropriate for a smooth wall.

Figure 3 shows the terms calculated with the two methods show excellent agreement
with each other and the measured Reynolds shear stress data. Other pairs of κ and A
found in the literature could have been selected and would have resulted in a small
but observable difference in figure 3. κ = 0.41 and A = 5.1 were selected because
they gave the best visual fit to the log-law region velocity data (not shown). This
gives good confidence that the assumptions used to derive the indirect formulas for
streamwise gradient terms were sound at least when applied to these data.

2.1.4. Test on experimental data from smooth-wall turbulent boundary layers
Next, the accuracy of the proposed approximations to the various terms in

the momentum balance are tested on the smooth-wall ZPG experimental data of
Morrill-Winter et al. (2015). The data set was acquired in the High Reynolds Number
Boundary Layer Wind Tunnel (HRN-BLWT) at the University of Melbourne. The
profiles shown in figure 4 are from x= 11.9 m with Ue = 15.3 m s−1.
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FIGURE 4. (Colour online) Terms of (2.3) as indicated in the legend for turbulent
smooth-wall ZPG flow of Morrill-Winter et al. (2015) at Reτ = 6080. Black diamonds (6)
are measured Reynolds shear stress. Dashed curves utilize directly calculated streamwise
gradient terms. Solid curves with markers utilize the present method for indirectly
calculating streamwise gradient terms.

Solid lines with markers show the present method. κ = 0.384 and A= 4.17 provided
a close visual fit to the log-law region velocity data (not shown) and are common in
papers from the HRN-BLWT. Terms I and II are the same as in Volino & Schultz
(2018) and fit the measured Reynolds shear stress data very well through y/δ = 0.04.
Adding term III, the fit to the data is very good through y/δ = 0.2. Adding term
IV, both the direct and present methods fit the data well through y/δ = 0.3. Above
y/δ= 0.3, the direct method slightly underestimates the shear stress while the present
method shows good agreement to the measured shear stress data throughout the entire
boundary layer.

2.1.5. Test on experimental data from rough-wall turbulent boundary layers
Figure 5 shows the direct and indirect methods of calculating (2.3) for data from

Squire et al. (2016) with a ZPG turbulent boundary layer developing over a P36
grit sandpaper surface in the HRN-BLWT at the University of Melbourne. The
profiles shown in figure 5 are from x= 15 m with Ue = 17.4 m s−1. Both the direct
and the present method fit the measured Reynolds shear stress data well through
y/δ = 0.2 with terms I, II and III included. The direct method maintains a good fit
through the entire boundary layer when also including term IV. The present method
overestimates the Reynolds shear stress above y/δ = 0.2. This seems to be due to
an underestimation of the friction velocity gradient magnitude in term III by (2.13).
Red open circles show the result if term III is calculated assuming Π = 0.55 in
(2.13) rather than calculating Π from (2.7) (as was suggested for some circumstances
in § 2.1.1). A better fit to the data is observed with this assumption, and both the
direct and present methods yield a close fit to the measured data through the entire
boundary layer.

The overall very good agreement between total shear stress profiles determined
using the proposed single profile approach and measured shear stress data confirms
that the approach may be used to accurately estimate the friction velocity from profiles
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FIGURE 5. (Colour online) Terms of (2.3) as indicated in the legend for turbulent
sand-grain surface ZPG flow of Squire et al. (2016) at Reτ = 13 140. Black diamonds (6)
are measured Reynolds shear stress. Dashed curves utilize directly calculated streamwise
gradient terms. Solid curves with markers utilize the present method for indirectly
calculating streamwise gradient terms. Red open circles (E) utilize the present method and
calculate term III assuming Π = 0.55 in (2.13).

at a single downstream position. It bears recalling that the essential assumption
underlying the approach is a universal collapse of data as shown in figure 1 as well
as some secondary assumptions, namely that W scales with δ and dδ/dθ = δ/θ and
that normal turbulent stress and ∂Π/∂x contributions are negligible.

2.2. Determining roughness length and zero-plane displacement
Rough walls add the need to determine the roughness length, y0, and zero-plane
displacement, d. As has been done by Placidi & Ganapathisubramani (2015) among
others who have determined friction velocity independently, roughness length and
zero-plane displacement can be determined by fitting the log-law equation (2.4) with
measured mean streamwise velocity data in the log-law region. If a two-parameter
fit of (2.4) is required, a convenient way to do this is to use a linear regression
solver on a linear form of (2.4), eκU/uτ = (1/y0)y− d/y0. The left-hand side is known
(or estimated if uτ is unknown). If m and b are solutions for slope and intercept
respectively, then y0 = 1/m and d=−b/m.

If y0 or d is known or can be reasonably assumed, then a one-parameter fit to (2.4)
may yield more accurate results. For example, Squire et al. (2016) assumed that d
was at the midpoint of the sand-grain valleys and peaks and then performed a one-
parameter fit for y0.

It is also possible to use the log-law equation to determine y0 for smooth-wall
boundary layers and apply the present method to smooth surfaces. It should be noted
that y0 has no physical meaning for smooth walls. However, the relations presented
prove useful in applying the present method to smooth walls. By assuming d= 0 and
1U+=0 and equating (1.1) and (2.4), smooth-wall y0 can be calculated by the explicit
formula y0(uτ )= (ν/uτ )e−κA. As can be seen, smooth-wall y0 is not constant since it
is still dependent on uτ .
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Start
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Converged?
Minimize error in

log-law equation to
determine y0 and d

Estimate u†, y0
and d

Minimize error in
extended Volino and
Schultz equation to

determine u†

Minimize error in
extended Volino and
Schultz equation to

determine u†

Minimize error in
log-law equation to
determine y0 and d

FIGURE 6. Flowchart of the iterative process for solving uτ , y0 and d. The extended
Volino & Schultz equation refers to (2.3), and the log-law equation refers to (2.4).

2.3. Practical implementation: iterative method
When friction velocity is initially unknown, it may be determined through (2.3)
and (2.4) through an iterative method. The process is illustrated in a flowchart in
figure 6. An initial estimate of the friction velocity, roughness length and zero-plane
displacement is required since both equations have dependencies in all three variables.
Then, (2.3) is used to determine uτ with the estimated y0 and d by minimizing the
error in (2.3) (note that uτ enters in all of the terms) as explained in more detail when
presenting applications below. Equation (2.3) is not highly sensitive to errors in y0
and d, so determining uτ with this equation first is the best way to reduce error in the
initial estimate. However, since uτ is determined only semi-independently from (2.3),
iterations are required to refine the solution. Next, equation (2.4) is used to determine
y0 and d with the calculated uτ from the previous step. Then, solution refinement
proceeds iteratively between (2.3) and (2.4) until specified stopping criteria are met.
The stopping criteria for the experimental data sets shown in § 3 were three significant
digits for uτ and y0 or 10 iterations. Most data sets converged within a few iterations.

3. Applications to experimental data sets
In this section the analysis of terms in the momentum balance equation (which was

presented in the prior section and led to the iterative method to determine the friction
velocity based on single-location mean velocity and Reynolds shear stress profiles)
is used to determine boundary layer parameters for various experimental data sets.
Where required, κ and A were assumed to be 0.384 and 4.17, respectively, throughout
§ 3. The resulting friction velocities are compared to direct measurements using force
balances or to prior published values.

3.1. Boundary layers over rough sand-grain surfaces
The comprehensive shear stress boundary layer analysis method was applied to the
sand-grain boundary layer data from Squire et al. (2016). This study recorded detailed
fluid profile statistics with a cross-wire anemometry probe at multiple Reynolds
numbers. The study also utilized a drag balance for independently measuring friction
velocity directly at three of the Reynolds numbers tested. The present method is
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FIGURE 7. (Colour online) Comparison of data and fits from the proposed method for
mean velocity (a) and shear stress (b) profiles from Squire et al. (2016) at Reτ = 6770.
Blue circles (u) are measured data, and red diamonds (f) are fitted data. Fit to (2.4)
performed on data between 0.07<ψ(k)< 0.15, and fit to (2.3) performed on data between
0.05<ψ(k) < 0.30. Green lines show (2.4) in (a) and (2.3) in (b). Dotted or dashed line
styles show components of (2.3): brown dash-dot line is 1− I, cyan dashed line is 1−
I− II and magenta dotted line is 1− I− II+ III.

used to analyse turbulent boundary layer data with only the fluid measurements and
without the friction velocity data from the force balance at the three Reynolds numbers
profiled above the drag balance location. Figure 7 shows the present method’s result
for the sand-grain surface with Reτ = 6770. Figure 7(a) shows the mean streamwise
velocity profile versus wall-normal distance, and figure 7(b) shows the Reynolds shear
stress data versus wall-normal distance, in inner and outer scaling, respectively. The
outer-scaled wall-normal distance, ψ , is calculated by

ψ =
y− d
δ − d

. (3.1)

Evidence from Volino & Schultz (2018) showed that reasonable estimates of flow
below the nearest velocity data to the wall can be used to improve results. The
estimated velocities only affect the integral terms in (2.3). In the following results, a
cubic interpolation is used to estimate mean streamwise velocity between the nearest
data point and an assumed zero velocity at y= d. Flow below y= d is assumed to be
a negligible portion of the integrals, which is consistent with evidence from Volino
& Schultz (2018). This is not proposed as a universal method for interpolation but
works well for better estimating the integral terms of (2.3).

Having presented the results from the method as applied to the data, some details
about the iterative procedure are presented next. Initial estimates for uτ , y0 and d may
be used with (2.3) and (2.4) to start the iterative process shown in figure 6 for solving
the unknowns. To illustrate the process, root mean square (r.m.s.) error plots in the
variable parameter space are shown in figure 8. The r.m.s. error for (2.3) is calculated
as usual according to

r.m.s. error=

√√√√1
n

n∑
k=1

[−〈u′v′〉+(k) − 〈ũṽ〉
+

(k) − (1− I− II+ III+ IV)(k)]2, (3.2)
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FIGURE 8. (Colour online) Contour plots of r.m.s. errors of fits to experimental data
for boundary layer flow over sand-grain surface at Reτ = 6770 from Squire et al. (2016).
Panels (a,c) show the mean velocity r.m.s. errors between (2.4) and experimental data in
the range 0.07<ψ(k)< 0.15 calculated as shown in (3.3). Panel (b) shows the r.m.s. error
between (2.3) and experimental data in the range 0.05<ψ(k) < 0.30 calculated as shown
in (3.2). The green lines show the converged values for uτ , y0 and d on the plots.

where the summation is over the n experimental data points between 0.05<ψ(k)<0.30.
Figure 8(b) shows the r.m.s. error in the uτ–y0 plane and indicates that the r.m.s. error
is much more sensitive to changes in uτ than changes in y0 in the fitted region. The
process of solving (2.3) for uτ effectively solves for the minimum on a vertical line
of this plot since y0 is assumed as given in this step of the process. This plot also
helps illustrate that the error minimization from the comprehensive shear stress profile
is well suited for solving uτ accurately.

Figure 8(a,c) shows r.m.s. error for (2.4) for the experimental data between 0.07<
ψ(k) < 0.15 calculated by

r.m.s. error=

√√√√1
n

n∑
k=1

[
〈U(y(k))〉

uτ
−

1
κ

ln
(

y(k) − d
y0

)]2

. (3.3)

Figure 8(c) is the r.m.s. error in the d−y0 plane which is the solution plane of interest
for this step in the process. The range of d on the vertical axis encompasses the total
height of the sand-grain roughness from valleys to peaks. This is the total possible
range for d in accordance with the physical definition proposed by Jackson (1981).
The plot shows a strong dependence on y0 but very weak dependence on d in this
range. For some experimental data sets including this case, a two-parameter fit of
(2.4) can result in non-physical values of d which should fall between the peaks and
valleys of the roughness. Therefore, in some cases it may be more advantageous to
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Reτ Drag balance (m s−1) Present method (m s−1) % difference

6770 0.288 0.286 −0.47
12 300 0.488 0.490 0.41
17 190 0.698 0.693 −0.67

TABLE 1. Squire et al. (2016) published drag balance friction velocity and the present
method’s calculated friction velocity by fitting data between 0.05 < ψ(k) < 0.30 to (2.3)
and fitting data between 0.07<ψ(k) < 0.15 to (2.4).

assume a reasonable d. For the case of figure 7 and the other two cases in table 1, d
was assumed to be the midpoint between peaks and valleys of the sand-grain surface
as was assumed by Squire et al. (2016) and Morrill-Winter et al. (2017). Then a
numerical solver was used to minimize (3.3) with y0 only, which solves for the
minimum error on a horizontal line of figure 8(c) rather than the absolute minimum
error as a two-parameter fit would.

Iteration between solving (2.3) for uτ and solving (2.4) for y0 converges to a unique
solution because of the different sensitivities in the uτ–y0 plane shown in figure 8(a,b).
Iteration progresses until the process converges to a unique solution. The green lines
show the converged values for uτ , y0 and d for the case of figure 7.

Table 1 contains the three cases from Squire et al. (2016) where fluid profiles were
measured directly over the HRN-BLWT drag balance. Table 1 shows that the results
from the present method of determining friction velocity agree with the direct drag
balance measurements within ±1 %. This agreement is well within the experimental
uncertainties and shows the present method to be a reliable analysis technique when
only fluid dynamic measurements are available at a single streamwise location.

3.2. Boundary layers over smooth walls
Next, the present method is applied to the smooth-wall fluid profile data from Morrill-
Winter et al. (2015). Determining y0 and d from the log-law equation, (2.4), in the
flowchart of figure 6 is replaced with the explicit formula y0(uτ )= (ν/uτ )e−κA and with
d= 0 as described in § 2.2. Figure 9 shows fits of (2.3) and (2.4) for the smooth-wall
ZPG flow at Reτ = 1951.

Table 2 shows friction velocity results for a range of Reynolds numbers from the
HRN-BLWT smooth-wall cases. The present method calculates uτ within ±1 % of
the published values from a single profile of fluid dynamic measurements for all
cases analysed. While this study did not utilize a drag balance for friction velocity,
Morrill-Winter et al. (2015) used the composite fit method from Chauhan, Monkewitz
& Nagib (2009) which has been validated extensively. The very good agreement of
results in figure 9 and table 2 again show the present method to be a very accurate
analysis technique and the indirect methods for calculating streamwise gradients in
(2.3) to be reliable.

3.3. Boundary layers over arrays of wall attached staggered cubes
The present method is also demonstrated for boundary layer data from Cheng &
Castro (2002) for flow over an array of wall attached cubes. Cross-wire anemometry
profiles were recorded at multiple locations over a repeating unit for five different
cases. Spatially averaged profiles from the 20 mm staggered cube array with 25 %
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Mean velocity Shear stress
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FIGURE 9. (Colour online) Comparison of data and fits from the proposed method for
mean velocity (a) and shear stress (b) profiles from Morrill-Winter et al. (2015) at Reτ =
1951. Blue circles (u) are measured data, and red diamonds (f) are fitted data. Fit to
(2.4) performed on data between 0.07< y(k)/δ < 0.15, and fit to (2.3) performed on data
between 0.05 < y(k)/δ < 0.30. Green lines show (2.4) in (a) and (2.3) in (b). Dotted or
dashed line styles show components of (2.3): brown dash-dot line is 1− I, cyan dashed
line is 1− I− II and magenta dotted line is 1− I− II+ III.

Reτ Published value (m s−1) Present method (m s−1) % difference

1951 0.368 0.370 0.53
2622 0.356 0.357 0.22
2928 0.541 0.543 0.41
3770 0.519 0.517 −0.40
3844 0.340 0.341 0.16
5593 0.334 0.336 0.55
6080 0.512 0.510 −0.39
7894 0.497 0.497 0.04

TABLE 2. Morrill-Winter et al. (2015) published friction velocities and the present
method’s calculated friction velocities by fitting data between 0.05< y(k)/δ < 0.30 to (2.3)
and fitting data between 0.07< y(k)/δ < 0.15 to (2.4).

planform surface density are shown here in figure 10 with fits from (2.3) and (2.4).
Since the profiles shown are spatially averaged, the dispersive shear stress term is
non-zero and included although it is small enough to be considered negligible. The
r.m.s. error plots for these fits are shown in figure 11. Equation (2.4) is fit for data
between 0 < ψ(k) < 0.22 which is equivalent to the published range used for this
fit by Cheng & Castro (2002). Equation (2.3) was fit between 0.15 < ψ(k) < 0.30.
Additionally, this test case had a single 20 mm brass cube which was instrumented
with 21 pressure taps on the windward and leeward sides of the cube to directly
measure pressure drag. In the fully rough regime, the pressure drag is very nearly the
total surface drag. The same geometry was also tested in Cheng et al. (2007) with
both the pressure-tapped cube and a floating element drag balance which will allow
additional comparison for the friction velocity results.

As is evident from the results in table 3, the present comprehensive shear stress
method does not seem any better than earlier approaches. The difference between the
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Mean velocity Shear stress
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FIGURE 10. (Colour online) Comparison of data and fits from the proposed method for
mean velocity (a) and shear stress (b) profiles from Cheng & Castro (2002) for flow
over staggered 20 mm cubes. Blue circles (u) are measured data, and red diamonds (f)
are fitted data. Fit to (2.4) performed on data between 0 < ψ(k) < 0.22, and fit to (2.3)
performed on data between 0.15 < ψ(k) < 0.30. Green lines show (2.4) in (a) and (2.3)
in (b). Dotted or dashed line styles show components of (2.3): brown dash-dot line is
1− I, cyan dashed line is 1− I− II and magenta dotted line is 1− I− II+ III.
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FIGURE 11. (Colour online) Contour plots of r.m.s. errors of fits to experimental data
for boundary layer flow over staggered cubes from Cheng & Castro (2002). Panels (a,c)
show the mean velocity r.m.s. errors between (2.4) and experimental data in the range
0 < ψ(k) < 0.22 calculated as shown in (3.3). Panel (b) shows the r.m.s. error between
(2.3) and experimental data in the range 0.15<ψ(k) < 0.30 calculated as shown in (3.2).
The green lines show the converged values for uτ , y0 and d on the plots.
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Friction velocity method
uτ
Ue

% difference from PT % difference from FE

Pressure-tapped cube form drag (PT) 0.0718 0.0 1.5
Floating element drag balance (FE) 0.0707 −1.5 0.0
Published traditional total shear stress 0.0640 −10.9 −9.6
Comprehensive shear stress (present) 0.0644 −10.3 −8.9

TABLE 3. Differences between published friction velocities and the present method’s
calculated friction velocity assuming ZPG. Hot-wire profiles for the present method were
from Cheng & Castro (2002). Published friction velocities are from Cheng et al. (2007).

present method and the direct measures is still approximately 8 %–11 %. Additionally,
even though (2.3) seems to fit the shear stress data below ψ < 0.5 in figure 10(b),
there are visual discrepancies in the slope particularly in the near-wall region,
ψ < 0.25, where the equation should be the most accurate (due to less experimental
error in the integral terms). This difference tends to lower the fitted value of friction
velocity in agreement with other fluids based methods and no closer to the direct
measurements.

The key problem with the results in table 3 is the discrepancy between the direct
measurement methods and total shear stress methods (including the present method as
applied above). In study after study, the traditional total shear stress methods seem
to under-predict the friction velocity which has resulted in considerable discussion
in the literature, such as in Cheng et al. (2007), Claus, Krogstad & Castro (2012)
and Ferreira et al. (2018). The discussions persist to this date because, to the authors’
knowledge, this empirical discrepancy has not been quantified by physical equations.
Additionally, studies by Reynolds & Castro (2008) and Placidi & Ganapathisubramani
(2015) both cite Cheng & Castro (2002) and Cheng et al. (2007) for evidence-based
corrections to the friction velocity which they determine from traditional total shear
stress methods.

One of the possibilities noted by Cheng et al. (2007) and Ferreira et al. (2018)
is that a small favourable pressure gradient (FPG) may cause this effect on the
Reynolds shear stress. The University of Surrey and University of Southampton
tunnels where these studies were conducted are considered nominally zero pressure
gradient. However, both tunnels have a fixed cross-sectional area which imposes
a small favourable pressure gradient due to boundary layer growth. From reported
boundary layer growth in Cheng et al. (2007) and the tunnel dimensions, it can
be estimated that the acceleration parameter was approximately K = 2 × 10−8. This
acceleration parameter is small (but non-zero) and in the range of values from the
similarly sized fixed cross-section tunnel in Placidi & Ganapathisubramani (2019).

Therefore, in evaluating term IV, dθ/dx may be replaced with the full MIE
shown by

dθ
dx
=

cf

2
−

(
2θ
δ
+
δ∗

δ

)(
Ueδ

ν

)
K (3.4)

to solve ∂〈U〉+/∂x|y+ from (2.17). Also, for term III of (2.3), equation (2.13) may still
be used to solve (d/dx)

√
cf /2. The evidence from Castro (2007) indicates that (2.13)

still holds for small FPG boundary layers. Castro (2007) shows a plot of cf versus
(x− x0)/y0. Equation (2.13) is derived from the curve in Castro’s plot, and most (if
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Mean velocity Shear stress
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FIGURE 12. (Colour online) Comparison of data and fits from the proposed method for
mean velocity (a) and shear stress (b) profiles from Cheng & Castro (2002) for flow
over staggered 20 mm cubes. Blue circles (u) are measured data, and red diamonds (f)
are fitted data. Fit to (2.4) performed on data between 0 < ψ(k) < 0.22, and fit to (2.3)
performed on data between 0.15 < ψ(k) < 0.30. Green lines show (2.4) in (a) and (2.3)
in (b). Dotted or dashed line styles show components of (2.3): brown dash-dot line is
1− I, cyan dashed line is 1− I− II and magenta dotted line is 1− I− II+ III. Equation
(2.3) is calculated assuming a small FPG with K = 2× 10−8.

Friction velocity method
uτ
Ue

% difference from PT % difference from FE

Pressure-tapped cube form drag 0.0718 0.0 1.5
Floating element drag balance 0.0707 −1.5 0.0
Published traditional total shear stress 0.0640 −10.9 −9.6
Comprehensive shear stress (present) 0.0668 −7.0 −5.6

TABLE 4. Differences between published friction velocities and the present method’s
calculated friction velocity assuming small FPG with K = 2× 10−8. Hot-wire profiles for
the present method were from Cheng & Castro (2002). Published friction velocities are
from Cheng et al. (2007).

not all) of the experimental data on the plot are from fixed cross-section tunnels with
small FPGs.

Figure 12 shows Cheng & Castro (2002) cross-wire anemometry data with fits
from (2.3) and (2.4) using the present method. Equation (2.3) is now calculated
for a small FPG which assumes K = 2 × 10−8. Equation (2.3) now agrees with the
turbulent shear stress data well through ψ < 0.4. Furthermore, it matches the slope
below ψ < 0.25 where it had not previously. Comparing figures 10(b) and 12(b), the
effect on the terms of (2.3) is readily seen. Term II, a purely pressure dependent
term, was zero in figure 10 but approximately half of the total shear stress throughout
the boundary layer in figure 12. Additionally, the magnitude of both terms III and IV
were reduced due to the positive K in term III and (3.4). The overall effect from the
pressure gradient flattened the turbulent shear stress profile throughout the boundary
layer by reducing the inertial terms and increasing the pressure-dependent terms.

Table 4 compares results from the present method now assuming a small favourable
pressure gradient. The present result is now 7 % lower than the pressure-tapped cube
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Mean velocity Shear stress
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FIGURE 13. (Colour online) Comparison of data and fits from the proposed method for
mean velocity (a) and shear stress (b) profiles from Placidi & Ganapathisubramani (2015)
LEGOr block geometry LP2 at Reτ = 7642. Blue circles (u) are measured data, and
red diamonds (f) are fitted data. Some data points were removed for clarity. Fit to (2.4)
performed on data between 0.07<ψ(k)< 0.15, and fit to (2.3) performed on data between
0.15 < ψ(k) < 0.30. Green lines show (2.4) in (a) and (2.3) in (b). Dotted or dashed
line styles show components of (2.3): brown dash-dot line is 1− I, cyan dashed line is
1− I− II and magenta dotted line is 1− I− II+ III. Equation (2.3) is calculated with K
from table 5.

and 6 % lower than the floating element drag balance. This is encouraging because the
comprehensive shear stress method is now within the 10 % published uncertainty of
the pressure-tapped cube measurements in Cheng et al. (2007). The floating element
drag balance does not appear to have published information regarding experimental
uncertainty. It may be assumed that the uncertainty is at least 3 % which would
be in line with other floating element drag balances used in a similar tunnel by
Placidi & Ganapathisubramani (2015) and Ferreira et al. (2018). Additionally, the
uncertainty in the present method is unknown especially given that K was estimated
with limited information. Given these uncertainties the present method appears to be
an improvement to prior single fluid profile measurement approaches.

3.4. Boundary layers over arrays of LEGOr blocks
Placidi & Ganapathisubramani (2015, 2018) tested 12 fully rough surfaces with
different repeating patterns of LEGOr blocks. The studies were nominally zero
pressure gradient and reported that K < 5× 10−8. The authors published the data set
online in Placidi & Ganapathisubramani (2019) which included calculated pressure
gradients. The study published uτ values from direct measurement with a force
balance, and y0 and d were found with a least square regression of the log-law
equation using the friction velocity measured from the force balance. The drag
balance in this study was based on the design documented in Krogstad & Efros
(2010) and is expected to be more accurate than the one in Cheng et al. (2007).

Turbulent boundary layer data plotted in figure 13 were recorded by particle
image velocimetry over the surface geometry named LP2 at Reτ = 7642. Figure 13
shows fits to the particle image velocimetry data for (2.3) and (2.4). Placidi &
Ganapathisubramani (2019) published K = 4.3 × 10−8 for this case. Equation (2.4)
was fitted to velocity data between 0.07<ψ(k) < 0.15 in figure 13(a), and (2.3) was
fitted to shear stress data between 0.15<ψ(k) < 0.30 in figure 13(b).
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Case Drag balance Present method % Present method % K × 10−8

(m s−1) assuming ZPG difference assuming FPG difference
(m s−1) (ZPG) (m s−1) (FPG)

LP1 0.81 0.81 −0.4 0.82 1.3 1.2
LP2 0.78 0.72 −7.9 0.77 −1.8 4.3
LP3 0.71 0.68 −3.9 0.71 −0.1 2.9
LP4 0.67 0.65 −2.8 0.69 3.7 4.3
LP5 0.66 0.62 −5.9 0.66 0.3 4.2
LP6 0.67 0.55 −18.4 0.56 −16.8 1.2

TABLE 5. Differences between Placidi & Ganapathisubramani (2015) published drag
balance friction velocity and the present method’s calculated friction velocities by fitting
data between 0.15<ψ(k)< 0.30 to (2.3) and fitting data between 0.07<ψ(k)< 0.15 to (2.4).
Acceleration parameters, K, obtained from Placidi & Ganapathisubramani (2019).

All six surfaces from Placidi & Ganapathisubramani (2015) with constant frontal
density (LP1–LP6) were analysed with the present method assuming both a ZPG
and a small FPG. In some cases, it was necessary to fix the range of possible d
to within the roughness height due to the physical interpretation of d described in
Jackson (1981). Placidi & Ganapathisubramani (2015) also noted this was necessary
for some cases in their analysis. Results are included in table 5. The present method’s
result was consistently lower than the drag balance measurement when a ZPG was
assumed but was close to the experimental uncertainty of the drag balance for five
of the six cases when the reported K (for the small FPG) was utilized. Case LP6,
which differed by −18 % or −17 %, remains as an outlier for which the present fluid
dynamic measurements alone do not agree with the drag balance measurement.

Placidi & Ganapathisubramani (2015) reported that it was necessary to increase
uτ determined from traditional total shear stress methods by 12 % in order to obtain
agreement within 5 % of the drag balance results for all cases. The present method
does not need a correction factor and achieves considerably better results both
assuming a ZPG and small FPG. Utilizing the reported K for the small FPG leads
to results that are near the uncertainty of the study’s drag balance in a tunnel
similar to the one in Cheng & Castro (2002). These results give strong evidence that
the small FPG explains the often cited friction velocity discrepancy from Cheng &
Castro (2002).

3.5. Friction velocity sensitivity
The comprehensive shear stress method assumes κ , the fitting range for the extended
Volino & Schultz equation, (2.3), and the fitting range for the log-law equation, (2.4),
when solving for uτ , y0 and d. A trivariate sensitivity analysis was performed on
surface geometry LP2 from Placidi & Ganapathisubramani (2015). Converged values
of uτ , y0 and d were calculated for all 150 combinations of κ , fitting range to (2.3),
and fitting range to (2.4) from table 6. Figure 15 shows scatter plots of the results
projected onto the three planes created by uτ , y0, and d. Friction velocity results show
low sensitivity to the assumed parameters with uτ bounded within ±2 % of the results
from § 3.4.

While friction velocity showed low sensitivity, results for y0 ranged from 38 %
below to 5 % above the results from § 3.4. Also, results for d included nearly the
entire upper 1/3 of the roughness height. The variances in y0 and d were primarily

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

67
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.673


384 K. M. Womack, C. Meneveau and M. P. Schultz

0.70

0.75

0.80

(a)

(c)

(b)

0

2

4

6

8

10

0.6 0.8 1.0 1.2 1.4
y0 (mm)

0.6 0.8 1.0 1.2 1.4
y0 (mm)

1 5 10
÷min

d 
(m

m
)

u †
 (m

 s-
1 )

FIGURE 14. (Colour online) Contour plots of r.m.s. errors of fits to experimental data for
boundary layer flow from Placidi & Ganapathisubramani (2015) LEGOr block geometry
LP2. Panels (a,c) show the mean velocity r.m.s. errors between (2.4) and experimental data
in the range 0.07 < ψ(k) < 0.15 calculated as shown in (3.3). Panel (b) shows the r.m.s.
error between (2.3) and experimental data in the range 0.15 < ψ(k) < 0.30 calculated as
shown in (3.2). The green lines show the converged values for uτ , y0 and d on the plots.

κ Fitting range for (2.3) Fitting range for (2.4)

0.38 0.10<ψ(k) < 0.25 0.00<ψ(k) < 0.15
[0.384] 0.15<ψ(k) < 0.25 [0.07<ψ(k) < 0.15]
0.39 0.10<ψ(k) < 0.30 0.10<ψ(k) < 0.15
0.40 [0.15<ψ(k) < 0.30] 0.00<ψ(k) < 0.19
0.41 0.20<ψ(k) < 0.30 0.07<ψ(k) < 0.19

0.10<ψ(k) < 0.19

TABLE 6. Parameter variations for univariate and trivariate sensitivity analysis for Placidi
& Ganapathisubramani (2015). Bracketed parameters indicate the initial assumptions
from § 3.4.

from the high sensitivity inherent in fitting the log-law equation, equation (2.4). The
present method shares this limitation with other methods that rely on two-parameter
fits to the log-law equation. However, the selected log-law fitting range does not
greatly affect the friction velocity result.

A univariate analysis was also performed for all cases with constant frontal density
from Placidi & Ganapathisubramani (2015) excluding the outlier, LP6. In each plot of
figure 16, one of the three assumed parameters was allowed to vary with the values
listed in table 6 while maintaining the initial assumptions from § 3.4 in the other
two parameters. The varying parameter is labelled on the horizontal axis with the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

67
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.673


Comprehensive shear stress analysis of turbulent boundary layer profiles 385

0.6 0.8 1.0 1.2 1.4
y0 (mm)

0

2

4

6

8

10

d 
(m

m
)

0 6 82 4 10
d (mm)

0.70

0.75

0.80

u †
 (m

 s-
1 )

FIGURE 15. (Colour online) Scatter plots showing uτ , y0 and d trivariate sensitivity to
assumptions of κ , fitting range for (2.3), and fitting range for (2.4) applied to data from
Placidi & Ganapathisubramani (2015) LEGOr block geometry LP2. The solid green lines
show the converged values plotted in figure 14. The dashed green lines show uτ ± 2 %.
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FIGURE 16. (Colour online) Bar plots showing univariate sensitivity of uτ to assumptions
of κ , fitting range for (2.3), and fitting range for (2.4) applied to data from Placidi &
Ganapathisubramani (2015). Per cent sensitivity bars show the maximum positive and
negative per cent differences to the uτ reported in table 5 for each case.

vertical axis showing the maximum positive and negative per cent difference to the uτ
reported in table 5 for each case. The figure shows that each of the three assumptions
individually affect the friction velocity result by less than ±1 %.

4. Summary
4.1. Key assumptions

Several key assumptions were included in the derivation and application of the
present method and are reviewed here. First, simplification of the integral form of the
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FIGURE 17. (Colour online) Friction velocities determined using different total shear
stress (TSS) approaches, plotted against published friction velocities. Filled red symbols
utilize the present comprehensive shear stress method. Open blue symbols utilize total
shear stress points in the plateau region. Open green symbols utilize total shear stress
points in the roughness sublayer and inertial sublayer (RS+IS). Open grey symbols utilize
the peak total shear stress. Up triangle (q) data are from Squire et al. (2016). Down
triangle (s) data are from Morrill-Winter et al. (2015). Right triangle (t) data are from
Placidi & Ganapathisubramani (2015).

Reynolds-averaged and spatially averaged streamwise momentum equation assumed
that Reynolds normal stresses were negligible and the flow was two-dimensional.
Second, the derivation assumed that the skin friction law, equation (2.10), was
applicable. There were several assumptions embedded in the skin friction law
which were discussed in § 2.1.1, but the skin friction law was shown to have robust
applicability both in § 2.1.1 and Castro (2007). Third, the friction velocity gradient
equation, (2.13), used the ZPG MIE. However, it was noted that Castro (2007)
applied the ZPG MIE to nominally ZPG boundary layers with good agreement. Also,
results from § 3 imply that this was a valid assumption for K . 5 × 10−8. Fourth,
the velocity gradient profile derivation assumed that velocity profiles would collapse
in outer scaling over a streamwise distance. This condition implies that ∂Π/∂x ≈ 0,
W scales with δ and ∂δ/∂θ ≈ δ/θ and is also sensitive to pressure gradient (and
probably other parameters). However, the velocity gradient profile only appears in
term IV of (2.3) which was not significant for ψ < 0.3 in most cases. Thus, it can
be more easily avoided by choosing an appropriate fitting range.

4.2. Results and comparisons with other methods
Figure 17 compares published measured friction velocity for rough-wall cases and
the published composite fit friction velocity for smooth cases to traditional total
shear stress methods and to the present method. Red points for the present method
fall close to the 45◦ line indicating excellent agreement with the published friction
velocities. The one outlier is from surface LP6 from Placidi & Ganapathisubramani
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(2015) as discussed in § 3.4. It is noted that no other method provided results within
11 % of the measured friction velocity for this case. Other approaches are shown
on the figure with blue, green and grey open symbols, showing larger scatter and
a downward bias. The dotted line shows the total shear stress friction velocity for
which a 12 % correction would equal the drag balance friction velocity. It can be
seen why it may be appropriate to utilize the 12 % empirical correction for some
cases from Placidi & Ganapathisubramani (2015) utilizing all total shear stress data
from the roughness sublayer and inertial sublayer. However, other methods utilizing
the plateau in the total shear stress and peak total shear stress provided results closer
to the solid line. All total shear stress methods performed comparably for the smooth-
and rough-wall cases from Morrill-Winter et al. (2015) and Squire et al. (2016),
respectively.

Overall, no other total shear stress method performed as consistently well as the
present method across all data sets considered. Besides one outlier, all cases utilizing
the present method were within ±4 % of the friction velocity measured with a drag
balance.

5. Conclusions

A detailed analysis of several terms entering in the mean momentum balance of
turbulent boundary layers was performed. The results were useful in formulating
a new comprehensive shear stress method for determining friction velocity. The
approach is based on measured profiles of mean velocity and turbulent shear stress at
a single downstream location and can be used for analysing nominally zero pressure
gradient turbulent boundary layers. The approach extends an equation from Volino
& Schultz (2018) to include spatial averaging and to calculate streamwise gradients
from a single streamwise location. Two key elements are necessary to indirectly
calculate streamwise gradients from a single two-component velocity profile. The first
key element is the replacement of the streamwise gradient of friction velocity with
an assumption of the skin friction law and momentum integral equation. The second
key element is the assumption that the wake function scales with boundary layer
thickness and can be connected to the streamwise gradient through the momentum
integral equation. Application of the extended Volino & Schultz equation to various
data sets showed the equation models turbulent shear stress data throughout the
boundary layer. An iterative procedure combining fitting of the extended Volino
& Schultz equation to the turbulent shear stress profile and fitting of the log-law
equation to the mean velocity profile was proposed and implemented. Applications to
various flows illustrated that the proposed method achieves similar friction velocity
results as force balance measurements but only requires mean velocity and turbulent
shear stress profiles. Results also demonstrated that even small pressure gradients,
which can arise in fixed cross-section facilities, can have a significant (and often
neglected) effect on turbulent shear stresses and may account for 10 % or more in
friction velocity discrepancy with force balance measurements. The comprehensive
shear stress method presented can account for this discrepancy in nominally zero
pressure gradient facilities, leading to improved accuracy when determining friction
velocity and skin friction drag in boundary layer experiments with commonly available
profile data.

An interactive graphical user interface (GUI) software is available for download
as part of the supplementary materials provided at http://pages.jh.edu/∼cmeneve1/
datasets.html.
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