EXHAUSTIVE OPERATORS AND VECTOR MEASURES

by N. J. KALTON

(Received 28th January 1974)

1. Introduction

Let S be a compact Hausdorff space and let $\Phi: C(S) \to E$ be a linear operator defined on the space of real-valued continuous functions on S and taking values in a (real) topological vector space E. Then Φ is called *exhaustive* (7) if given any sequence of functions $f_n \in C(S)$ such that $f_n \ge 0$ and

$$\sup_{s} \sum_{n=1}^{\infty} f_{n}(s) < \infty$$

then $\Phi(f_n) \to 0$. If E is complete then it was shown in (7) that exhaustive maps are precisely those which possess regular integral extensions to the space of bounded Borel functions on S; this is equivalent to possessing a representation

$$\Phi(f) = \int_{S} f(s) d\mu(s)$$

where μ is a regular countably additive E-valued measure defined on the σ -algebra of Borel subsets of S.

In this paper we seek conditions on E such that every continuous operator $\Phi: C(S) \to E$ (for the norm topology on C(S)) is exhaustive. If E is a Banach space then Pelczynski (14) has shown that every exhaustive map is weakly compact; then we have from results in (2) and (16);

Theorem 1.1. If E is a Banach space containing no copy of c_0 , then every bounded $\Phi: C(S) \rightarrow E$ is exhaustive.

Theorem 1.2. If E is a Banach space containing no copy of l_{∞} , then if S is σ -Stonian, every bounded $\Phi: C(S) \rightarrow E$ is exhaustive.

These results extend naturally to locally convex spaces, but here we study the general non-locally convex case. We show that Theorem 1.1 does indeed extend to arbitrary topological vector spaces; it seems likely that Theorem 1.2 extends also, but we here only prove special cases. In particular we prove Theorem 1.2 when E is separable (generalising a result due originally to Grothendieck (6)).

2. Operators on c_0

We denote by (e_n) the unit vector basis of c_0 . If $M \subset \mathbb{N}$ is an infinite subset, then $c_0(M)$ is the subspace of c_0 of all sequences vanishing outside M. Let c_{00} represent the subspace of all sequences which are eventually zero, and let

$$A_n = \{t \in c_{00}: ||t||_{\infty} \le 1 \quad t_1 = t_2 = \dots = t_{n-1} = 0\}. \quad (n \ge 2)$$

Now let $\Phi: c_0 \to (E, \tau)$ be a continuous linear operator mapping c_0 into a metrisable topological vector space (E, τ) . Let (U_n) be a base of closed balanced τ -neighbourhoods of 0 satisfying $U_{n+1} + U_{n+1} \subset U_n$ for $n \ge 1$. Define

$$V_n = \bigcap_{m=2}^{\infty} (U_n + \Phi(A_m)).$$

Lemma 2.1. (V_n) is a base for a metrisable vector topology $\gamma(\Phi)$ on E.

Proof. Each V_n is balanced since each U_n and $\Phi(A_m)$ is balanced. Since U_n is absorbent, V_n is absorbent. In view of Köthe (10, p. 146), it is necessary only to show that $V_{n+1} + V_{n+1} \subset V_n$ for every n, in order to prove that (V_n) defines a vector topology.

Suppose $x, y \in V_{n+1}$; then for any m

$$x = u_1 + \Phi(t),$$

where $u_1 \in U_{n+1}$ and $t \in A_m$. Since $t \in c_{00}$, there exists p such that $t_i = 0$ for $i \ge p$. Then

$$y = u_2 + \Phi(t'),$$

where $t' \in A_p$. Thus

$$x + y = (u_1 + u_2) + \Phi(t + t')$$

and $x+y \in U_n + \Phi(A_m)$. Hence $x+y \in V_n$.

Now

$$\bigcap_{n=1}^{\infty} V_n = \bigcap_{m=2}^{\infty} \bigcap_{n=1}^{\infty} (U_n + \Phi(A_m))$$

$$= \bigcap_{m=2}^{\infty} \overline{\Phi(A_m)} \quad \text{(closure in } \tau\text{)}$$

$$\subset \overline{\Phi(A_2)}.$$

However $\bigcap_{n=1}^{\infty} V_n$ is a linear subspace of E, and, as Φ is continuous, $\overline{\Phi(A_2)}$ is bounded. Therefore

$$\bigcap_{n=1}^{\infty} V_n = \{0\},\,$$

and $\gamma(\Phi)$ is Hausdorff.

Lemma 2.2. If $\{\Phi(e_n): n \in \mathbb{N}\}$ is not a $\gamma(\Phi)$ -precompact set, then for some infinite subset $M \subset \mathbb{N}$, $\Phi: c_0(M) \to (E, \tau)$ is an isomorphism on to its image.

Proof. We may find $k \in \mathbb{N}$ such that for any $\gamma(\Phi)$ -precompact subset S of E, $S + V_k$ does not contain $\{\Phi(e_n) : n \in \mathbb{N}\}$. We then select by induction an increasing sequence of integers p(n) such that for every n

(a)
$$\Phi(e_{p(n)}) \notin V_k + T_{n-1}$$
 $n \ge 1$

(
$$\beta$$
) $\Phi(e_{p(n)}) \notin U_{k+1} + T_{n-1} + \Phi(A_{p(n+1)})$ $n \ge 1$

where $T_0 = \{0\}$ and for $n \ge 1$

$$T_n = \left\{ \sum_{i=1}^n a_i \Phi(e_{p(i)}) \colon \mid a_i \mid \leq 1 \right\}.$$

Pick p(1) so that (α) holds. Now suppose p(1)...p(r) have been selected so that (α) holds for $1 \le n \le r$ and (β) holds for $1 \le n \le r-1$. Then by (α)

$$\Phi(e_{p(r)}) \notin V_k + T_{r-1}.$$

Since T_{r-1} is τ -compact and symmetric we may have a finite symmetric subset Σ_{r-1} of T_{r-1} such that

$$T_{r-1} \subset \Sigma_{r-1} + U_{k+1}$$

Now $\Phi(e_{p(r)}) \notin V_k + \Sigma_{r-1}$, and hence, for each $\sigma \in \Sigma_{r-1}$ there is a $q(\sigma)$ such that

$$\Phi(e_{p(r)}) \notin \sigma + U_k + \Phi(A_{q(\sigma)}).$$

Thus there is a $q = \max (q(\sigma): \sigma \in \Sigma_{r-1})$ such that

$$\Phi(e_{p(r)}) \notin \Sigma_{r-1} + U_k + \Phi(A_q).$$

Since $T_{r-1} \subset \Sigma_{r-1} + U_{k+1}$ we conclude that

$$\Phi(e_{p(r)}) \notin T_{r-1} + U_{k+1} + \Phi(A_q).$$

Now pick $p(r+1) > \max(p(r), q)$ to satisfy (α) , using the fact that T_r is $\gamma(\Phi)$ -compact. This completes the inductive construction.

Suppose $(a_i, ..., a_n)$ is a sequence with $\max_{1 \le i \le n} |a_i| = |a_j| = 1$. Then

$$a_j \Phi(e_{p(j)}) = \sum_{i=1}^n a_i \Phi(e_{p(i)}) - \sum_{i=1}^{j-1} a_i \Phi(e_{p(i)}) - \sum_{i=j+1}^n a_i \Phi(e_{p(i)})$$

(a summation over the empty set is taken to be zero), and therefore

$$a_j \Phi(e_{p(j)}) \in \sum_{i=1}^n a_i \Phi(e_{p(i)}) + T_{j-1} + \Phi(A_{p(j+1)}).$$

Hence by (β)

$$\sum_{i=1}^{n} a_i \Phi(e_{p(i)}) \notin U_{k+1}.$$

Let $M = \{p(1), p(2), ...\}$ and consider $\Phi: c_{00} \cap c_0(M) \rightarrow (E, \tau)$. If $\Phi(t^{(n)}) \rightarrow 0$ and $\|t^{(n)}\|_{\infty} \ge \varepsilon > 0$ for all n, then $\Phi(\|t^{(n)}\|_{\infty}^{-1}t^{(n)}) \rightarrow 0$. However

$$\Phi(\|\ t^{(n)}\ \|_{\infty}^{-1}t^{(n)})\notin U_{k+1}$$

for all n, and so we have a contradiction. Therefore if $\Phi(t^n) \to 0$ then

$$||t^{(n)}||_{\infty} \rightarrow 0$$

and Φ is an isomorphism. Clearly Φ is also an isomorphism on the closure of $c_{00} \cap c_0(M)$, i.e. $c_0(M)$.

Note that, since Φ is continuous $\{\sum_{n=1}^{\infty} \phi(e_n): K \subset \mathbb{N}, K \text{ finite}\}\$ is $\gamma(\Phi)$ -bounded.

Therefore if $\{\Phi(e_n): n \in \mathbb{N}\}\$ is $\gamma(\Phi)$ -precompact then $\Phi(e_n) \to 0$ in $\gamma(\Phi)$.

Theorem 2.3. Suppose (E, τ) is a topological vector space and $\Phi: c_0 \rightarrow E$ is a continuous linear map; then either

(i)
$$\Phi(e_{\tau}) \rightarrow 0(\tau)$$
,

or

(ii) there is an infinite subset M of $\mathbb N$ such that $\Phi \colon c_0(M) \to E$ is an isomorphism onto its image.

Proof. Suppose neither (i) nor (ii) holds. Then we may find a metrisable topological vector space (F, μ) and a continuous linear map $\Psi \colon E \to F$ such that (i) does not hold for $\Psi\Phi$. Then (ii) also must fail for $\Psi\Phi$, and so we may reduce consideration to the metrisable case for τ . We may also suppose that (E, τ) is complete. As above, let (U_n) be a base of neighbourhoods for τ .

Now by Lemma 2.2, $\Phi(e_n) \to 0$ $\gamma(\Phi)$. Let $\bar{\gamma}$ be the finest vector topology such that $\bar{\gamma} \leq \tau$ and $\Phi(e_n) \to O(\bar{\gamma})$ ($\bar{\gamma}$ is given by all τ -continuous F-semi-norms which make $\Phi(e_n)$ a null sequence). Then $\bar{\gamma}$ is Hausdorff since $\gamma(\Phi)$ is Hausdorff. Now let $\bar{\gamma}$ be the metrisable topology with a base of neighbourhoods (\bar{U}_n) (closure in $\bar{\gamma}$). Then if $\bar{\gamma} = \bar{\gamma}$ the identity map in i: $(E, \bar{\gamma}) \to (E, \tau)$ is almost continuous and therefore by the Closed Graph Theorem (Kelley (9), p. 213), $\bar{\gamma} = \tau$. Since we are assuming (i) to be false we conclude that $\bar{\gamma} < \bar{\gamma} \leq \tau$. Therefore

$$\Phi(e_n) \leftrightarrow O(\bar{\gamma})$$

and so by Theorem 3.2 of (8), there is a subsequence $(\Phi(e_n): n \in M)$ which is a regular basic sequence in $(E, \bar{\gamma})$. (A sequence is regular if it is bounded away from zero and basic if it forms a basis for its closed linear span in the completion of $(E, \bar{\gamma})$.)

Now if $t \in c_0(M)$ then $\Sigma t_n \Phi(e_n)$ converges in (E, τ) and hence in $(E, \overline{\gamma})$. Then as $(\Phi(e_n): n \in M)$ is $\overline{\gamma}$ -regular it is equivalent to the unit vector basis of c_0 . By a result of Arsove and Edwards (1), $\Phi: c_0(M) \to G$ is an isomorphism where G is the closed linear span of $\Phi(e_n)$ in $(E, \overline{\gamma})$. Then G is also closed in (E, τ) and by the Open Mapping Theorem Φ is also an isomorphism for the topology τ . This contradicts our assumption that (ii) was false.

Theorem 2.4. Let (E, τ) be a topological vector space containing no copy of c_0 Then any bounded linear map $\Phi: c_0 \to E$ takes the unit ball B of c_0 into a precompact subset of E.

Proof. If $\Phi(B)$ is not precompact, we may find a neighbourhood U of zero in E and a sequence $t^{(n)}$ in $c_{00} \cap B$ such that $\Phi(t^{(n)}) - \Phi(t^{(m)}) \notin U$ for $n \neq m$.

By selecting a subsequence we may suppose $(t^{(n)})$ is co-ordinatewise convergent in l_{∞} . Thus $t^{(n)} - t^{(n+1)} \to 0$ co-ordinatewise. We may then select a subsequence $s^{(n)}$ of $(t^{(n)} - t^{(n+1)})$ which is disjoint (i.e. if $n \neq m$ $s_k^{(n)}$, $s_k^{(m)} = 0$ for all k). Define $\Psi: c_0 \to E$ by

$$\Psi(u) = \sum_{i=1}^{\infty} u_i \Psi(s^{(i)}).$$

As $\Psi(s^{(n)}) \notin U$, we may conclude from Theorem 2.3 that E contains a subspace isomorphic to c_0 .

If E is complete then the hypotheses of Theorem 2.4 ensure that $\sum_{n=1}^{\infty} \Phi(e_n)$ converges.

3. Operators on l_{∞}

Lemma 3.1. Let E be a separable metrisable topological vector space and suppose $\Phi: l_{\infty} \to E$ is a continuous operator such that $\Phi(c_0) = 0$. Then there is an infinite subset M of N such that $\Phi(l_{\infty}(M)) = 0$.

Here
$$l_{\infty}(M) = \{t \in l_{\infty} : t_i = 0, i \notin M\}.$$

Proof. We may assume that E is complete. Let $(M_n: \alpha \in \mathcal{A})$ be an uncountable collection of infinite subsets of N such that $M_{\alpha} \cap M_{\alpha}$ is finite for each $\alpha \neq \beta$, see (19). Suppose if possible that for each $\alpha \in \mathcal{A}$ there exists $t^{(\alpha)} \in l_{\infty}(M_{\alpha})$ with $||t^{(\alpha)}||_{\infty} = 1$ and $\Phi(t^{(\alpha)}) \neq 0$. Let $\mathscr{A}_k = \{\alpha : \Phi(t^{(\alpha)}) \notin V_k\}$ where (V_k) is a base of neighbourhoods of 0 in E. Then for some k, \mathcal{A}_k is uncountable; however $(\Phi(t^{(\alpha)}): \alpha \in \mathscr{A}_k)$ is separable and hence there is a sequence (α_n) in \mathscr{A}_k such that

$$\Phi(t^{(\alpha_n)}) \to x_0,$$

where
$$x_0 \neq 0$$
. Then for any p

$$\Phi\left(\frac{x_0}{x_0}\right) \rightarrow x_0,$$

$$\Phi\left(\sum_{n+1}^{n+p} t^{(\alpha_i)}\right) \rightarrow px_0.$$

However since $M_{\alpha_i} \cap M_{\alpha_i}$ is finite if $i \neq j$ and $\Phi(c_0) = 0$ we conclude that

$$\Phi\left(\sum_{n+1}^{n+p}t^{(\alpha_l)}\right)\in\Phi(B),$$

where B is the unit ball of l_{∞} . Thus $px_0 \in \overline{\Phi(B)}$ for any p and we have a contradiction.

Theorem 3.2. Let (E, τ) be a separable topological vector space, and let $\Phi: l_{\infty} \to E$ be a continuous linear operator. Then $\Phi(e_n) \to 0$.

Proof. Since E may be embedded in a product of separable metrisable spaces, it is sufficient to assume that (E, τ) is metrisable and complete. Now suppose $\Phi(e_n) \to 0$ in (E, τ) . Then there is an infinite subset M of N such that $\Phi: c_0(M) \rightarrow (E, \tau)$ is an isomorphism onto a closed subspace G of E.

Let $\pi: E \to E/G$ be the quotient map; then $\pi \Phi = 0$ on $c_0(M)$ and by Lemma 3.1 there is an infinite subset M_0 of M such that $\pi\Phi = 0$ on $l_{\infty}(M_0)$, i.e. $\Phi(l_{\infty}(M_0))\subset G$. Now as $G\cong c_0$, we may apply the theorem of Grothendieck (6, p. 173), or Rosenthal (16) to deduce Φ is weakly compact on $l_{\infty}(M_0)$ and hence $\sum_{n \in M_0} \Phi(e_n)$ is weakly subseries convergent in G. By the Orlicz-Pettis Theorem $\Phi(e_n) \to 0$ (see e.g. (5) p. 318, (12) or (15)).

It is very possible Theorem 3.2 can be extended to topological vector spaces containing no copy of l_{∞} . However, here we have only a partial result. The technique of the following theorem is essentially found in Drewnowski (4). We identify l_{∞} as $C(\beta N)$ and thus we can define exhaustive operators as in the introduction.

Theorem 3.3. Let $\Phi: l_{\infty} \to (E, \tau)$ be a continuous linear operator, and suppose there is a Hausdorff vector topology ρ on E such (i) $\Phi: l_{\infty} \to (E, \rho)$ is exhaustive (ii)

 τ is ρ -polar, i.e. has a base of ρ -closed neighbourhoods of 0. Then if $\Phi(e_n) \rightarrow 0$ in τ , there is an infinite subset M of $\mathbb N$ such that $\Phi: l_\infty(M) \rightarrow (E, \tau)$ is an isomorphism onto its image.

Proof. By (8) Proposition 2.1, there is a τ -continuous *F*-semi-norm η of the form

$$\eta(x) = \sup (\lambda(x): \lambda \in \Lambda)$$

where Λ is a collection of ρ -continuous F-semi-norms and such that for an infinite subset M_0 of $\mathbb N$

$$\eta(\Phi(e_n)) \geq 1 \quad n \in M_0.$$

By Theorem 2.3 we may suppose that for some subsequence M_1 of M_0 , $\Phi: c_0(M_1) \rightarrow (\hat{E}, \eta_1)$ is an embedding (where (\hat{E}, η_1) is the Hausdorff quotient of (E, η)). Thus if $t \in c_0(M_1)$, $||t||_{\infty} = 1$ then

$$\eta(\Phi(t)) \ge \theta > 0.$$

We next select a sequence $(m_k: k = 1, 2, ...)$ in \mathbb{N} and a sequence

$$(M_{\nu}: k = 1, 2, ...)$$

of infinite subsets of \mathbb{N} by induction. First choose $m_1 \in M_1$. Next given $(m_1, ..., m_k)$ and $(M_1, ..., M_k)$ let S_k be a finite subset of

$$L_k = \left\{ \sum_{i=1}^k t_i \Phi(e_{m_i}) \colon \max \mid t_i \mid = 1 \right\}$$

such that for $x \in L_k$ there exists $s \in S_k$ with

$$\eta(x-s) \leq \frac{1}{8}\theta$$
.

For each $s \in S_k$ pick $\lambda_s \in \Lambda$ such that

$$\lambda_{s}(s) \geq \eta(s) - \frac{1}{8}\theta$$
.

Now let $M_k = \bigcup_{n=1}^{\infty} P_n$ where (P_n) is any sequence of disjoint infinite sets. Since Φ is exhaustive for ρ we may find n_0 such that for $t \in l_{\infty}(P_{n_0})$, $||t||_{\infty} \leq 1$ and $s \in S_k$

$$\lambda_s(\Phi(t)) \leq \frac{1}{8}\theta.$$

Let $M_{k+1} = P_{n_0}$ and then choose $m_{k+1} \in M_{k+1}$. This constructs a set

$$M = (m_1, m_2, ..., m_k, ...)$$

such that $(m_{k+1}, m_{k+2}, ...) \subset M_{k+1}$ for all k.

Now suppose $t \in l_{\infty}(M)$ with $||t||_{\infty} = 1$. For $\varepsilon > 0$ there exists k such that $|t_{m_k}| > 1 - \varepsilon$; thus there exists δ with $|\delta| < \varepsilon$ and such that if $t' = t + \delta e_{m_k}$ then

$$||t'|| = |t'_{m_k}| = 1$$
. Then let $t'' = \sum_{i=1}^k t'_{m_i} e_{m_i}$ and choose $s \in S_k$ such that

$$\eta(\Phi(t'')-s) \leq \theta_8^1.$$

Then

$$\eta(\Phi(t')) \ge \lambda_s(\Phi(t'))
\ge \lambda_s(\Phi(t'')) - \frac{1}{8}\theta
\ge \lambda_s(s) - \frac{1}{4}\theta
\ge \eta(s) - \frac{3}{8}\theta
\ge \frac{5}{8}\theta.$$

Hence

$$\eta(\Phi(t)) \ge \frac{5}{8}\theta - \eta(\varepsilon\Phi(e_{m_k})),$$

and therefore, as $\varepsilon > 0$ is arbitrary and $(\Phi(e_n): n \in \mathbb{N})$ is bounded,

$$\eta(\Phi(t)) \geq \frac{5}{8}\theta.$$

It follows easily that Φ is an isomorphism on $l_{\infty}(M)$.

4. Applications

In this section we collect together the main results of the paper, which are deductions from the more technical results of Sections 2 and 3.

Theorem 4.1. Let E be a topological vector space containing no copy of c_0 ; then every continuous linear operator $\Phi: C(S) \rightarrow E$, where S is compact Hausdorff, is exhaustive (and can therefore be represented in the form

$$\Phi(f) = \int_{S} f(s)d\mu,$$

where μ is a regular countably additive E-valued vector measure defined on the Borel sets of S).

Proof. Let (f_n) be any sequence of positive functions in C(S) such that

$$\sup_{s} \sum_{n=1}^{\infty} f_n(s) < \infty.$$
 Then we can define $\Psi: c_0 \to E$ by

$$\Psi(t) = \Phi\left(\sum_{n=1}^{\infty} t_n f_n\right)$$

 $\left(\sum_{n=1}^{\infty} t_n f_n \text{ converges in the norm topology of } C(S)\right)$. By Theorem 2.3 $\Psi(e_n) \to 0$

i.e. $\Phi(f_n) \rightarrow 0$ and so Φ is exhaustive.

Theorem 4.2. Suppose S is a σ -Stonian compact Hausdorff space and that E is a separable topological vector space. Then any continuous linear operator $\Phi: C(S) \rightarrow E$ is exhaustive.

Proof. Suppose $f_n \in C(S)$, $f_n \ge 0$ and

$$\sup_{s} \sum_{n=1}^{\infty} f_{n}(s) < \infty.$$

E.M.S .- 19/3-U

Then since C(S) is σ -order-complete we can define for $t \in I_{\infty}$ and $t \ge 0$ the order-sum $o - \sum_{n=1}^{\infty} t_n f_n = \sup_{n} \sum_{k=1}^{n} t_k f_k$. We can extend this definition to a linear map $\Gamma: I_{\infty} \to C(S)$ and Γ is continuous. Now let $\Psi = \Gamma \Phi$ and apply Theorem 3.2.

Theorem 4.3. Suppose (E, τ) is an F-space containing no copy of l_{∞} and $\Phi: C(S) \rightarrow E$ is a continuous linear operator which is exhaustive for a weaker Hausdorff vector topology ρ on E. Then Φ is exhaustive for τ .

Proof. Let γ be the largest vector topology on E such that $\gamma \leq \tau$ and Φ is γ -exhaustive. Let $\bar{\gamma}$ be the topology with a base of τ -neighbourhoods consisting of the γ -closures of τ -neighbourhoods of 0.

Suppose now for some $f_n \ge 0$ with $\sup \sum f_n(s) < \infty$ that $\Phi(f_n) \to 0(\bar{\gamma})$. Then we may form the map $\Psi: l_\infty \to E$ as in Theorem 4.2 and by Theorem 3.3 there is infinite subset M of $\mathbb N$ such that $\Psi: l_\infty(M) \to (E, \bar{\gamma})$ is an embedding. Hence $\Psi: l_\infty(M) \to (E, \tau)$ is an embedding and this contradicts the hypotheses of the theorem. Hence $\Phi(f_n) \to 0(\bar{\gamma})$ and so Φ is $\bar{\gamma}$ -exhaustive. However, $\bar{\gamma} \le \tau$ and therefore $\bar{\gamma} \le \gamma$; thus the identity $I: (E, \gamma) \to (E, \tau)$ is almost continuous and by the Closed Graph Theorem (Kelley (9), p. 213) is also continuous, i.e. $\gamma = \tau$ and Φ is τ -exhaustive.

Remark. If E has the property that the continuous linear operators with separable range separate points then a topology ρ can also be found to satisfy the conditions of Theorem 4.3.

Next we mention two other applications. Our first result generalises a theorem of Diestel (3).

Theorem 4.4. Let E be a separable locally bounded F-space, and let $\mathscr G$ be a σ -algebra of subsets of a set S. Let $\mu \colon \mathscr G \to E$ be a bounded (finitely-additive) measure. Then μ is exhaustive.

Note. A measure μ is called exhaustive or strongly bounded if for any sequence (S_n) of disjoint sets $\mu(S_n) \to 0$.

Proof. Since E is locally bounded, the topology may be given by a p-norm $\|.\|$ where 0 . Let

$$\sup_{S \in \mathscr{S}} \| \mu(S) \| = \theta.$$

We use a technique due to Robertson (15); μ may be extended to a linear map Φ_0 on the simple functions $\Sigma(\mathcal{S})$ on \mathcal{S} . Then $\Sigma(\mathcal{S})$ is a normed space under

$$||f|| = \sup_{s \in S} |f(s)|;$$

suppose $f \in \Sigma(\mathcal{S})$ and $||f||_{\infty} \leq 1$. Then

$$\Phi_0(f) = \sum_{i=1}^{\infty} 2^{-i} (\mu(S_i) - \mu(T_i))$$

where S_i , $T_i \in \mathcal{S}$ (only finitely many of S_i , T_i are distinct). Then

$$\| \Phi_0(f) \| \le 2\theta \sum_{i=1}^{\infty} 2^{-ip} \le \frac{\theta 2^{1+p}}{1-2^{-p}}.$$

Thus $\Phi_0: \Sigma(\mathscr{S}) \to E$ is continuous and extends to a continuous operator $\Phi: B(\mathscr{S}) \to E$ where $B(\mathscr{S})$ in the space of bounded \mathscr{S} -measurable functions on S. Using the techniques of Theorem 4.2 it follows that if (S_n) is a disjoint sequence in \mathscr{S} , $\mu(S_n) = \Phi(\chi_{S_n}) \to 0$ where χ_{S_n} is the characteristic of S_n . (Alternatively $B(\mathscr{S})$ is isometrically isomorphic to C(T) where T is σ -Stonian.)

Clearly the preceding theorem generalises to semi-convex topological vector spaces (i.e. spaces which can be embedded in a product of locally bounded spaces).

A C-series is a sequence x_n in a topological vector space such that $\sum t_n x_n$ converges whenever $t_n \to 0$. If E is a space such that every C-series converges, then E is called a C-space (Schwartz (17), Thomas (18)). Clearly Theorem 2.3 yields

Theorem 4.4. A complete topological vector space is a C-space if and only if it contains no subspace isomorphic to c_0 .

A topological vector space is said to have property (0) (Orlicz (13), Labuda (10)) if every series $\sum x_n$ in E such that the set $\left\{\sum_{n \in \Delta} x_n : \Delta \subset \mathbb{N}, \Delta \text{ finite}\right\}$ is bounded, is also convergent. Again by Theorem 2.3 and a similar argument to Theorem 4.3 we conclude

Theorem 4.5. A complete semi-convex topological vector space E has property (O) if and only if E contains no subspace isomorphic to c_0 .

REFERENCES

- (1) M. G. Arsove and R. E. Edwards, Generalised bases in topological linear spaces, *Studia Math.* 19 (1960), 95-113.
- (2) C. Bessaga and A. Pelczyński, On bases and unconditional convergence of series in Banach spaces, *Studia Math.* 17 (1958), 151-164.
- (3) J. Diestel, Applications of bases and weak compactness to vector measures and vectorial integration, Rev. Roum. Math. Pures et Appl. 18 (1973), 211-224.
 - (4) L. Drewnowski, Another note on Kalton's theorem (to appear).
- (5) N. DUNFORD and J. T. SCHWARTZ, *Linear Operators*, Vol. I (Interscience, New York, 1958).
- (6) A. GROTHENDIECK, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173.
- (7) N. J. Kalton, Topologies on Riesz groups and applications to measure theory, *Proc. London Math. Soc.* (3) 18 (1974), 253-273.

- (8) N. J. Kalton, Basic sequences in F-spaces and their applications, Proc. Edinburgh Math. Soc. 19 (1974), 151-167.
 - (9) J. L. Kelley, General Topology (van Nostrand, New York, 1955).
 - (10) G. KÖTHE, Topological Vector Spaces (Springer, Berlin, 1969).
- (11) I. LABUDA, Sur quelques théorèmes du type d'Orlicz-Pettis I, Bull. Acad. Polon. Sci. 21 (1973), 127-132.
- (12) C. W. McArthur, On a theorem of Orlicz and Pettis, Pacific J. Math. 22 (1967), 297-302.
- (13) W. Orlicz, Absolute continuity of set functions with respect to a finitely sub-additive measure, *Prace Mat.* 14 (1970), 101-118.
- (14) A. Pelczyński, Banach spaces on which every unconditionally converging operator is weakly compact, *Bull. Acad. Polon. Sci.* 10 (1962), 641-648.
- (15) A. P. ROBERTSON, On unconditional convergence in topological vector spaces, *Proc. Roy. Soc. Edinburgh*, Sect. A 68 (1969), 145-157.
- (16) H. P. ROSENTHAL, On relatively disjoint families of measures, with some applications to Banach space theory. *Studia Math.* 37 (1971), 13-36.
- (17) L. SCHWARTZ, Un théorème de la convergence dans les espaces L^p , $0 \le p < \infty$, C.R. Acad. Sci. Paris, Ser. A 268 (1969), 704-706.
- (18) E. Thomas, Sur le théorème d'Orlicz et un problème de M. Laurent Schwartz, C.R. Acad. Sci. Paris, Ser. A. 267 (1968), 7-10.
 - (19) R. J. WHITLEY, Projecting m onto c_0 , Amer. Math. Monthly 73 (1966), 285-286.

UNIVERSITY COLLEGE OF SWANSEA SINGLETON PARK SWANSEA SA2 8PP