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Non-equilibrium evolution of wave fields, as occurring over sudden bathymetry variations,
can produce rogue seas with anomalous wave statistics. We handle this process by
modifying the Rayleigh distribution through the energetics of second-order theory and
a non-homogeneous reformulation of the Khintchine theorem. The resulting probability
model reproduces the enhanced tail of the probability distribution of unidirectional wave
tank experiments. It also describes why the peak of rogue wave probability appears atop
the shoal, and explains the influence of depth on variations in peak intensity. Furthermore,
we interpret rogue wave likelihoods in finite depth through the H–σ diagram, allowing
a quick prediction for the effects of rapid depth change apart from the probability
distribution.
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1. Introduction

Ocean statistics offers numerous applications, particularly in marine and offshore safety
(Toffoli et al. 2005). Models for short- and long-term statistics of water waves are used to
define the operating envelope for ocean vessels and fixed offshore structures, respectively.
Furthermore, understanding the mechanisms of formation of rogue waves has received
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a considerable amount of attention in past decades (Dysthe, Krogstad & Muller 2008;
Onorato et al. 2013). Defined as waves at least twice as tall as the significant wave height
(Haver 2000; Dysthe et al. 2008), rogue waves present a looming danger to offshore
operations (Faulkner & Buckley 1997; Faukner 2002). Theories of rogue wave formation
include the Benjamin and Feir instability (Benjamin & Feir 1967) arising in surface gravity
waves, described by the nonlinear Schrödinger equation (Zakharov & Ostrovsky 2009;
Onorato et al. 2013), and linear mechanisms such as constructive interference (Boccotti
2000; Fedele et al. 2016; Dematteis et al. 2019). From a statistical point of view, any
particular theory relies on its ability to reproduce the tail of the wave amplitude probability
distribution.

Longuet-Higgins (1952) applied methods and ideas from signal processing (Rice
1945) to oceanography (see St Denis & Pierson (1953) for a review). In particular,
his approach took the underlying assumptions of Rice (1945) about homogeneity and
ergodicity for granted. Therefore, the resulting non-dimensional Rayleigh distribution
of wave heights cannot account for the varying sea state parameters, such as steepness
(Stansell 2004) or depth (Glukhovskii 1966). The same limitation applies to higher-order
analytical distributions (Karmpadakis, Swan & Christou 2020; Mendes, Scotti & Stansell
2021). Though these standard approaches have had considerable success in explaining
the observed directional spectrum and wave properties (Phillips 1958; Hasselmann
1962; Pierson & Moskowitz 1964), the need for the ergodicity and spatial homogeneity
assumptions essentially prevents the use of spectral analysis techniques in unsteady
conditions or during isolated events, such as rogue waves (Donelan, Drennan &
Magnusson 1996). Furthermore, Haver & Andersen (2000) were the first to suggest a
link between rogue waves and non-stationarity. Nevertheless, we still lack a framework
to account for unsteady conditions, such as shoaling. (For a review of the consequences of
non-stationarity/homogeneity, see Appendix A.)

Following the laboratory experiments of Trulsen, Zeng & Gramstad (2012),
considerable attention has been given to the shoaling effect on rogue wave formation.
Waves approaching a sudden change in bathymetry provide an ideal configuration to probe
out-of-equilibrium conditions (Trulsen 2018). Additional experiments (Raustøl 2014; Ma,
Ma & Dong 2015; Bolles, Speer & Moore 2019; Zhang et al. 2019; Zou et al. 2019; Trulsen
et al. 2020) and numerical studies (Zeng & Trulsen 2012; Gramstad et al. 2013; Ducrozet
& Gouin 2017; Zheng et al. 2020; Zhang & Benoit 2021) have attested heavier tails
than expected by Longuet-Higgins (1952). Nonlinearities and abrupt depth change lead
waves out of equilibrium, deviating from Gaussian statistics. For a step, these bathymetry
effects have been described by nonlinear evolution of interacting free modes with a
truncation of the Korteweg–De Vries equation (Majda, Moore & Qi 2019; Moore et al.
2020) and as travelling wave packets subject to second-order effects in steepness (Li et al.
2021a,c). However, wave height probability distributions able to describe the laboratory
results of Trulsen et al. (2020) are still lacking. In fact, Li et al. (2021b) have obtained
a wave crest probability distribution for the step case based on Tayfun (1980), but as
it is stated in the section following (36)–(38) of Tayfun (1980), this framework cannot
lead to non-Gaussian wave height distributions. The present work seeks a probability
distribution for non-homogeneous conditions encountered by waves undergoing rapid
depth change. More precisely, we show that regardless of the pre-shoal probability
distribution shape, the transformation of the sea surface elevation and spatial energy
density through leading second-order effects in steepness will amplify the rogue wave
probability. This amplification depends on the dimensionless depth (kph) and significant
steepness (ε).
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2. Background and general formulation

Following Massel (2017), we focus on wave and crest heights normalised by the significant
wave height H1/3, as, respectively,

α ≡ H
H1/3

= Zc + Zt

H1/3
, β ≡ Zc

H1/3
, (2.1a,b)

where H= Zc + Zt is the crest-to-trough height (hereafter denoted as wave height), Zc is
the adjacent crest height, and Zt is the trough depth. Assuming that we can approximate
H = 2Zc in narrow-banded seas, the Rayleigh exceedance probability distribution reads
(Longuet-Higgins 1952):

PR(H > αH1/3) ≡ Rα =
∫ +∞

α

fα0 dα0 =
∫ +∞

α

4α0 e−2α2
0 dα0 = e−2α2

, (2.2)

with fα denoting the probability density function of wave heights. For broader spectra, we
define the vertical asymmetry (Kjeldsen 1984; Myrhaug & Kjeldsen 1986) between crest
and trough as the ratio between crest and wave height (Linfoot, Stansell & Wolfram 2000).
Hence whenever it becomes necessary to convert normalised crests into normalised wave
heights in broad-banded seas, they are computed as follows (see § 6.1 of Mendes et al.
2021):

𝔖0(α) ≡2
〈
β

α

〉
r
≈ 2η1/3

1 + η1/3

[
1 + 2η1/3 Re

(√
α − 1

)
7 + 2 Re

(√
α − 1

)
]

, η1/3 ≡
( 〈Zc〉r

〈Zt〉r

)
H>H1/3

,

(2.3)

with 〈·〉r denoting a wave record average. Experimental works typically use 20 min
records. Remarkably, the vertical asymmetry is related to the skewness μ3 through
the approximation η1/3 ≈ 1 + 〈μ3〉r (see (14) and figure 8 of Mendes et al. 2021).
Moreover, considering the correlation between asymmetry, skewness and significant
steepness reported by Guedes Soares, Cherneva & Antao (2004), the asymmetry is weakly
dependent on the bandwidth ν due to the bound μ3(1 + ν2) � kH1/3 (Tayfun 2006).

2.1. Equilibrium wave statistics
In view of the equivalence between the spectral analysis of spatial and time domains (see
Appendix A), we consider the average spatial energy density around x (Dean & Dalrymple
1984), calculated over one spectral zero-crossing wavelength λ̄ (Massel 2017):

E = ρ

2λ̄

∫ x+λ̄

x

[
g (ζ + h(x))2 +

∫ ζ

−h(x)
(u2

1 + u2
3) dz

]
dx, (2.4)

where ρ is the density, g is the gravitational acceleration, h is the water column depth,
x is the direction of motion, and z is the vertical axis so that g = −gẑ, ζ is the sea
surface elevation, and ui = ∂Φ/∂xi is the ith velocity component derived from the velocity
potential. Indeed, the experiments of Trulsen et al. (2020) had length of slope 1.6 m
while the typical peak wavelength ranged from 1 to 1.8 m, thus validating our calculation
above. For an irregular wave field obeying the solution of linear theory (Airy 1845) with
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uncorrelated random phases θi and amplitudes ai, one has the surface elevation (Tayfun
1980)

ζ1(x, t) =
∑

i

ai cos (kix − ωit + θi), (2.5)

where the ith components have wavenumber ki and frequency ωi. Assuming ζ/h � 1 and
〈ζ 〉 ≈ 0 for the second integral interval in (2.4) (Dean & Dalrymple 1984), the energy
reads

EAIRY = 1
8ρgH2 = 1

2ρga2, ∴ EAIRY = EAIRY

ρg
= 1

2

∑
i

a2
i , (2.6)

where a is the wave train amplitude. Then, using the spatial counterpart of the Khintchine
(1934) theorem, which relates the spectral density of a spatial series to its autocorrelation
in homogeneous processes, one concludes (see Appendix A) that

Rx(ξ = 0) := E[ζ 2] = 〈ζ 2〉x =
∫ +∞

0
S(k) dk ≡ m0 = EAIRY , (2.7)

with S(k) denoting the unidirectional ocean energy spectrum based on the wavenumber,
which is equivalent to computing the autocorrelation in time and reformulate it in terms
of the spectrum S(ω) for stationarity in time when the system is both homogeneous and
stationary (Massel 2017). This water wave solution features a Rayleigh distribution of wave
heights in the form P(H > H0) = e−H2

0/8m0 in an irregular wave field with narrow-banded
spectrum (Longuet-Higgins 1952). In the next section we will challenge the assumption of
homogeneity implied by the use of the Khintchine (1934) theorem, paving the way for the
analysis of non-equilibrium statistics.

3. Non-equilibrium wave statistics

Despite the usefulness of the Airy (1845) formulation for the spectral analysis of water
waves, the evolution of the ocean surface is not stationary, spatially homogeneous or
ergodic (Cherneva & Guedes Soares 2008; Goda 2010). Therefore, higher-order (unsteady)
corrections to the Khintchine (1934) theorem should be considered. During the shoaling,
the autocorrelation function is computed from (Here, the surface elevation ζ(x, t) has been
denoted as ζ(x) to ease the notation.)

Rx(ξ, x) = E[ζ(x) ζ(x + ξ)] =
∫ +∞

−∞
ζ(x) ζ(x + ξ) fΓ (x)(ζ ) dζ, (3.1)

where fΓ (x)(ζ ) is the probability density of the surface elevation ζ(x, t) at a fixed point
x, and is expected to depend on a correction Γ (x) due to the effect of bathymetry. In the
spirit of Longuet-Higgins (1980) and Das & Nason (2016), the correction is defined by
comparing how the ensemble and spatial energy averages change at and past the shoal, as

Γ (x) := E[ζ 2(x, t)]
E

= E[ζ 2(x, t)](x)
E (x)

, (3.2)

which means that in a non-homogeneous setting, the surface elevation depends on (x, t)
but both ensemble and energy averages depend only on space. Clearly, due to (2.7),
Γ → 1 both prior to and several wavelengths after the shoal. Without the exact shape
of the random phase distribution as in (A7), it is impossible to find the ensemble average
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E[ζ 2] because the probability density fΓ (ζ ) is unknown: the goal of the present work
is to find its wave height counterpart. Since the targeted experiments are stationary in
time but non-homogeneous in space, we have that Ex=xi[ζ

2] = 〈ζ 2〉t,x=xi , i.e. that the
time average equals the ensemble average at any point xi ∈ R of the spatial evolution.
Because the evolution of a generalised spatiotemporal autocorrelation can be described as
evolutionary spectrum S(ω, x), like those computed for the targeted experiments (Trulsen
et al. 2020) whose statistics were generated considering the time series at different
locations (Lawrence, Trulsen & Gramstad 2021), we may reduce (3.2) to the spatial
evolution of the autocorrelation in time:

Γ (x) = Rt(τ = 0, x)
E (x)

= E[ζ(x, t) ζ(x, t + 0)]
E (x)

≡ 〈ζ(x, t) ζ(x, t + 0)〉t

E (x)
. (3.3)

Note that the spatial and temporal averages are functions not of time but of horizontal
displacements, much like the ensemble average. Indeed, for homogeneous processes, it is
customary to fix a free parameter A such that the area under the spectral curve is equal to
the mean power (Massel 2017), e.g. Rx(ξ = 0) = ∫∞

0 S(k) dk for a one-sided spectrum.
Instead, we choose A such that the area under the spectral curve matches the spatial
energy density (E ) during homogeneous stages, and it reduces to the autocorrelation
in the Gaussian case, i.e. in the strictly homogeneous case prior to the shoal. For
non-homogeneous processes, this is not the case, and the methods for finding a spectrum
produce anomalies and undesirable features (Loynes 1968; Cohen 1989; Flandrin 1989;
Adak 1995; Bruscato & Toloi 2004). This implies that there is no canonical or unique
way to define a non-homogeneous Khintchine theorem (Flandrin 1989) such that the
ratio E[ζ 2]/E computes the deviation from homogeneity. On the other hand, there are
ergodic theorems for non-stationary (or non-homogeneous) processes that we will not
discuss in detail; see, for instance, Nagabhushanam & Bhagavan (1969) and Salehi
(1973), and references therein. In practice, we may speak of an ergodic approximation
for non-homogeneous process in which the cumulative integral of the ensemble average in
a given interval in x is well approximated by the spatial average over the same interval,
so that we could have had Γ (x) = Rx(ξ = 0, x)/E (x) as long as the spatial series is
sufficiently long, and thus it converges to the ensemble average. For simplicity, we
henceforth use the notation 〈ζ 2〉 for the temporal average, while in the appendices we
specify whether we speak of temporal or spatial averaging.

Let us now focus on how the wave statistics will adapt to a non-homogeneous correction
parameter Γ in the ocean. To first order, the probability density of wave heights must fulfil
the narrow-band identity ∫ +∞

0
f (H) H2 dH = 8〈ζ 2〉. (3.4)

Due to the difficulty of converting surface elevation distributions into crest and height
distributions in broad-banded seas (Janssen 2014), (3.4) replaces the typical envelope
approach to find the wave height distribution directly. Therefore, neglecting skewness μ3
and kurtosis μ4, the change in the ratio 〈ζ 2〉/m0 → Γ × (〈ζ 2〉/m0) applied to (2.2) relates
the 2α2 to 〈ζ 2〉/m0, resulting in the narrow-banded correction

Rα,Γ (H > αH1/3) =
∫ +∞

α

4α0

Γ
e−2α2

0/Γ dα0 = e−2α2/Γ ; (3.5)

that is, the initial wave train Gaussian statistics will be affected by bathymetry, and its
exceedance probability Rα will be transformed into Rα,Γ by the shoaling process.
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Following the same energetics argument as in § 2.1, let us generalise the velocity
potential (Dingemans 1997) and surface elevation in (2.5) to an irregular wave field subject
to second-order effects in steepness, with uncorrelated random amplitudes and phases (a
brief discussion is provided in Appendix A) given by

Φ(x, z, t) =
∑

i

∑
m

Ωm,i(kih)

mki
cosh (mϕ) sin (mφ),

ζ(x, t) =
∑

i

∑
m

Ω̃m,i(kih) cos (mφ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6)

with the auxiliary variables ϕ = ki(z + h) and φ = ki(x − cm,it + θi), where cm,i = cm(ki)

is the phase velocity of the ith spectral component of mth order in steepness. To allow an
analytical treatment, the above expression for surface elevation contains no directional
effects or wave–wave interaction, and is restricted to the super-harmonic term of the
second-order correction. This approximation is supported by Dingemans (1997) and
Forristall (2000). In fact, sub-harmonics are at least one order of magnitude smaller than
the super-harmonic (see figure 7 of Li et al. 2021c), and given that the super-harmonic
contributes to only a 2–3 % change in the energy correction due to shoaling, one
should expect the sub-harmonic term to not be fundamental to our analysis. Due to
this approximation, however, the treatment is not equivalent to Stokes waves, whose
propagation in deep water having a narrow-banded spectrum leads to the modulational
instability (Dysthe et al. 2008; Zakharov & Ostrovsky 2009; Onorato et al. 2013).

Under the framework above, we subtract the fixed depth h2
0/2 term from the energy and

can prove for a depth variation ∂h(x)/∂x � 1 (see Appendix B) that

〈ζ 2〉 = 1
2

∑
i

∑
m

Ω̃2
m,i, E = 1

4

∑
i

∑
m

[
Ω̃2

m,i + Ω2
m,i

sinh (2mkh)

2mgk

]
. (3.7a,b)

In the limit i → ∞, we can treat the leading-order coefficients (Ωm, Ω̃m) as being
decomposed into a series of even powers of steepness coupled to factored out trigonometric
functions (χm, χ̃m) (see Appendix B), leading to

E = a2

4

[
1 +

(πε

4

)2
χ1 + · · ·

]
+ a2

4

[
1 +

(πε

4

)2
χ̃1 + · · ·

]
,

〈ζ 2〉 = a2

2

[
1 +

(πε

4

)2
χ̃1 +

(πε

4

)4
χ̃2 + · · ·

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8)

Hence, due to the expressions in (3.3) we get

Γ ≈ 〈ζ 2〉
E

=
1 +

∑
p

(πε

4

)2p
χ̃p

1 + 1
2

∑
p

(πε

4

)2p (
χ̃p + χp

) . (3.9)

This expression demonstrates that the effect of energetics is reduced to the coefficients
of (3.8). We assume that waves before the shoal propagate on a flat bottom and
follow the Gaussian distribution associated with the linear wave theory. Afterwards,
due to the bathymetry change, second-order corrections become relevant since a
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much larger steepness is to be taken into account (see Eagleson 1956). Consequently,
out-of-equilibrium dynamics will deform an initially Gaussian distribution due to
higher-order effects in steepness. In order to apply the same correction to an arbitrary
initial distribution, Appendix C shows that modelling any bathymetry change by a
transition from first- to second-order terms is very effective. The Γ correction depends
only on ε and kh. Additionally, it is independent of slope of the shoaling, provided that
the latter is sufficiently steep (Zheng et al. 2020). Thus it is applicable to the Trulsen
et al. (2020) experiments that featured a slope of 1/3.8. Indeed, results by Gramstad et al.
(2013) suggest that the rogue wave probability is an order of magnitude more sensitive to
a relative change in dimensionless depth kph than in the slope of the shoal. Recently, Fu
et al. (2021) has also demonstrated that for steep-shoaling slopes, the probability of rogue
waves remains the same.

3.1. Second-order statistics
Under the validity of the above assumptions, the spatial energy density for a second-order
perturbation in the narrow-banded case reads (see (B9))

E = 1
2
ρga2

[
1 +

(πε

4

)2
(

χ̃1 + χ1

2

)]
, ka = πε × 𝔖0, (3.10a,b)

with coefficients reading (see figure 1a)

χ̃1 =
[

cosh kh [2 + cosh(2kh)]

sinh3 kh

]2

, χ1 = 9 cosh(2kh)

sinh6 kh
. (3.11a,b)

This model is valid provided that the Ursell number is Ur = Hλ2/h3 = ε(2π/kh)3 �
8π2/3 (Lé Méhaute 1976; Dean & Dalrymple 1984). Hence, for small amplitudes (ζ � h),

E = 1
2

∑
i

a2
i + π2

16
(χ̃1 + χ1)

∑
i

a4
i

λ2
i

≡ m0, (3.12)

whereas the surface total variance reads

〈ζ 2〉 = 1
2

∑
i

a2
i + χ̃1π

2

8

∑
i

a4
i

λ2
i
. (3.13)

In order to consider the whole ensemble of waves, we employ the wavenumber at the peak
of the spectrum, kp, in the dimensionless depth kph, and the zero-crossing wavelength λ̄ in
the significant steepness ε = H1/3/λ̄ (Massel 2017). Thus, in the limit of a large number
of wave components, the previous expressions read

2〈ζ 2〉
a2 = 1 +

(πε

4

)2
χ̃1,

2E

a2 = 1 +
(πε

4

)2 (χ̃1 + χ1)

2
. (3.14a,b)

The narrow-banded correction for a group of waves over a changing bathymetry is

Γ = 〈ζ 2〉
E

= 32 + 2χ̃1π
2ε2

32 + (χ̃1 + χ1)π2ε2 ≈ 1 +
(πε

4

)2
(

χ̃1 − χ1

2

)
. (3.15)

Γ exceeds 1 for all depths, with a maximum of up to 1.13 in intermediate depths (kph ∼
0.5–1) and an asymptotic behaviour for deep water (see figure 1b). This shape defines three
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(a) (b)
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0
1.0 1.5 2.0

kph kph

Γ
(ε

, k
ph

)

2.5 3.0

1.14
Regime I Regime II Regime III

1.12

1.10

1.08

1.06

1.04

1.02

1.00
0.5 1.0 1.5 2.0 2.5 3.0

ε = 1/20;   0 = 1.0

ε = 1/10;   0 = 1.0

ε = 1/7  ;   0 = 1.0

ε = 1/20;   0 = 1.2

ε = 1/10;   0 = 1.2

ε = 1/7  ;   0 = 1.2

Figure 1. (a) Trigonometric coefficients (χm, χ̃m) of the second-order model. (b) Correction parameter Γ

as a function of steepness ε = H1/3/λ̄ and dimensionless depth kph in both narrow-banded (𝔖0 = 1.0) and
broad-banded (𝔖0 = 1.2) seas.

regimes, as marked in figure 1(b). In shallow water (Regime I), a shoal reducing the depth
will reduce Γ , hence the exceedance probability. Conversely, beyond the maximum of Γ

(Regime II), the shoal will increase Γ and the exceedance probability. Finally, as long
as the shoal stays within Regime III, the depth variation will translate into a negligible
change in Γ , hence will have no consequence for the exceedance probability. Such absence
in amplification is similar to the second-order height distribution in Tayfun (1980) in deep
water (see § 3.5). This behaviour will allow us to simplify investigations of shoals starting
in deep water (kph � 2), well within Regime III. We can without loss of generality start
the analysis of the wave statistics evolution at the point when it enters Regime II.

In order to generalise the derivation of (3.15) to broad-band seas, we use the definition
of asymmetry from (2.3). Consequently, the steepness in (3.10a,b)–(3.15) will be corrected
by the vertical asymmetry 𝔖0, which in turn modifies the correction parameter:

Γ𝔖0(ε, kph) = 32 + 2χ̃1𝔖2
0π

2ε2

32 + (χ̃1 + χ1)𝔖2
0π

2ε2
. (3.16)

The vertical asymmetry will increase the correction Γ𝔖0 as compared to the narrow-band
case by a few percent, as follows (see figure 1b):

Γ𝔖0(ε, kph)

Γ (ε, kph)
≈ 1 + 1

2
(χ̃1 − χ1) (𝔖2

0 − 1)
(πε

4

)2 + O(ε4). (3.17)

On the other hand, the parameter Γ must be corrected for wave breaking, leading to
slightly smaller peaks (see figure 2a). We include a depth-dependent breaking limit of
regular waves (Miche 1944) by setting ε � (ε0/7) tanh kph with 0 � ε0 � 1:

Γ𝔖0,0 ≈ 1600 + 2π2𝔖2
0ε

2
0χ̃1 tanh2 kph

1600 + π2𝔖2
0ε

2
0(χ̃1 + χ1) tanh2 kph

, (3.18)

where even if the ratio ε0 is constant, the actual (breaking-limited) steepness ε will drop
considerably throughout the transition from deep to shallow waters (see figure 2a). The
vertical asymmetry 𝔖0 increases the value of Γ significantly (figure 2b), but less than
the decrease in Γ due to wave breaking. Although (3.17) typically increases the shoal
correction by a few percent, it also shows that the correction has an upper bound Γ � 1.20
when ε0 = 1 and kph = 0.5, and maximum possible asymmetry 𝔖0 = 2 (skewed sea with
η1/3 ≈ 2.1). Therefore, a decrease in the depth kph as in the experiments of Trulsen et al.
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Γ
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, k
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)
ε0 = 0.35;   0 = 1.0

ε0 = 0.70;   0 = 1.0

ε0 = 1.00;   0 = 1.0

ε0 = 0.35;   0 = 1.2

ε0 = 0.70;   0 = 1.2

ε0 = 1.00;   0 = 1.2

Figure 2. Γ correction parameter with the same initial significant steepness in deep water (a) with (dashed) or
without (solid) wave breaking in narrow-banded seas, and (b) accounting for wave breaking in narrow-banded
(dashed) and broad-banded (solid) seas.

(2020) will increase the significant steepness as well as Γ , hence Rα,Γ given in (3.5),
i.e. the probability of rogue waves as compared to the pre-shoal, homogeneous Rayleigh
distribution towards Regime II.

3.2. The normalised height diagram
Since a bandwidth correction to the standard measure H1/3 = 4σ will affect the Rayleigh
distribution (Longuet-Higgins 1980), such a relation provides a valuable test for the
Rayleigh distribution (Goda 1983). Hence the distribution of wave heights contains
information on the ratio H1/3/σ , as follows:

exp
(

− H2

8m0

)
= exp

(
− H2

8H2
1/3

(
H1/3√

m0

)2
)

≡ exp

(
−α2

8

(
H1/3√

m0

)2
)

, (3.19)

which shows that at fixed energy (fixed m0 = σ 2), the change in the ratio H1/3/σ is
balanced by the normalisation α = H/H1/3, therefore the overall exponent stays invariant,
thus the wave statistics. However, if and only if m0 increases in comparison to Airy’s
solution, we expect the coefficient H2

1/3/m0 attached to α2 to be smaller. In fact, this
can be seen by the ratio of the energies at first order (2.6) and second order (3.10a,b).
To investigate the effect of broad-band seas on H1/3/σ by the direct measurement of the
vertical asymmetry as in (2.3), we combine (3.5) and (3.19), and find (see figure 3a)

H1/3 = 4
𝔖0

√
m0

Γ𝔖0

. (3.20)

Consequently, the ratios H1/3/
√

m0 obtained from our model agree with the asymptotic
values of 4 (narrow-banded in deep water, solid lines) and 3.8 (broad-banded in deep water,
dashed line), as reported by Goda (1983). Asymmetry contributes to this expression via
two different processes. On one hand, the 1/𝔖0 factor corresponds to its direct influence
on the significant wave height. This factor does not depend on the occurrence of a shoal,
although the asymmetry depends ultimately on the depth. Increasing the bandwidth and
therefore 𝔖0 will also lower H1/3/σ (see (3.20)), as demonstrated by Vandever et al.
(2008). On the other hand, the asymmetry influences the probability amplification by
the shoal, via its impact on Γ𝔖0 . Except in very shallow water (Regime I), both 𝔖0
and Γ𝔖0 decrease monotonically as a function of kph, as we model the pre-shoal zone
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σ
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Regime IIRegime I

ε = 1/20

α
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ε = 1/10
ε = 1/7
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0
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0/
In

 Γ

2.5
2.0

1.5
1.0

Figure 3. (a) H–σ diagram for narrow-banded 𝔖0 = √
Γ (solid) and otherwise with 𝔖0 ∼ Γ 2 (dashed) for

the specific case of ε = 1/15 for comparison. (b) Ratio κ = ln𝔖0/ ln Γ with steepness: 1/7 (orange), 1/10
(blue), 1/15 (green) and 1/20 (red).

as a homogeneous Airy solution concurrently leading to 𝔖0 → 1 and Γ𝔖0 → 1. We
can therefore define a parameterisation mapping the latter to the former, in the form
𝔖0 = Γ κ

𝔖0
(figure 3b), or, equivalently, its linear version 𝔖0 = 1 + κ(Γ𝔖0 − 1). Note that

this parameterisation aims to describe the simultaneous evolution of Γ and the asymmetry
when the depth evolves, while (3.17) describes only the direct impact of the asymmetry on
Γ . Since Regime II is the one where we seek the evolution of the exceedance probability,
the κ parameterisation appears suitable for our work. Furthermore, its use avoids the
numerical issues that would arise if handling 𝔖0 and Γ as independent.

3.3. Evolution of a narrow-banded arbitrary probability distribution
So far, we have studied a pre-shoal Rayleigh distribution of the surface elevation.
Following (3.5), the Γ correction due to a rapid bathymetry change reads

Rα,Γ = e−2α2/Γ = (Rα)1/Γ ∴ lnRα

Γ lnRα,Γ

= 1, (3.21)

Rα,Γ

Rα

= (Rα)(1/Γ −1) = exp
(

2α2
(

1 − 1
Γ

))
. (3.22)

The same correction therefore applies to any initial surface elevation distribution P, as
detailed in Appendix C. For a narrow-banded sea,

Pα,Γ ≈ (Pα)1/Γ ∴ Pα,Γ

Pα

≈ exp
(

2α2
(

1 − 1
Γ

))
, (3.23)

where Pα denotes the exceedance probability at equilibrium prior to the shoal, and Pα,Γ

is the distribution within the non-equilibrium zone. Hence the highest possible realistic
values of Γ ∼ 1.08 (see figure 1) lead to a two-fold increase of rogue wave probability.

3.4. Evolution of a broad-banded arbitrary probability distribution
In the case of a broad-banded sea, the connection between crest and height statistics
responsible for (3.20) can be reinterpreted as a simple change of variables Γ → 𝔖2

0Γ𝔖0
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in (3.5), so that (3.23) becomes

Pα,Γ𝔖0
≈ (Pα)

1/𝔖2
0Γ𝔖0 ∴

Pα,Γ𝔖0

Pα

≈ exp

(
2α2

(
1 − 1

𝔖2
0Γ𝔖0

))
. (3.24)

To ensure the numerical stability of the distribution along the propagation, we use the κ

parameterisation introduced in § 3.2. For practical purposes, we estimate it as

κ0 = ln
[
max𝔖0

]
ln
[
max Γ

(〈ε〉, kph,𝔖0
)] ≈ ln𝔖0

ln Γ
(〈ε〉, kph,𝔖0

) , (3.25)

where the maximum of Γ is taken over the propagation on the whole shoal, 〈ε〉 being
the average of the pre- and post-shoal steepness. It can be measured at both stages
of the wave propagation, or, alternatively, obtained from forecast or hindcast, from the
zero-crossing period and significant wave height. Note that uncertainties in asymmetry
impact marginally the value of κ0, as respective errors in the numerator and in Γ tend to
partially compensate for each other due to (3.17). Consequently, the effect of the shoal on
the exceedance probability evolves during the propagation along x as

ln Pα

ln Pα,Γ

= 𝔖2
0 × Γ = [Γ (〈ε〉, kph,𝔖0

)]2κ0 × Γ
(
ε(x), kph(x),𝔖0

)
. (3.26)

When the evolution spreads into Regimes I and III, the use of κ0 is necessary to avoid
divergence, though a continuous κ restricted to Regime II is applicable. Note that under
adequate conditions, a more compact form can be derived, as detailed in Appendix D.

3.5. Comparison with standard second-order models
In this subsection, we delineate similarities and differences between our model of
second-order wave height probability and the typical treatment arising from Tayfun (1980).
Following the second-order water surface, one finds (Tung & Huang 1985)

ζ(φ = 0) := Zc =
[

a cos φ + ka2

2
cos (2φ)

]
φ=0

= a + ka2

2
, (3.27)

which, normalised by the variance, reduces (with nomenclature σ X̃ := X) to

Z̃c = ã + ã2 × kσ
2

∴ ã =
√

1 + 2Z̃cσk − 1

σk
. (3.28)

Applying the finite-depth coefficients in (2.382a) of Dingemans (1997), one finds

Z̃c = ã + ã2 × kσ
2

× F , F = F(kh) = 3 − tanh2 kh

2 tanh3 kh
, (3.29a,b)

leading to the mathematical structure (see Mendes et al. (2021) for the F = 1 case)

P(H > αH1/3) = exp

{
− 8

k2H2
1/3F2

[√
1 + αkH1/3F − 1

]2
}

. (3.30)

Note, however, that this distribution was not derived in the narrow-band model of Tayfun
(1980); it is rather an adaptation to extract the mathematical structure of a probability
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Figure 4. (a) Γ model (solid) as compared to the finite-depth adjusted second-order structure (dashed), and
(b) with corrected steepness.

growing boundlessly with increasing steepness. Although Tayfun (2006) puts limitations
on the steepness as μ3 � kH1/3/(1 + ν2), North Sea data (Stansell 2004; Mendes et al.
2021) shows that the skewness can grow higher. Therefore, the suggested adaptation to
wave heights is useful since now ε can reach its breaking limit (Miche 1944). In figure 4(a),
we compare our Γ model of (3.24) with that of (3.30) through the H–σ diagram:

H1/3√
m0

= 8
αkH1/3F

[√
1 + αkH1/3F − 1

]
. (3.31)

The finite-depth adapted height model yields 10–20 % lower ratios in deep water, and
drops towards zero in shallow water, in contradiction with observations (Goda 1983).
Nonetheless, our model can be consistent with the structure of (3.30) in both deep and
transitional waters (kph � 0.8) for moderate values of α and within the narrow-band
validity of Tayfun (1980), provided that (3.30) is corrected to the steepness kpH1/3 →
εs, where εs := 〈εi〉r = 〈H1/3/λi〉r; see figure 4(b). Indeed, we can use 〈λi〉r ≈ 1.5λ̄
(Mendes et al. 2021), which implies ε = H1/3/λ̄ ≈ 1.5εs ≈ 3kH1/3/4π. For transitional
and especially shallower regions reaching the limit of the second-order approximation,
the above adapted model would not reproduce the same probability amplification as our
model, nor the original one (Tayfun 1980). Hence our model departs from Tayfun (1980)
in finite depth and recovers it in deep water.

4. Comparison with Trulsen experiments

Raustøl (2014) provides experiments of wave propagation over a shoal, later summarised
in Trulsen et al. (2020). These experiments were carried out in a 24.6 m long and 0.5 m
wide wave tank. Surface elevation measurements were made with ultrasound probes, and
velocity measurements were made with an acoustic doppler velocimeter, with an array of
16 probes that was moved to four different locations such that the resolution before the
shoal was 0.3 m and the resolution above the shoal was 0.1 m. The wavemaker generated
a JONSWAP spectrum with peak parameter γ = 3.3, with typical peak periods Tp ∼ 1 s.
The probability distribution of rogue waves evolving with the distance from the wavemaker
was recorded, offering a benchmark for our non-homogeneous correction to the wave
height probability distribution. Since our model is expressed in terms of dimensionless
depth and significant steepness, we have extracted the raw data from figures 5.4
and 5.5 of Raustøl (2014), in accordance with the inversion kph ≈ (kpac/Ur)1/3 of
Trulsen et al. (2020). In order to facilitate the processing, we have smoothed the
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experimental data by fitting analytic functions on the data points, as described in detail
in Appendix E. The experiments feature a shoal starting at x = 0, rising up to 42 cm at x
= 1.6 m, followed by a plateau until x = 3.2 m and a decay to zero until x = 4.8 m. The
initial depth ranges between 50 and 60 cm depending on the runs, as detailed in table 1 of
Trulsen et al. (2020) and table 5.2 of Raustøl (2014).

4.1. Results
Based on the κ0 parameterisation described in the previous section, we compute the
evolution of the rogue wave probability as a function of distance for each run, assuming
a pre-shoal homogeneous Rayleigh distribution (figure 5). The values of κ0 calculated
according to (3.25) amount to (5.9, 4.9, 4.3, 3.6, 2.9, 2.6, 2.3, 2.4, 2.3, 2.2) for the runs
1–2, 4–9 and 11–12, respectively. Our model that takes into account the evolution
of the wave asymmetry 𝔖0 over the shoal (cyan curves) due to the skewness of the
surface elevation distribution (2.3) reproduces well the experimental data, over the whole
shoaling episode and for all runs. Disregarding the evolution of skewness reported in
Trulsen et al. (2020) while keeping a vertical fixed asymmetry 𝔖0 = 1.2 (blue curves
in figure 5) degrades the agreement only marginally, although the probability rises slightly
earlier, decays slightly later, and the asymmetry between the up- and down-shoaling
phases is reduced. Furthermore, we point out the remarkable difference of amplification
between vertically asymmetrical (solid blue, cyan) and symmetrical seas (dashed red).
This happens because (3.21) leads to a maximal amplification between 75 % and 100 % for
Γ ≈ 1.08–1.10. When we include the typical vertical asymmetry 𝔖2

0 ∼ 1.5, the pre-shoal
probability Pα is transformed into P

2/3
α ∼ 10Pα within Regime II, seemingly becoming

an alternative to Gram–Charlier models (Mori & Yasuda 2002). Finally, adjusting the
homogeneous pre-shoal probability to the observed values instead of considering an initial
Rayleigh distribution (dotted curve) improves the agreement (runs 6–12, figures 5e–j),
demonstrating the applicability of our model to arbitrary probability distributions. This
agreement over the whole range of experimental conditions reported by Raustøl (2014) is
remarkable, as it requires no specific parameter tweaking.

4.2. Discussion
In contrast, Tayfun (1980) (see the discussion following (36)–(38) of that paper) claims
a Gaussian probability distribution for the second-order wave heights, as also discussed
in Tayfun (1990) and Tayfun & Fedele (2007). In fact, these models fall under the
broad category of quasi-determinism theories (Boccotti 2000), in which Longuet-Higgins
(1980) and Naess (1985) also take part and preclude wave heights from exceeding the
Rayleigh distribution, typically being lower than the latter as the bandwidth broadens.
Therefore, these formulations in homogeneous conditions would not be able to describe the
Raustøl (2014) and Trulsen et al. (2020) experiments. Also according to these models, any
departure from a Rayleigh distribution of wave heights is due to third-order nonlinearities
(Tayfun & Fedele 2007; Alkhalidi & Tayfun 2013). Nevertheless, it is important to remark
that most of these theories were devised for deep waters, hence they fall within Regime
III of our model. Moreover, following Marthinsen (1992) and Dingemans (1997), one can
tentatively elaborate alternative finite-depth second-order mathematical structures as in
§ 3.5. Comparing with our model, we observe a numerical equivalence in deep water, but
not in transitional and shallow waters where the alternative second-order models display
a sharp departure from the observations of Goda (1983). Unfortunately, the finite-depth
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model of Tayfun & Alkhalidi (2020) is not a distribution of wave heights, hence is not
applicable to our discussion.

Our Γ model of the probability evolution over a shoal is based on the second-order
correction, which is valid for Ur � 8π2/3 (Dean & Dalrymple 1984). This limit of validity
is well beyond the Ursell number Ur � 0.22 of the experiments considered in this work
(Raustøl 2014; Trulsen et al. 2020). We can therefore expect that the Γ model will still
apply to more than 10 times larger waves and/or shallower waters.

The transient drop of Pα,Γ /Pα to almost zero in the rising region of the shoal (0 � x ≤
1.6 m) in runs 1, 2, 4 and 5, as well as its slow decay on the trailing side (3.2 ≤ x ≤ 4.8 m),
could be due to higher-order nonlinear effects not captured in our model, including the
evolution of the skewness and kurtosis of the surface elevation probability distribution
when propagating on the shoal.

Recent developments in Zhang & Benoit (2021) described the exceedance probability of
Run 3 of Trulsen et al. (2020) throughout the shoaling and de-shoaling stages by means of
numerical simulations. However, an analytical expression for the probability distribution
was not provided, and cases with low or vanishing skewness and kurtosis like Run 12 were
not addressed. Our model provides an explicit expression with no free fitting parameter. It
is obtained directly from second-order correction and has been shown to be valid for all
runs in Raustøl (2014). Although we were not able to analyse Run 3 (Jorde 2018) due to
the lack of wave height probability data, we are confident that our model can reproduce it
well, as it does for the very similar Runs 1, 2 and 4.

The modulational instability cannot account for the rise of the rogue wave probability
due to shoaling in the considered experiments because they do not feature narrow-banded
Stokes waves or lie in the optimal range kph > 1.36 (Zakharov & Ostrovsky 2009) in the
shallower side, except for Runs 11 and 12, which showed no significant amplification. On
the other hand, all runs start in the range kph > 1.36 before the shoal and showed no large
deviation from the Gaussian sea, except for Run 12.

Furthermore, our model – and in particular the three regimes discussed in (3.15) and
figure 1(b) – also allows us to understand the contradictory behaviours highlighted by
Trulsen et al. (2020) and Zhang & Benoit (2021). While the rogue wave probability is
not affected by a shoal in initially deep water (Regime III), it does increase on a shoal
in intermediate depth (Regime II). Interestingly, a third regime (Regime I of figure 1b) is
consistent with observed surf zone statistics (Glukhovskii 1966), i.e. rogue wave likelihood
lower than in transitional waters. In addition, Barbariol et al. (2015) show an increase of
maximum crest up to some cut-off in dimensionless depth, upon which it starts to decrease
sharply the higher the ratio H1/3/h becomes, thus providing support for Regime I in
our model. However, numerical simulations and experiments with even shallower shoals
are necessary for a conclusive assessment. Therefore, we have demonstrated that rogue
wave statistics will be enhanced by non-equilibrium dynamics of rapid depth change for
a dimensionless depth 0.5 < kph < 1.5 but stops growing when it leaves this range. It is
therefore less pronounced past the threshold kph � 0.3 until it starts to follow shallow
water distributions such as in Glukhovskii (1966). Recently, after the submission of this
work, experiments on the shoaling of irregular unidirectional waves have confirmed our
prediction that the amplification of wave height statistics in Regime II will vanish in
Regime I (Xu et al. 2021).

The evolution of the rogue wave probability highlighted by our model could be related
to the process proposed by Li et al. (2021c) and confirmed experimentally in Li et al.
(2021a), in which the generation of additional wave packets that interact with the original
pre-shoal wave packet propagating over a step leads to a local peak some distance into the
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Figure 5. Evolution of the probability of rogue waves (α ≥ 2) over a shoal for Runs 1–2, 4–9, 11–12 from
figure 5.8 of Raustøl (2014). Blue: model of (3.23) for a pre-shoal (x < 0) Rayleigh distribution with 𝔖0 = 1.2.
Cyan: same model, considering the evolution of skewness over the shoal. Dotted: model of (3.23) for a pre-shoal
probability matched to the experimental data. Dashed: same as blue, but for symmetrical seas, 𝔖0 = 1.
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shallower region. Notably, Li et al. (2021c) have used a more general treatment for the
surface elevation, containing both super- and sub-harmonics, as well as free and bound
waves. Moreover, instead of bound super-harmonics in our model, one could investigate
the effect of the nonlinear evolution of interacting free modes. For instance, similar
experimental results were interpreted using a statistical matching of Korteweg–De Vries
equilibrium states at the depth transition point (Majda et al. 2019; Moore et al. 2020).
In retrospect to the ideas in Onorato & Suret (2016), these works obtained a connection
between variance and skeweness with the dynamics. Therefore, subsequent investigations
carrying out a comparison between the two types (free and bound) of mode evolution will
be of great relevance.

5. Conclusion

This work presented a connection between statistical distributions and the fluid mechanics
of the second-order perturbation in non-homogeneous conditions, providing successfully
a physical explanation for the rogue wave probability increase over a depth change
(Raustøl 2014; Trulsen et al. 2020). We have shown that our model reproduces very well
the experiments of Raustøl (2014) and Trulsen et al. (2020) regarding the probability
distribution as a function of the distance from the wavemaker. Moreover, we showed
that the significant steepness and dimensionless depth affect the validity, and assessed
numerically the extent of the deviation from the assumption of homogeneity. Furthermore,
instead of introducing new physics (Haver & Andersen 2000), our model has demonstrated
that an effective theory arises by challenging the homogeneity assumption. Introducing the
H1/3/σ ratio (Goda 1983), we have established that the deep water regime produces no
significant amplification of the height distribution, whereas the transitional water within
0.5 < kph < 1.5 provides strong amplification, and the shallow water regime decreases
this large amplification to a level smaller than the initial stage in deep water.

Our model has been restricted to reformulating normalised moments up to the variance
only. The evolution of either skewness or kurtosis as a function of the distance from
the wavemaker (Trulsen et al. 2020) will be addressed in a subsequent work. On the
other hand, we have shown that it is possible to fit the data without the application of
either skewness or kurtosis, as they are ‘symptoms’ of the dynamics and not the cause
(Stansell 2004; Christou & Ewans 2014; Cattrell et al. 2018). Since our model relies
on relations between steepness, slope and bandwidth that might be affected by a rapid
depth change, the empirical findings in Mendes et al. (2021) regarding vertical asymmetry
have to be extended to the current setting for an exact formulation. Furthermore, the
generalisation of this work to multidirectional spectra would be needed, since Ducrozet &
Gouin (2017) suggest that such a configuration weakens the effect of a varying bathymetry.
Whether rogue waves are enhanced in strong bathymetry changes throughout most oceans
or regionally under suitable conditions is yet to be assessed.
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Non-homogeneous analysis of rogue waves over a shoal

Appendix A. Spectral analysis of spatial and temporal series

Below, we discuss two aspects of the assumptions necessary to obtain a sea with Gaussian
statistics, the first dealing with a steady-state treatment of the statistical moments, and
the second dealing with otherwise out-of-equilibrium conditions. First, we highlight that
typically, classical definitions exhibit steady-state series as stationary and homogeneous
in regard to translations in time and space, respectively. Traditionally, the Khintchine
(1934) theorem is often written for the time domain, but it can be generalised to the spatial
domain (Ripley 1981; Sherman 2010). Indeed, the spatial Khintchine theorem has the same
structure, only replacing the time lag τ by a displacement vector |ξξξ | = ξ (Shinozuka &
Jan 1972; Deodatis & Shinozuka 1988; Shinozuka & Deodatis 1988). For mean-ergodic
homogeneous processes, the autocorrelation of the sea surface elevation (here, the surface
elevation ζ(x, t) has been denoted as ζ(x) to ease the notation) can be computed properly
from the spatial average 〈·〉x as

Rx(ξ) := E[ζ(x) ζ(x + ξ)] = 〈ζ(x) ζ(x + ξ)〉x,

∴ Rx(0) ≡ 〈ζ 2〉x = lim
L→+∞

1
L

∫ L

0
ζ 2(x) dx,

⎫⎪⎬
⎪⎭ (A1)

such that one can find (Boccotti 2000; Goda 2010)

Rx(ξ) = 1
2

∑
i

a2
i cos(kiξ), ∴ Rx(0) = 〈ζ 2〉x = 1

2

∑
i

a2
i = EAIRY . (A2)

Moreover, in a mean-ergodic stationary time series, the ensemble average is computed
exactly from the time average 〈·〉t, i.e. Rt(τ = 0) = 〈ζ 2〉t =∑i a2

i /2. Therefore, if a
sufficiently large spatiotemporal series with uniform distribution of phases is ergodic,
homogeneous in space and stationary in time, then we have

E[ζ ] = 〈ζ 〉x = 〈ζ 〉t = 0, E[ζ 2] = 〈ζ 2〉x = 〈ζ 2〉t = 1
2

∑
i

a2
i , (A3a,b)

thus narrowing down the possible solutions into the Gaussian distribution of the surface
elevation because E[ζ 2n+1] = 0 for all n ∈ N and vanishing excess kurtosis. This
procedure is very common in complex physical systems, and the above property is called
ergodicity (Boltzmann 1898), while proving its validity is always a challenging task
(Penrose 1973). The exact computation of the ensemble average of the sea surface elevation
at an instant of time t0 is not trivial (Goda 2010). Without ergodicity, the probability
density of the surface elevation is unknown unless one assumes its expected value

E [ζ ] =
∫

ζ dμ(ζ ), (A4)

where dμ(ζ ) is a measure on the space of possible surface elevations. For an oscillatory
system, it is customary to write ζ = r cos(φ) and introduce a joint p.d.f. on the space
[0, ∞) × [0, 2π) that describes the statistical distribution of amplitudes and phases.
Without loss of generality, we can always choose units in which E[ζ 2] = 1, and write

p.d.f. = f (r, φ)

2π
r e−r2/2 dr dφ. (A5)

The distribution of Longuet-Higgins (1952) is recovered if we assume that the phases
are distributed uniformly and uncorrelated from the amplitudes, that is, f (r, φ) = 1 (Rice
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1945; Cramér & Leadbetter 1967; Mori & Yasuda 2002; Onorato et al. 2013). However, the
uniform distribution of phases is appropriate only for narrow-banded signals (Davenport
& Root 1987; Middleton 1996). For more realistic sea states, Tayfun (2008) shows that the
p.d.f. introduced above should be corrected to account for correlations between phase and
amplitude. As a first approximation, the correction proposed by Tayfun (2008) is

f (r, φ) = 1 + μ3

6
r(r2 − 4) cos φ, (A6)

where μ3 is the skewness. Note that within this approximation, the expected value of
even-order powers of ζ are not modified relative to the uniform phase approximation.
Odd-order powers, which are zero when f = 1, are now non-zero. On the other hand,
it is known that the weakly nonlinear evolution of a sea state which at t = 0 has
random and uniformly distributed independent phases, remains so over the nonlinear
time interval t � 2π/ωp (Choi, Lvov & Nazarenko 2004, 2005). Therefore, the source of
correlations between phases and amplitudes cannot be attributed to the internal weakly
nonlinear dynamics. However, this does not preclude that external factors (e.g. wind
forcing) inducing non-equilibrium dynamics can nudge the phase distribution away from
uniformity and/or impart a correlation between phases and amplitudes.

For the purpose of illustration, let us analyse the simplest effect of a uniform distribution.
Through a change of variables (Papoulis 2002) and the law of the unconscious statistician
(Blitzstein & Hwang 2019), we rewrite the ensemble average as

E [ζ ] =
∫ +∞

−∞
ζ f (ζ ) dζ =

∫ 2π

0
ζ(φ) f (φ) dφ. (A7)

Therefore, the uniform distribution of phases leads to ergodicity:

E [ζ ] =
∑

i

ai

2π

∫ 2π

0
cos φ dφ = 〈ζ(x)〉 = lim

L→+∞
∑

i

ai

L

∫ L

0
cos (kix) dx = 0, (A8)

E[ζ 2] =
∑

i

a2
i

2π

∫ 2π

0
cos2 φ dφ = 〈ζ 2(x)〉 = lim

L→+∞
∑

i

a2
i

L

∫ L

0
cos2 (kix) dx =

∑
i

a2
i

2
.

(A9)

If we assume that correlations develop between the phases, then a weak departure from
ergodicity will be observed. Below we show that due to the ergodicity assumption,
the accuracy of Gaussian statistics will deteriorate, the narrower the superposition
distribution. For the sake of measuring appreciable deviations and without loss of
generality, we use a Boltzmann-like distribution, such that the ensemble average of the
sea surface reads

E
(B) [ζ ] =

∑
i

[
ai

π

∫ +∞

0

cos φ

eφ/π
dφ

]
=
∑

i

ai

(1 + π2)
∼ 0.2

√
m0, (A10)

which is relatively small compared to the second moment of the surface elevation. For a
tentative Gaussian-shaped superposition, however, one finds

E
(G) [ζ ] ≈

∑
i

ai

[
3
5

∫ +∞

0
cos φ e−(φ−1)2

dφ

]
=
∑

i

3ai

8
∼ 0.8

√
m0, (A11)
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Non-homogeneous analysis of rogue waves over a shoal

while for the square of the surface elevation we obtain

E
(B)[ζ 2] ≈

∑
i

a2
i

π

∫ +∞

0
e−φ/π cos2 φ dφ +

∑
i /= j

aiaj

π

∫ +∞

0
e−φ/π cos φ dφ

≈
(

1 + 2π2

1 + 4π2

)∑
i

a2
i +
∑
i /= j

aiaj

1 + π2 ∼
(

4 + 14π2 + 4π4

1 + 5π2 + 4π4

)
m0 ∼ 1.2m0.

(A12)

Lacking a closed form, the Gaussian-like distribution of phases reads, instead,

E
(G)[ζ 2] ≈

∑
i

5a2
i

13
+
∑
i /= j

3aiaj

8
∼ 1.53m0. (A13)

Comparing the deviations from the uniform superposition in (A10)–(A12) gives

δE
(B)
1,2 =

√
E(B)[ζ 2] − E(U)[ζ 2]
E(B)[ζ ] − E(U)[ζ ]

=
√

1.2m0 − m0

0.2
√

m0 − 0
≈ 2.3, (A14)

whereas for the Gaussian one we have

δE
(G)
1,2 =

√
E(G)[ζ 2] − E(U)[ζ 2]
E(G)[ζ ] − E(U)[ζ ]

=
√

1.53m0 − m0

0.8
√

m0 − 0
≈ 0.9, (A15)

implying a decreasing gap between moments when the superposition distribution is
narrower. In these examples, we see that even the linear evolution of a sea state that at
some point in time has a non-uniform distribution of phases breaks ergodicity. We remark
that the break in ergodicity and being Gaussian are not necessarily simultaneous, as in the
above case.

Appendix B. Energetic formulae derivation

Given (3.6) and taking the limit of very large number of amplitude components towards an
asymptotic leading order, the energy computation is reduced to the coefficients (Ωm, Ω̃m).
Then, having ui = ∂Φ/∂xi and using the notation I = u2

1 + u2
3, one obtains

I =
⎡
⎣ ∂

∂x

⎧⎨
⎩
∑

j

fj cosh (jϕ) sin (jφ)

⎫⎬
⎭
⎤
⎦

2

+
⎡
⎣ ∂

∂z

⎧⎨
⎩
∑

j

fj cosh (jϕ) sin (jφ)

⎫⎬
⎭
⎤
⎦

2

=
⎡
⎣∑

j

jk × fj cosh (jϕ) cos (jφ)

⎤
⎦

2

+
⎡
⎣∑

j

jk × fj sinh (jϕ) sin (jφ)

⎤
⎦

2

=
[∑

m

Ωm cosh (mϕ) cos (mφ)

][∑
n

Ωn cosh (nϕ) cos (nφ)

]

+
[∑

m

Ωm sinh (mϕ) sin (mφ)

][∑
n

Ωn sinh (nϕ) sin (nφ)

]
, (B1)
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where we defined Ωm = mkfm and estimated the effect of |∂h/∂x| to not be of leading
order for this sum (see §§ 3 and 4.2). By means of the notation

ℭ𝔬𝔰mn(ϕ, φ) := cosh (mϕ) × cos (nφ); 𝔖𝔦𝔫mn(ϕ, φ) := sinh (mϕ) × sin (nφ),

(B2a,b)
the algebra yields

I =
∑
m=n

Ω2
m ℭ𝔬𝔰2

mm(ϕ, φ) +
∑

m /= n

ΩmΩn ℭ𝔬𝔰mm(ϕ, φ)ℭ𝔬𝔰nn(ϕ, φ)

+
∑
m=n

Ω2
m 𝔖𝔦𝔫2

mm(ϕ, φ) +
∑

m /= n

ΩmΩn 𝔖𝔦𝔫mm(ϕ, φ)𝔖𝔦𝔫nn(ϕ, φ)

:=
∑

m

Ω2
mImm +

∑
m /= n

ΩmΩnImn. (B3)

However, one can further expand the trigonometric clusters in (B2) as follows:

4Imn = 4ℭ𝔬𝔰mm(ϕ, φ)ℭ𝔬𝔰nn(ϕ, φ) + 4𝔖𝔦𝔫mm(ϕ, φ)𝔖𝔦𝔫nn(ϕ, φ)

= [cos (mφ) cos (nφ) + sin (mφ) sin (nφ)] × 2 cosh [(m + n)ϕ]

+ [cos (mφ) cos (nφ) − sin (mφ) sin (nφ)] × 2 cosh [(m − n)ϕ]

= 2 cosh [(m + n)ϕ] cos [(m − n)φ] + 2 cosh [(m − n)ϕ] cos [(m + n)φ]. (B4)

As an immediate corollary, we find 2Imm = cosh (2mϕ) + cos (2mφ). Using the algebra
from (B4) and periodic integration, following the expression for the energy in (2.4) and
subtracting the potential energy ρgh2

0/2 due to the water column, we find in the limit
i → ∞ the leading-order energy density

E ≈
∑

m

Ω̃2
m

4
+
∑

m

Ω2
m

4g

∫ 0

−h
cosh (2mϕ) dz ≈ 1

4

∑
m

[
Ω̃2

m + Ω2
m

sinh (2mkh)

2mgk

]
. (B5)

As we assumed a small effect of ∂h/∂x in the previous integral, the bathymetry will appear
in ϕ = k(z + h) as well as in Ωm and Ω̃m. Likewise, using the definition of (3.6), and
taking into account the discussion in (3.2) and (3.3), we compute the time average of the
squared sea surface elevation at a fixed point xi ∈ R:

〈ζ 2〉t = lim
T→+∞

1
T

∫ T

0

[∑
m

Ω̃m cos (mφ)

][∑
n

Ω̃n cos (nφ)

]
dt =

∑
m

Ω̃2
m

2
, (B6)

where the function Ω̃m = Ω̃m(x) is also a function of x due to its dependence on significant
steepness ε = ε(x) and dimensionless depth kph = (kph)(x). To compare the generalised
model with the specific case of Airy’s solution, we set m = 1. In this case, Ω̃1 = a
while Ω1 = agk/ω cosh kh (Dingemans 1997), the dispersion relation is expressed as
ω2 = gk tanh kh, so that the spatial energy density is

E1 = 1
4

[
a2 +

(
agk

ω cosh kh

)2 sinh (2kh)

2gk

]

= 1
4

[
a2 +

(
a2g2k2

gk tanh kh × cosh2 kh

)
2 sinh kh cosh kh

2gk

]
= a2

2
, (B7)
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thus recovering the spatial energy density in (2.6). For the second order, we have

Ω1 = aω

sinh kh
, Ω2 = 3ka2ω

4 sinh4 kh
, Ω̃1 = a, Ω̃2 = ka2 cosh kh

4 sinh3 kh
[2 + cosh (2kh)] .

(B8a–d)
Upon the steepness being expressed as ka= (2π/λ) × (H/2) = πε, the spatial energy
density is computed and leads to (3.10a,b)–(3.11a,b):

E2 = a2

2
+ 1

4

{
k2a4

16

[
cosh kh

sinh3 kh
(2 + cosh (2kh))

]2

+
(

3ka2ω

4 sinh4 kh

)2 sinh (4kh)

4gk

}

= a2

4

{
2 +

(πε

4

)2
[

cosh kh

sinh3 kh
(2 + cosh (2kh))

]2

+
(πε

4

)2
[

9 cosh (2kh)

sinh6 kh

]}
. (B9)

Appendix C. Amplification universality

Here we will prove the validity of the two relations in (3.23). The result in (3.23) assures
us of the invariance of the ratio of logarithms in (3.21) and the amplification (ratio of
probabilities) in (3.22), regardless of the equilibrium exceedance probability prior to the
shoal. Let us set up a general expression to accommodate both super-Rayleigh (+) and
sub-Rayleigh (−) distributions, e.g. those that assign higher or lower probabilities than
prescribed by Longuet-Higgins (1952) at either the bulk or tail of the distribution. We
attach a factor g±

μα to the Rayleigh distribution, denoting a Gram–Charlier (GC) series
(Longuet-Higgins 1963; Mori & Yasuda 2002). Equation (3.23) holds if one can prove
that the variance is corrected by a negligible term, denoted by 𝔏μ:

P
±
α,μ = g±

μα × Rα, ∴ P
±
α,μ(Γ ) = (P±

α,μ

)1/Γ ±𝔏μ =
(

g±
μα e−2α2

)1/Γ ±𝔏μ

. (C1)

We will show that this term satisfies 𝔏μ � Γ . Without loss of generality, the dual GC-ζ
distribution with |μ3| = |μ4| = 1/2 reads (Mori & Yasuda 2002)

f ±
μ (ζ ) ≡ fζ (m0) × g±

μζ = e−ζ 2/2m0

√
2πm0

[
1 ± 1

12
(ζ 3 − 3ζ ) ± 1

48
(ζ 4 − 6ζ 2 + 3)

]
. (C2)

Clearly, the term g±
μα is a by-product of the surface elevation counterpart g±

μζ . Hence the
following model captures the features of the two non-Gaussian distributions while being
properly normalised:

16
16 ∓ (Γ − 1)2

∫ +∞

−∞
fζ (m0Γ ) × g±

μζ dζ =
∫ +∞

−∞
f ±
μ (ζ, Γ ) dζ = 1. (C3)

The first normalised moments read (see figure 6)

μ±
1 =

∫ +∞

−∞

16g±
μζ fζ (Γ ) ζ

16 ∓ (Γ − 1)2 dζ = ± 4Γ (Γ − 1)[
16 ∓ (Γ − 1)2

] , (C4)

while the sub-Rayleigh second normalised moment is expressed as

μ−
2 =

∫ +∞

−∞

16g−
μζ fζ (Γ ) (ζ − μ−

1 )2

16 + (Γ − 1)2 dζ = Γ

[
1 + 4Γ 4 − 28Γ 3 − 20Γ 2 + 44Γ(

15 + 2Γ − Γ 2
)2

]
,

(C5)
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Figure 6. Γ -GC model: (a) ensemble average of the surface elevation; (b) its variance.

and the super-Rayleigh (see figure 6) as

μ+
2 =

∫ +∞

−∞

16g+
μζ fζ (Γ ) (ζ − μ+

1 )2

16 − (Γ − 1)2 dζ = Γ

[
1 + 4Γ 4 − 28Γ 3 + 108Γ 2 − 84Γ(

17 − 2Γ + Γ 2
)2

]
.

(C6)

Comparing the variances with the exponent in (C1), we find μ±
2 = Γ (1±𝔏μ/Γ ), and the

corrections 𝔏μ can be available readily by isolating the quotients inside the brackets of the
right-hand sides of the above equations. These coefficients can be further approximated
(recalling that |Γ − 1| � 1) as

|μ±
1 | ≈ (Γ − 1)

4
, μ±

2 ≈ Γ ± (Γ − 1)

3
. (C7a,b)

Then we showed a weak proof of the first part of (3.23) by demonstrating that a change g±
μα

in the pre-shoal Rayleigh probability will always be met by a change ±𝔏μ in the variance,
typically obeying 𝔏μ/Γ � 1 (see figure 6b).

C.1. Generalised proof
In this subsection, we use the Γ -GC model to obtain exact closed-form wave height
distributions, following the steps for the integration of the envelope in a two-dimensional
random walk of Mori & Yasuda (2002). Thus we integrate the joint distribution of both
surface elevation ζ and its Hilbert transform ζ̃ over the uniform distribution of phases,
obtaining the marginal density of the surface envelope:

f ±
μ,R(Γ ) =

∫ 2π

0
g±
μζ f ±

ζ (Γ ) × g±
μζ̃

f ±
ζ̃

(Γ ) R dφ, (C8)

where
√

ζ 2 + ζ̃ 2 = R is the envelope with ζ = R cos φ and ζ̃ = R sin φ. Performing this
integration, changing variables to wave heights and later normalising by H1/3 = 4m0 = 4
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and integrating again as in (2.2), we find (see figures 7a,b)

P
±
α,μ(Γ ) = e−2α2/Γ

3

[
1 + 2α8 + 4α6(Γ − 4) + 6α4(Γ 2 − 4Γ + 6 ± 32)

[16 ∓ (Γ − 1)2]2

+3α2(Γ − 2)(Γ 2 − 2Γ + 2 ± 32)

[16 ∓ (Γ − 1)2]2

]
. (C9)

Then, in analogy with (3.21), we are able to assess whether the proposition in (C1) holds
by verifying the ratio

ln
[
P

±
α,μ

]
(Γ ± 𝔏μ) ln

[
P

±
α,μ(Γ )

] = 1, ∴
ln
[
P

±
α,μ

]
Γ ln

[
P

±
α,μ(Γ )

] = 1 ± 𝔏μ

Γ
≈ 1. (C10)

Accordingly, figures 7(c,d) display the magnitude of the correction 1 ± 𝔏μ/Γ in the
variance. When Γ ≈ 1.15, we see that super-Rayleigh distributions have a maximal 4 %
increase in the variance Γ , whereas sub-Rayleigh distributions exhibit the opposite but of
smaller magnitude, confirming the estimates in the weak proof. As the validity of (C1)
has been demonstrated, one can prove the universality of the amplification regardless of
the distribution, i.e. extend (3.22) to an arbitrary distribution. Having in mind the order of
magnitude of 𝔏μ/Γ , we can rewrite (C1) (defining |ln g±

μα| = ln gμα) as

P
±
α,μ(Γ ) = (exp(−2α2 ± ln gμα))1/Γ ±𝔏μ ≈ exp

[
−2α2

Γ

(
1 ∓ ln gμα

2α2

)(
1 ∓ 𝔏μ

Γ

)]
.

(C11)
Furthermore, the relative probability becomes

P
±
α,μ(Γ )

P
±
α,μ

= exp
[
(−2α2 ± ln gμα)

(
1

Γ ± 𝔏μ

− 1
)]

= exp
[

2α2
(

1 ∓ ln gμα

2α2

)(
1 − 1

Γ ± 𝔏μ

)]

= exp

⎡
⎣2α2

(
1 − 1

Γ

)(
1 ∓ ln gμα

2α2

)⎛⎝1 ± 𝔏μ

Γ 2
(

1 − 1
Γ

)
⎞
⎠
⎤
⎦

= exp
[

2α2
(

1 − 1
Γ

)(
1 ∓ ln gμα

2α2

)(
1 ± 𝔏μ

Γ (Γ − 1)

)]

≡ exp
[

2α2
(

1 − 1
Γ

)
(1 ∓ δμα)(1 ± δμΓ )

]
. (C12)

As |Γ − 1| � 1, it is straightforward to see that δμΓ = 𝔏μ/Γ (Γ − 1) ∼ 10𝔏μ ∼ δμα =
(ln gμα)/2α2, plotted for comparison in figure 8. Hence we conclude that for the
probability amplification, the second correction term δμΓ counters δμα . Thus we have
proved the first-order amplification universality with μ3 ∼ μ4 < 1:

P
±
α,μ(Γ )

P
±
α,μ

= exp
(

2α2
(

1 − 1
Γ

)
± O(Γ − 1)

)

≈ exp
(

2α2
(

1 − 1
Γ

))
≡ Rα(Γ )

Rα

, ∀ g±
μα ∈ R+. (C13)
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Figure 7. Γ -GC probability distribution for: (a) super-Rayleigh and (b) sub-Rayleigh. The correction to
(3.21) through 𝔏μ in (C10) is found for (c) super-Rayleigh and (d) sub-Rayleigh regimes.

Rogue waves in (3.24) have 2α2[1 − (𝔖2
0Γ )−1] � 3, resulting in maximal correction

eO(Γ −1) ≈ e3×0.03 < 1.1, suggesting an upper bound of 8–9 % variation from the
universal amplification. On the other hand, figure 8 shows (1 ∓ δμα)(1 ± δμΓ ) ≈ 1.14 for
ordinary waves (α � 1) instead of (1 ∓ δμα)(1 ± δμΓ ) � 1.04 for rogue waves, such that
the main term of (3.24) becomes 2α2[1 − (𝔖2

0Γ )−1] � 1, and the first-order correction
reads eO(Γ −1) ≈ e0.6×0.15 < 1.1. Hence the bound is upheld by any normalised wave
height.

Appendix D. Parameterisation generality and compact formulation

Under adequate conditions of Ur � 8π2/3 (Dean & Dalrymple 1984) and for shoals
in Regime II, (3.26) can be rewritten in a more compact form. First, however, let us
demonstrate that (3.26) holds regardless of which reference steepness is chosen to compute
κ0. For relatively higher or lower reference steepness ε± = 〈ε〉 ± δε, we find

κ±
0 = ln

[
max𝔖0

]
ln
[
max Γ

(〈ε〉 ± δε, kph,𝔖0
)] ≈ κ0 ∓ δκ0, (D1)

in turn affecting the probability amplification only marginally:(
ln Pα

ln Pα,Γ

)
±

= [Γ0 ± δΓ0]2κ0∓2δκ0 × Γ
(
ε(x), kph(x),𝔖0

) ≈ ln Pα

ln Pα,Γ

. (D2)

This relation holds because the typical difference between the Γ correction atop the shoal
and the average moving during the shoal does not exceed δΓ0/Γ0 � 2 %. We corroborate
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1 – δμα

1 + δμΓ  (Γ = 1.05)

1 + δμΓ  (Γ = 1.15)

(1 – δμα)(1 + δμΓ)

0 0.5 1.0 1.5 2.0 2.5

0.7

0.8

0.9

1.0

1.1

1.2

1.3

δ μ
α
, δ

μ
Γ
 (μ

4 
= 

μ
3 

= 
+0

.5
)

α

Figure 8. Comparison between first-order corrections to the amplification of the Γ -GC exceedance
probability for positive skewness and kurtosis as in (C12).

this by comparing the equivalent of figure 5(a) for a 0.5 % higher Γ correction than its
reference Γ0 = 1.031 in figure 9(a). Considering that Run 1 had maximal correction Γ ≈
1.041, the choice for the reference κ0 does not affect the validity of (3.26). To obtain a
compact formulation of (3.26), we notice that at a fixed point in space, i.e. at a distance x =
xi from the wavemaker, the asymmetry 𝔖0 does not depend on how we plot Γ . Therefore,
we can approximate

𝔖0(x = xi) = [Γ (ε(xi), kph(xi),𝔖0
)]κx ≈ [Γ (〈ε〉, kph,𝔖0

)]κ0 , ∀ xi ∈ R. (D3)

As the two versions of the Γ correction differ, as shown in figure 9(b), one concludes that
κ(kph) ≡ κ0 /= κx. Thus we obtain

ln𝔖0 ≈ 〈κx〉 ln〈Γ (x)〉 ≈ κ0 ln
〈
Γ
(〈ε〉, kph,𝔖0

)〉
, (D4)

whose Regime II restriction is translated numerically to Γ � 1 + O(g−2), leading to
〈κx〉 ≈ 0.64κkh, as shown in figure 9(b). Therefore, we can estimate conservatively
throughout the entire trajectory:[

Γ
(〈ε〉, kph,𝔖0

)]2κ0 ≈ [Γ (ε(x), kph(x),𝔖0
)]1.2κ0 . (D5)

Thus the ratio of the probabilities is better estimated and greatly simplified as

ln Pα

ln Pα,Γ

≈ [Γ (ε(x), kph(x),𝔖0
)]1+1.2κ0 . (D6)

Appendix E. Analytical description of steepness and depth

In order to smooth as well as to facilitate the handling of the experimental data on wave
steepness and dimensionless depth, we fitted them against analytic functions, as follows:

ε = ε1 + ε2 exp(−(x − 2.4)4) + ε3 exp(−(2 + δ31)[x − 1.4 + δ32]2)

+ ε4 exp(−(1 + δ41)[x − 4.9 + δ42]2), (E1)
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Figure 9. (a) Equivalent of figure 5(a) for a higher reference Γ correction due to steepness ε+ ≈ 1.16〈ε〉
(dashed) and its original description according to (3.26) (solid). Notice that this 16 % increase in the reference
steepness decreases the blue curve model by 4 % and the cyan one by 2 %. (b) Plot of Γ correction for
Runs 1–4 of Raustøl (2014) as a function of dimensionless depth (dashed) and distance from the wavemaker
(solid) with variables (ε, kh) modelled by Appendix E, whereas the minimum threshold applicable (Γ � 1.01)
representative of Regime II is depicted by the thin horizontal line. The averages over these ranges read
approximately 〈Γ (x)〉 = 1.036 and 〈Γ (kph)〉 = 1.023.
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Figure 10. Modelling of the significant steepness in Raustøl (2014) experiments according to (E1), corrected
to the term ε = H1/3/λ̄ = (4/π)kpac. Dots represent data extracted from figure 5.4 of Raustøl (2014). Vertical
dashed lines depict the rising shoal end (x = 1.6) and beginning of the descending shoal (x = 3.2).

while the modelling for the depth is computed as

kph = D1 + D2 exp(−0.25(x − 2.4)4) + D3 exp(−2[x + δ62 − 0.7]2)

+ D4 exp(−2[x + δ82 − 4.2]2). (E2)

The values of these coefficients for ten runs of Raustøl (2014) and Trulsen et al. (2020) are
given in table 1. As displayed in figure 10, these fits provide an accurate description of the
actual data. Re-scaled by π/4, the first steepness coefficient ε1 is equal to the pre-shoal
steepness in table 1 of Trulsen et al. (2020), while ε1 + ε2 is the shallower steepness of the
shoal. Likewise, the coefficient D1, which was extracted from Raustøl (2014) through the
formula kph ≈ (πε/4Ur)1/3 (see Trulsen et al. 2020), equals approximately the largest
values of the dimensionless depth, while D1 + D2 recovers the smallest values. Note,
however, that Trulsen et al. (2020) display the averages of each side, while we model
every value according to the 16 probes of figure 2 in Trulsen et al. (2020).
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Exp. ε1 ε2 ε3 ε4 δ31 δ32 δ41 δ42 D1 D2 D3 D4 δ62 δ82

Run 1 0.0230 0.0230 0.0030 −0.0070 — — — — 1.85 −1.32 −0.40 −0.50 — —
Run 2 0.0306 0.0242 0.0020 −0.0050 — — — — 2.08 −1.50 −0.45 −0.45 — 0.1
Run 4 0.0380 0.0240 0.0020 −0.0060 — — — — 2.60 −1.93 −0.60 −0.60 — 0.1
Run 5 0.0460 0.0200 0.0020 −0.0080 — — — 0.3 3.20 −2.40 −0.80 −0.75 — 0.1
Run 6 0.0600 0.0167 −0.0020 −0.0100 — — −0.5 0.4 4.15 −3.20 −0.99 −0.99 −0.1 0.1
Run 7 0.0610 0.0150 0.0020 −0.0030 — — — — 2.50 −1.50 −0.50 −0.50 −0.1 0.1
Run 8 0.0695 0.0105 0.0015 −0.0040 — — — 0.1 3.05 −2.00 −0.80 −0.80 — 0.1
Run 9 0.0672 0.0073 0.0005 −0.0040 — — — 0.5 3.40 −2.15 −0.55 −0.60 −0.1 0.1
Run 11 0.0755 0.0015 −0.0008 −0.0030 — 0.4 −0.5 0.7 4.30 −2.85 −0.85 −0.80 −0.1 0.1
Run 12 0.0760 0.0002 −0.0025 −0.0072 — 0.4 −0.7 0.5 4.95 −3.30 −1.00 −1.00 −0.1 0.1

Table 1. Summary of all coefficients for the modelling in (E1) and (E2).
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