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EXTREMAL VALUES OF ∆(xÒN) = P
nÚxN

(nÒN)=1

1 � xß(N)

P. CODECÀ AND M. NAIR

ABSTRACT. The function ∆(xÒN) as defined in the title is closely associated via
∆(N) = supx j∆(xÒN)j to several problems in the upper bound sieve. It is also known
via a classical theorem of Franel that certain conjectured bounds involving averages
of ∆(xÒN) are equivalent to the Riemann Hypothesis. We improve the unconditional
bounds which have been hitherto obtained for ∆(N) and show that these are close to
being optimal. Several auxiliary results relating ∆(Np) to ∆(N), where p is a prime with
p 6j N, are also obtained and two new conjectures stated.

Introduction. The function ∆(xÒN) is defined for x 2 R and N Ù 1 by

∆(xÒN) =
X

n�xN
(nÒN)=1

1 � xß(N)

where ß(N) is Euler’s function. Clearly ∆(xÒN) is periodic, as a function of x, of period
1 with ∆(0ÒN) = 0 and ∆(xÒN) = ∆(fxgÒN) where fxg = x � [x]. Further, if

N̄ =
Y
pjN

pÒ

then writing N = N̄L, we obtain that

∆(xÒN) =
X

n�xLN̄
(nÒN)=1

1 � xLß(N̄) = ∆(xLÒ N̄)

Hence as far as bounds uniform in x are concerned, we can restrict ourselves to squarefree
N Ù 1 which will be assumed from now onwards. We shall also always use p and q to
indicate prime numbers.

It is easy to see that
∆(xÒN) = �ñ(N)

X
djN

ñ(d)fxdgÒ(1)

where ñ is the Möbius function and indeed one can also show that

∆(xÒN) = �
X

k mod N
(kÒN)=1

 (
x +

k
N

)
�

1
2

!
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Certain mean-square estimates for ∆(xÒN) are equivalent to the Riemann Hypothesis.
Indeed, as shown by Franel [4], the Riemann Hypothesis is equivalent to the estimate

X
n�Φ(N)

 
qn �

n
Φ(N)

!2

= O
�
N�1+¢

�

where qn indicates the n-th Farey fraction of order N, Φ(N) =
X
q�N

ß(q) and ¢ Ù 0. On

noting that X
q�N

∆(qnÒ q) = n � qnΦ(N)Ò

Franel’s equivalence can be rephrased as

X
n�Φ(N)

�X
q�N

∆(qnÒ q)
�2

= O
�
N3+¢

�


Further, we also observe that for N =
Q

p�t p, large fluctuations of ∆(xÒN) correspond to
an abundance or paucity of integers with smallest prime factor Ù t over their expected
numbers in appropriate intervals. These correspond to limitations in anticipated sieve
upper bound estimates in short ranges.

We define

∆(N) = sup
x
j∆(xÒN)j

Trivially, we have that

j∆(xÒN)j = j
X
djN

ñ(d)
 
fxdg �

1
2

!
j �

1
2

X
djN

1

so that ∆(N) � 2°(N)�1, where °(N) is the number of prime factors of N. Vijayaragha-
van [11] showed that this is best possible. More precisely, he showed that given any
¢ Ù 0, ∆(N) ½ 2°(N)�1 � ¢ for an infinite sequence of N with °(N) ! 1. For an
alternative proof, see also Lehmer [6].

One can also obtain upper bounds for ∆(N) with an explicit dependence on the prime
factors of N. Suryanarayana [9] proved that

∆(N) � 2°(N)�1
�
Y
pjN

 
1 +

1
p

!
+ 1(2)

This is sharp when N is prime. It is an easy consequence of (1) that if p 6j N then

(I) ∆(xÒNp) = ∆( pxÒN) � ∆(xÒN)Ò

and hence ∆(Np) � 2∆(N). Iterating this, we obtain

∆(N) � 2°(N)�1∆(q)

https://doi.org/10.4153/CMB-1998-046-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-046-3


EXTREMAL VALUES OF ∆(XÒN) 337

for any prime factor q of N. Since ∆(q) = 1 � 1Ûq, we deduce that

∆(N) � 2°(N)�1
 

1 �
1
p1

!
(3)

where p1 is the smallest prime factor of N. Apart from the cases N = 6 and N prime when
both bounds are equal, it is a simple induction exercise to confirm that (3) is always an
improvement over (2). In our Theorem 1, we shall improve the bound ∆(Np) � 2∆(N)
to

∆(Np) � 2∆(N)�
1
p

( p 6j N)

which leads to an even stronger upper bound for ∆(N) in which all the prime factors of
N play a role. Our Theorem 2 shows that for a certain class of integers N,

∆(N) ½ 2°(N)�1
�

2°(N)

p1 + 1

which essentially differs from (3) by only a factor of 2.
It is a well-known result that

Z 1

0
∆2(xÒN) dx =

1
12

2°(N)ß(N)
N



Three different proofs of this may be found in Delange [1], van Hamme [10] and Perelli-
Zannier [8]. For ease of reference, we include another short proof in Theorem 4(v). As
observed in [8], this integral immediately yields that

∆(N) ½

0
@ 1

12
2°(N)ß(N)

N

1
A

1
2



In Theorem 3, we shall exploit the integral in a different manner to obtain the slight
sharpening

∆(N) ½

0
@ 1

12
2°(N)ß(N)

N
�

1
12

1
A

1
2

+
1
2


This bound is actually attained for N = 2Ò 3 and 6.
Our final Theorem 4 consists of auxiliary results and simpler proofs of two known

results.
For integers N which are divisible by a prime p, p � 1(mod k), k 2 N, Lehmer [6]

showed that for any a 2 Z, the number of n in the interval (aNÛkÒ (a + 1)NÛk] with
(nÒN) = 1 is precisely ß(N)Ûk. Necessary and sufficient conditions on N under which
this is valid were further investigated by McCarthy [7] and Erdös [2],[3]. In Theorem 4(i),
we give a simpler proof of Lehmer’s result based on the above identity (I). Different
applications of this identity combined with a classical theorem of Landau on fractional
parts also yield (Theorem 4(ii), (iii)) that

∆(2N) = ∆(N)
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for all odd N Ù 1 and the lower bound for p 6j N,

∆(Np) ½
 

1 �
1
p

!
∆(N)

A reasonable conjecture would be that ∆(Np) ½ ∆(N) for all N Ù 1 and p 6j N. We also
conjecture that if N is the product of the first s primes then

∆(N) � 2s�1ß(N)
N

and have confirmed this by direct calculation for s � 8.

Statements of Theorems.

THEOREM 1. For any squarefree N Ù 1 and a prime p with p 6j N, we have

(i) ∆(Np) � 2∆(N) �
1
p

In fact, the sharper but more awkward bound

(ii) ∆(Np) � 2∆(N)�
(l + 1)

p
ß(N)

N
+ max

 
0Ò
ß(N)
Np

+
lß(N)

N
� 1

!
Ò

where l =
h

N
ß(N)

i
, also holds.

COROLLARIES.
(i) For primes p and q with p Ù q ½ 3,

∆( pq) � 2
 

1 �
1
p

! 
1 �

1
q

!


(ii) For any s 2 N and distinct primes ps Ù ps�1 Ù Ð Ð Ð Ù p1,

∆( p1    ps) � 2s�1
�

sX
i=1

2s�i

pi


If p1 = 2 and s ½ 2, this can be sharpened to

∆( p1    ps) � 2s�2
�

sX
i=2

2s�1�i

pi


REMARKS. (a) The two inequalities in Theorem 1 are, in fact, equalities when N = 2
and p is any odd prime.

(b) The bound in Corollary (i) is an equality when q = 3 and p � 1(mod 6) (cf. Theo-
rem 4(iv)).

(c) Corollary (ii) is obtained by using Theorem 1(i). By using Theorem 1(ii) instead,
we can obtain a slight improvement in this corollary. Indeed, further small improvements
can be obtained by incorporating Corollary (i) into the argument.
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(d) Corollary (ii) shows that given s primes p1 Ú Ð Ð Ð Ú ps in some interval
[XÒ (1 + ¢)X], where ¢ Ù 0, we have that

∆( p1    ps) � 2s�1
�

1
(1 + ¢)

2s

p1
+

1
(1 + ¢)p1



THEOREM 2. Let k 2 N and let N be composed of primes p with p � �1(mod k).
Then

∆(N) ½ 2°(N)�1
 

k � 2
k

!


In particular, given any prime p, all N with smallest prime factor p and with all other
prime factors q satisfying q � �1

�
mod( p + 1)

�
has

∆(N) ½ 2°(N)�1
 

1 �
2

p + 1

!


THEOREM 3. For any N Ù 1, we have

(i)
1

ß(N)

ß(N)X
i=1

∆2
�ai

N
ÒN
�

=
1

12
2°(N)ß(N)

N
+

1
6

(ii) ∆(N) ½
 

1
12

2°(N)ß(N)
N

�
1
2

! 1
2

+
1
2


THEOREM 4.
(i) (LEHMER) Let N be a squarefree integer which is divisible by a prime p, p �

1(mod k) and k 2 N. Then for any a 2 Z,

X
aN
k Ún� (a+1)N

k
(nÒN)=1

1 =
1
k
ß(N)

(ii) ∆(2N) = ∆(N) for any odd N Ù 1.

(iii) ∆(Np) ½
�

1 � 1
p

�
∆(N) for any N 2 N and prime p with p 6j N.

(iv) ∆(3p) =

8><
>:

4
3 �

2
p Ò p � �1(mod 6)

4
3

�
1 � 1

p

�
Ò p � 1(mod 6).

(v) For any N Ù 1, Z 1

0
∆2(xÒN) dx =

1
12

2°(N)ß(N)
N



Preliminary Discussion. Let 1 = a1 Ú a2 Ú Ð Ð Ð Ú aß(N) = N � 1 be the ß(N)
integers in [1ÒN] which are coprime to N. For convenience, we shall also define a0 = 0
and aß(N)+1 = N. Note that the relation N�ai = aß(N)�i+1 is true for all iÒ 0 � i � ß(N)+1.

We shall refer to points aÛN with (aÒN) = 1 as N-nodal so that, in [0Ò 1], these are
precisely the points aiÛN, 1 � i � ß(N).
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From the definition of ∆(xÒN), we have that

∆
�ai

N
ÒN
�

= i� ai
ß(N)

N
Ò 0 � i � ß(N)Ò

∆
�ai+1

N
ÒN
�

= ∆
�ai

N
ÒN
�

+ 1 � (ai+1 � ai)
ß(N)

N
Ò 0 � i Ú ß(N)Ò

and that if ai
N � x Ú ai+1

N Ò 0 � i � ß(N), then

∆(xÒN) = ∆
�ai

N
ÒN
�
�

�
x �

ai

N

�
ß(N)

These observations imply that ∆(xÒN) is a piecewise linear function of x with each
line-segment in

h
aiÛNÒ ai+1ÛN

�
having gradient �ß(N) and that in the bounds

�∆(N) � ∆(xÒN) � ∆(N)

equality is attained in the upper bound for some N-nodal point x while the lower bound
is, in fact, a strict inequality. Note also that if x is N-nodal then we have the sharper lower
bound

∆(xÒN) = 1 + lim
t!x�

∆(tÒN) ½ �∆(N) + 1

The relation ∆
�

ai
N ÒN

�
= �∆

�
N�ai

N ÒN
�

+ 1 shows, in fact, that

inf
1�i�ß(N)

∆
�ai

N
ÒN
�

= �∆(N) + 1

Proofs of Theorems. We begin with the proof of Theorem 4 because it contains
some of the results which are required in the subsequent theorems.

PROOF OF THEOREM 4. (i) Write N = pM where p 6j M and p � 1(mod k). Identity
(I) implies that for any aÒ 0 � a � k � 1,

∆
�a

k
ÒN
�

= ∆
�pa

k
ÒM

�
� ∆

�a
k
ÒM

�
= ∆

�a
k
ÒM

�
� ∆

�a
k
ÒM

�
= 0

and, clearly, this also holds for a = k. Hence

0 = ∆
 

a + 1
k

ÒN
!
� ∆

�a
k
ÒN
�

=
X

aN
k Ún� (a+1)N

k
(nÒN)=1

1 �
1
k
ß(N)

This proves (i).
(ii) For any N Ù 1, we have that

∆(xÒN) = �ñ(N)
X
djN

ñ(d)
 
fxdg �

1
2

!
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Hence for (lÒN) = 1,

l�1X
n=0

∆
�u + n

l
ÒN
�

= �ñ(N)
X
djN

ñ(d)
l�1X
n=0

 (
ud
l

+
nd
l

)
�

1
2

!

= �ñ(N)
X
djN

ñ(d)
l�1X
n=0

 (
ud
l

+
n
l

)
�

1
2

!


The inner sum is fudg � 1
2 (see e.g. Landau [5], p. 170). We therefore deduce that for

any (lÒN) = 1 and u 2 R,

l�1X
n=0

∆
�u + n

l
ÒN
�

= ∆(uÒN)(4)

Using (4) with l = 2 and N odd together with identity (I), we have that

∆
�u

2
ÒN
�

= ∆(uÒN) � ∆
 

u + 1
2

ÒN
!

= ∆
 

u + 1
2

Ò 2N
!


By varying u through an interval of length 2, we deduce that the set of values of ∆(xÒN)
and that of ∆(xÒ 2N) is the same and (ii) follows.

(iii) Using (4) with l = p where p 6j N and identity (I), we have that

p�1X
n=0

∆
 

u + n
p

ÒNp
!

=
p�1X
n=0

∆(uÒN) �
p�1X
n=0

∆
 

u + n
p

ÒN
!

= p∆(uÒN) � ∆(uÒN)

= ( p � 1)∆(uÒN)

Choosing u so that ∆(uÒN) = ∆(N), we deduce that

( p � 1)∆(N) � p∆(Np)

which implies (iii).
(iv) For any a with 1 � a Ú 3p and (aÒ 3p) = 1, identity (I) yields

∆
 

a
3p
Ò 3p

!
= ∆

�a
3
Ò 3
�
� ∆

 
a

3p
Ò 3
!


It follows directly from the definition of ∆(xÒ 3) that

∆
�a

3
Ò 3
�

=
(

1Û3Ò a � 1(mod 3)
2Û3Ò a � 2(mod 3)

and that

∆
 

a
3p
Ò 3
!

=
"

a
p

#
�

2a
3p


We deduce that if a � 2(mod 3) and a Ú p then

∆
 

a
3p
Ò 3p

!
=

2
3

+
2a
3p
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and hence that if p � 1(mod 6) then

∆
 

p � 2
3p

Ò 3p
!

=
4
3

 
1 �

1
p

!
Ò

and if p � �1(mod 6) then

∆
 

p � 3
3p

Ò 3p
!

=
4
3
�

2
p


We now show that these are indeed the largest values of ∆(xÒ 3p). Clearly, this is indeed
the case if a � 2(mod 3) and a Ú p. If a � 1(mod 3) then

∆
 

a
3p
Ò 3p

!
=

1
3
�

"
a
p

#
+

2a
3p

�
1
3

+
2( p � 1)

3p
= 1 �

2
3p

Ú
4
3
�

2
p

for any p ½ 5 and so is smaller than either of the above candidates for ∆(3p).
If a � 2(mod 3) and 2p � a Ú 3p then

∆
 

a
3p
Ò 3p

!
= �

4
3

+
2a
3p

Ú
2
3

and this is also smaller. Finally, if a � 2(mod 3) and p � a Ú 2p then

∆
 

a
3p
Ò 3p

!
= �

1
3

+
2a
3p

�

8<
:

1 � 2
p Ò p � 1(mod 6)

1 � 4
3p Ò p � �1(mod 6)

which are smaller as well. This completes the proof of (iv).
(v) Since ∆(xÒN) = �ñ(N)

P
djN ñ(d)(fxdg� 1

2 ), using a classical result of Franel [4],
we have thatZ 1

0
∆2(xÒN) dx =

X
d1jNÒd2jN

ñ(d1)ñ(d2)
Z 1

0

 
fxd1g �

1
2

! 
fxd2g �

1
2

!
dx

=
1
12

X
d1jNÒd2jN

ñ(d1)ñ(d2)
(d1Ò d2)2

d1d2
(5)

Writing r = (d1Ò d2), d1 = é1r, d2 = é2r, the above sum is

X
rjN

X
é1jNÛrÒé2jNÛr

(é1Òé2)=1

ñ(é1)ñ(é2)
é1é2

=
X
rjN

X
djNÛr

ñ(d)ú(d)
d

=
X
rjN

X
djr

ñ(d)ú(d)
d



The function f (r) =
P

djr ñ(d)ú(d)Ûd is multiplicative with f ( p) = 1 � 2Ûp. Further, the
function g(N) =

P
rjN f (r) is also multiplicative with

g( p) = 1 + f ( p) = 2
 

1 �
1
p

!


Hence, for squarefree N, g(N) = 2°(N)ß(N)ÛN. We deduce from (5) that

Z 1

0
∆2(xÒN) dx =

1
12

g(N) =
1

12
2°(N)ß(N)

N

as required. Using ∆(xÒN) = ∆(xLÒ N̄) as noted in the introduction, it follows easily that
the result holds even if N is not squarefree.
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PROOF OF THEOREM 1. Let a with (aÒNp) = 1 and 1 � a Ú Np be chosen such that

∆(Np) = ∆
 

a
Np

ÒNp
!


By identity (I), we have that

∆(Np) = ∆
� a

N
ÒN
�
� ∆

 
a

Np
ÒN
!
(6)

Since (aÒN) = 1, faÛNg is N-nodal but clearly aÛNp is not N-nodal. We can therefore
define i 2 N, 1 � i � ß(N) + 1, such that

ai�1

N
Ú

a
Np

Ú
ai

N


This implies that a Ú pai and so we can write a = pai � r with r 2 N.
We shall prove the validity of both

∆(Np) � 2∆(N)�
r

Np
ß(N)(7)

and, if r � NpÛß(Np),

∆(Np) � 2∆(N)� 1 +
r

Np
ß(Np)(8)

We begin by considering the case i = ß(N) + 1 on its own. Here ai = N and hence
a = pN � r so that

∆
 

a
Np

ÒN
!

= ∆(1ÒN) +
 

1 �
a

Np

!
ß(N) =

rß(N)
Np

so that we deduce immediately from (6) that (7) is true. Note also that in this case

∆(Np) = ∆
 

a
Np

ÒNp
!
� ∆(1ÒNp) +

 
1 �

a
Np

!
ß(Np)

=
rß(Np)

Np
� 2∆(N)� 1 +

rß(Np)
Np

Ò

since ∆(N) ½ 1Û2 for N Ù 1. This proves (8).
We may therefore assume from now onward that 1 � i � ß(N). Hence, using our

preliminary observations,

∆
 

a
Np

ÒN
!

= ∆
�ai

N
ÒN
�
� 1 +

 
ai

N
�

a
Np

!
ß(N)

= ∆
�ai

N
ÒN
�
� 1 +

r
Np

ß(N)
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so that (6) implies that

∆(Np) = ∆
� a

N
ÒN
�
� ∆

�ai

N
ÒN
�

+ 1 �
r

Np
ß(N)

� ∆(N)�
�
�∆(N) + 1

�
+ 1 �

r
Np

ß(N)Ò

since aiÛN is N-nodal. This implies (7).
On the other hand, identity (I) implies that

∆
 

a + r
Np

ÒNp
!

= ∆
�pai

N
ÒN
�
� ∆

�ai

N
ÒN
�

and hence

∆
 

a + r
Np

ÒNp
!
� ∆(N) �

�
�∆(N) + 1

�
= 2∆(N)� 1(9)

Since i � ß(N), we have that

a
Np

Ú
ai

N
� 1 �

1
N
Ú 1 �

1
Np

=
Np� 1

Np

and hence aÛNp is not the largest Np-nodal point in (0,1). Denoting by bÛNp the least
Np-nodal point larger than aÛNp, the definition of aÛNp implies that

0 ½ ∆
 

b
Np

ÒNp
!
� ∆

 
a

Np
ÒNp

!
= 1 �

(b � a)ß(Np)
Np

and hence b � a ½ NpÛß(Np). Since (a + r)ÛNp is not Np-nodal, we deduce that if
r � NpÛß(Np) then

a
Np

Ú
a + r
Np

Ú
b

Np


For such r, we use (9) to infer that

∆(Np) = ∆
 

a
Np

ÒNp
!

= ∆
 

a + r
Np

ÒNp
!

+
r

Np
ß(Np)

� 2∆(N) � 1 +
r

Np
ß(Np)

This proves (8) and hence completes the proof of (7) and (8).
We now prove (i).
If r ½ NÛß(N) then (7) immediately yields

∆(Np) � 2∆(N) �
1
p


If, on the other hand, r Ú NÛß(N) then certainly r Ú NpÛß(Np) so that (8) yields

∆(Np) � 2∆(N)� 1 +
N

ß(N)
Ð

1
Np

ß(Np) = 2∆(N) �
1
p
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This completes the proof of (i).
We now prove (ii). Put l =

h
NÛß(N)

i
.

If r ½ l + 1 then (7) implies that

∆(Np) � 2∆(N) �
(l + 1)ß(N)

Np


If r � l then certainly r Ú NpÛß(Np) so that (8) yields

∆(Np) � 2∆(N)� 1 +
l

Np
ß(Np) = 2∆(N)� (l + 1)

ß(N)
Np

+
ß(N)
Np

+
lß(N)

N
� 1

Hence, in any case,

∆(Np) � 2∆(N)� (l + 1)
ß(N)
Np

+ max
 

0Ò
ß(N)
Np

+
lß(N)

N
� 1

!

as required.
This completes the proof of Theorem 1.

PROOF OF COROLLARIES. In Theorem 1(ii), put N = q ½ 3. Then l = 1 and so we
obtain

∆(pq) � 2∆(q)�
2

pq
(q � 1) + max

 
0Ò

q � 1
pq

+
q � 1

q
� 1

!

= 2
 

1 �
1
q

!
�

2
p

 
1 �

1
q

!
= 2

 
1 �

1
p

! 
1 �

1
q

!

as required for Corollary (i). Corollary (ii) follows on iterating Theorem 1(i). If p1 =
2, we just use Theorem 4(ii) to note that ∆(p1    ps) = ∆(p2    ps) before iterating
Theorem 1(i).

PROOF OF THEOREM 2. We use induction on °(N) to first show that

∆
�a

k
ÒN
�

= �ñ(N)2°(N)
 

a
k
�

1
2

!

for any a, 1 � a � k � 1.
If p � �1(mod k) then

∆
�a

k
Ò p
�

=
a
k
�

²pa
k

¦
=

a
k
�

�
1 �

a
k

�
= 2

 
a
k
�

1
2

!
Ò

and so the result is true for °(N) = 1. Suppose that it is true for some N whose prime
factors q satisfy q � �1(mod k) and let p be another prime with p � �1(mod k) and
p 6j N. By identity (I),

∆
�a

k
ÒNp

�
= ∆

�pa
k
ÒN
�
� ∆

�a
k
ÒN
�


https://doi.org/10.4153/CMB-1998-046-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-046-3


346 P. CODECÀ AND M. NAIR

Since
n

pa
k

o
= k�a

k , the induction hypothesis implies that

∆
�a

k
ÒNp

�
= �ñ(N)2°(N)

 
k � a

k
�

1
2
�

 
a
k
�

1
2

!!

= �ñ(Np)2°(Np)
 

a
k
�

1
2

!

as required. Hence

∆(N) ½ j∆
 

k � 1
k

ÒN
!
j = 2°(N)�1

 
k � 2

k

!


PROOF OF THEOREM 3. For the proof of Theorem 3, we shall need an elementary
lemma which we state in a general context since it may be of independent interest.

LEMMA. Let ã1 Ú ã2 Ú Ð Ð Ð Ú ãl be l points in (0Ò 1) and define for any x 2 [0Ò 1],

∆(x) =
X

i
ãi�x

1 � xl

Then
1
l

lX
i=1

∆2(ãi) =
Z 1

0
∆2(x) dx +

1
6
�

0
@ lX

i=1
ãi �

l
2

1
A 

PROOF. Defineã0 = 0 andãl+1 = 1. Observe that if ãi � x Ú ãi+1, then ∆(x) = i�xl.
Hence

Z 1

0
∆2(x) dx =

lX
i=0

Z ãi+1

ãi

∆2(x) dx

=
lX

i=0
i2(ãi+1 � ãi) � l

lX
i=0

i(ã2
i+1 � ã2

i ) +
l2

3

lX
i=0

(ã3
i+1 � ã3

i )(10)

=
l2

3
+

lX
i=1
ãi � 2

lX
i=1

iãi + l
lX

i=1
ã

2
i 

Further, since ∆(ãi) = i� ãil,

lX
i=1

∆2(ãi) =
lX

i=1

�
i2 � 2iãil + l2ã2

i

�
=

l(l + 1)(2l + 1)
6

� 2l
lX

i=1
iãi + l2

lX
i=1
ã

2
i (11)

Comparing (10) and (11), we deduce that

1
l

lX
i=1

∆2(ãi) =
Z 1

0
∆2(x) dx �

lX
i=1
ãi +

l
2

+
1
6

as required.
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COROLLARY. If, in addition, the points ãi are symmetric about
1
2

then

1
l

lX
i=1

∆2(ãi) =
Z 1

0
∆2(x) dx +

1
6


For N Ù 1, we apply the above corollary with ãi = ai
N , 1 � i � ß(N), and use

Theorem 4(v) to obtain Theorem 3(i).
Since

ß(N)X
i=1

∆
�ai

N
ÒN
�

=
ß(N)X
i=1

 
i � ai

ß(N)
N

!
=
ß(N)

2
Ò(12)

we deduce that

1
ß(N)

ß(N)X
i=1

 
∆
�ai

N
ÒN
�
�

1
2

!2

=
1

12
2°(N)ß(N)

N
�

1
12
(13)

Since inf ∆
�

ai
N ÒN

�
= � sup ∆

�
ai
N ÒN

�
+ 1, we deduce from (13) that

 
∆(N) �

1
2

!2

½
1

12
2°(N)ß(N)

N
�

1
12


Theorem 3(ii) now follows on observing that (12) implies that ∆(N) ½ 1
2 .
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