$$
\text { EXTREMAL VALUES OF } \Delta(x, N)=\sum_{\substack{n<x N \\(n, N)=1}} 1-x \varphi(N)
$$

P. CODECÀ AND M. NAIR

Abstract

The function $\Delta(x, N)$ as defined in the title is closely associated via $\Delta(N)=\sup _{x}|\Delta(x, N)|$ to several problems in the upper bound sieve. It is also known via a classical theorem of Franel that certain conjectured bounds involving averages of $\Delta(x, N)$ are equivalent to the Riemann Hypothesis. We improve the unconditional bounds which have been hitherto obtained for $\Delta(N)$ and show that these are close to being optimal. Several auxiliary results relating $\Delta(N p)$ to $\Delta(N)$, where p is a prime with $p \nmid N$, are also obtained and two new conjectures stated.

Introduction. The function $\Delta(x, N)$ is defined for $x \in \mathbf{R}$ and $N>1$ by

$$
\Delta(x, N)=\sum_{\substack{n \leq x N \\(n, N)=1}} 1-x \varphi(N)
$$

where $\varphi(N)$ is Euler's function. Clearly $\Delta(x, N)$ is periodic, as a function of x, of period 1 with $\Delta(0, N)=0$ and $\Delta(x, N)=\Delta(\{x\}, N)$ where $\{x\}=x-[x]$. Further, if

$$
\bar{N}=\prod_{p \mid N} p
$$

then writing $N=\bar{N} L$, we obtain that

$$
\Delta(x, N)=\sum_{\substack{n \leq x L \bar{N} \\(n, N)=1}} 1-x L \varphi(\bar{N})=\Delta(x L, \bar{N})
$$

Hence as far as bounds uniform in x are concerned, we can restrict ourselves to squarefree $N>1$ which will be assumed from now onwards. We shall also always use p and q to indicate prime numbers.

It is easy to see that

$$
\begin{equation*}
\Delta(x, N)=-\mu(N) \sum_{d \mid N} \mu(d)\{x d\} \tag{1}
\end{equation*}
$$

where μ is the Möbius function and indeed one can also show that

$$
\Delta(x, N)=-\sum_{\substack{k \bmod N \\(k, N)=1}}\left(\left\{x+\frac{k}{N}\right\}-\frac{1}{2}\right) .
$$

Received by the editors January 8, 1997; revised March 12, 1997.
AMS subject classification: 11 N 25 .
(c)Canadian Mathematical Society 1998.

Certain mean-square estimates for $\Delta(x, N)$ are equivalent to the Riemann Hypothesis. Indeed, as shown by Franel [4], the Riemann Hypothesis is equivalent to the estimate

$$
\sum_{n \leq \Phi(N)}\left(q_{n}-\frac{n}{\Phi(N)}\right)^{2}=O\left(N^{-1+\varepsilon}\right)
$$

where q_{n} indicates the n-th Farey fraction of order $N, \Phi(N)=\sum_{q \leq N} \varphi(q)$ and $\varepsilon>0$. On noting that

$$
\sum_{q \leq N} \Delta\left(q_{n}, q\right)=n-q_{n} \Phi(N)
$$

Franel's equivalence can be rephrased as

$$
\sum_{n \leq \Phi(N)}\left(\sum_{q \leq N} \Delta\left(q_{n}, q\right)\right)^{2}=O\left(N^{3+\varepsilon}\right) .
$$

Further, we also observe that for $N=\prod_{p \leq t} p$, large fluctuations of $\Delta(x, N)$ correspond to an abundance or paucity of integers with smallest prime factor $>t$ over their expected numbers in appropriate intervals. These correspond to limitations in anticipated sieve upper bound estimates in short ranges.

We define

$$
\Delta(N)=\sup _{x}|\Delta(x, N)| .
$$

Trivially, we have that

$$
|\Delta(x, N)|=\left|\sum_{d \mid N} \mu(d)\left(\{x d\}-\frac{1}{2}\right)\right| \leq \frac{1}{2} \sum_{d \mid N} 1
$$

so that $\Delta(N) \leq 2^{\omega(N)-1}$, where $\omega(N)$ is the number of prime factors of N. Vijayaraghavan [11] showed that this is best possible. More precisely, he showed that given any $\varepsilon>0, \Delta(N) \geq 2^{\omega(N)-1}-\varepsilon$ for an infinite sequence of N with $\omega(N) \longrightarrow \infty$. For an alternative proof, see also Lehmer [6].

One can also obtain upper bounds for $\Delta(N)$ with an explicit dependence on the prime factors of N. Suryanarayana [9] proved that

$$
\begin{equation*}
\Delta(N) \leq 2^{\omega(N)-1}-\prod_{p \mid N}\left(1+\frac{1}{p}\right)+1 \tag{2}
\end{equation*}
$$

This is sharp when N is prime. It is an easy consequence of (1) that if $p \not \backslash N$ then

$$
\begin{equation*}
\Delta(x, N p)=\Delta(p x, N)-\Delta(x, N) \tag{I}
\end{equation*}
$$

and hence $\Delta(N p) \leq 2 \Delta(N)$. Iterating this, we obtain

$$
\Delta(N) \leq 2^{\omega(N)-1} \Delta(q)
$$

for any prime factor q of N. Since $\Delta(q)=1-1 / q$, we deduce that

$$
\begin{equation*}
\Delta(N) \leq 2^{\omega(N)-1}\left(1-\frac{1}{p_{1}}\right) \tag{3}
\end{equation*}
$$

where p_{1} is the smallest prime factor of N. Apart from the cases $N=6$ and N prime when both bounds are equal, it is a simple induction exercise to confirm that (3) is always an improvement over (2). In our Theorem 1, we shall improve the bound $\Delta(N p) \leq 2 \Delta(N)$ to

$$
\Delta(N p) \leq 2 \Delta(N)-\frac{1}{p} \quad(p \nmid N)
$$

which leads to an even stronger upper bound for $\Delta(N)$ in which all the prime factors of N play a role. Our Theorem 2 shows that for a certain class of integers N,

$$
\Delta(N) \geq 2^{\omega(N)-1}-\frac{2^{\omega(N)}}{p_{1}+1}
$$

which essentially differs from (3) by only a factor of 2.
It is a well-known result that

$$
\int_{0}^{1} \Delta^{2}(x, N) d x=\frac{1}{12} \frac{2^{\omega(N)} \varphi(N)}{N} .
$$

Three different proofs of this may be found in Delange [1], van Hamme [10] and PerelliZannier [8]. For ease of reference, we include another short proof in Theorem 4(v). As observed in [8], this integral immediately yields that

$$
\Delta(N) \geq\left(\frac{1}{12} \frac{2^{\omega(N)} \varphi(N)}{N}\right)^{\frac{1}{2}}
$$

In Theorem 3, we shall exploit the integral in a different manner to obtain the slight sharpening

$$
\Delta(N) \geq\left(\frac{1}{12} \frac{2^{\omega(N)} \varphi(N)}{N}-\frac{1}{12}\right)^{\frac{1}{2}}+\frac{1}{2}
$$

This bound is actually attained for $N=2,3$ and 6 .
Our final Theorem 4 consists of auxiliary results and simpler proofs of two known results.

For integers N which are divisible by a prime $p, p \equiv 1(\bmod k), k \in \mathbf{N}$, Lehmer [6] showed that for any $a \in \mathbf{Z}$, the number of n in the interval $(a N / k,(a+1) N / k]$ with $(n, N)=1$ is precisely $\varphi(N) / k$. Necessary and sufficient conditions on N under which this is valid were further investigated by McCarthy [7] and Erdös [2],[3]. In Theorem 4(i), we give a simpler proof of Lehmer's result based on the above identity (I). Different applications of this identity combined with a classical theorem of Landau on fractional parts also yield (Theorem 4(ii), (iii)) that

$$
\Delta(2 N)=\Delta(N)
$$

for all odd $N>1$ and the lower bound for $p \not \backslash N$,

$$
\Delta(N p) \geq\left(1-\frac{1}{p}\right) \Delta(N)
$$

A reasonable conjecture would be that $\Delta(N p) \geq \Delta(N)$ for all $N>1$ and $p \not \backslash N$. We also conjecture that if N is the product of the first s primes then

$$
\Delta(N) \leq 2^{s-1} \frac{\varphi(N)}{N}
$$

and have confirmed this by direct calculation for $s \leq 8$.

Statements of Theorems.

THEOREM 1. For any squarefree $N>1$ and a prime p with $p \backslash N$, we have

$$
\begin{equation*}
\Delta(N p) \leq 2 \Delta(N)-\frac{1}{p} \tag{i}
\end{equation*}
$$

In fact, the sharper but more awkward bound

$$
\begin{equation*}
\Delta(N p) \leq 2 \Delta(N)-\frac{(l+1)}{p} \frac{\varphi(N)}{N}+\max \left(0, \frac{\varphi(N)}{N p}+\frac{l \varphi(N)}{N}-1\right) \tag{ii}
\end{equation*}
$$

where $l=\left[\frac{N}{\varphi(N)}\right]$, also holds.
Corollaries.
(i) For primes p and q with $p>q \geq 3$,

$$
\Delta(p q) \leq 2\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)
$$

(ii) For any $s \in \mathbf{N}$ and distinct primes $p_{s}>p_{s-1}>\cdots>p_{1}$,

$$
\Delta\left(p_{1} \ldots p_{s}\right) \leq 2^{s-1}-\sum_{i=1}^{s} \frac{2^{s-i}}{p_{i}}
$$

If $p_{1}=2$ and $s \geq 2$, this can be sharpened to

$$
\Delta\left(p_{1} \ldots p_{s}\right) \leq 2^{s-2}-\sum_{i=2}^{s} \frac{2^{s-1-i}}{p_{i}}
$$

REmARKS. (a) The two inequalities in Theorem 1 are, in fact, equalities when $N=2$ and p is any odd prime.
(b) The bound in Corollary (i) is an equality when $q=3$ and $p \equiv 1(\bmod 6)(c f$. Theorem 4(iv)).
(c) Corollary (ii) is obtained by using Theorem 1(i). By using Theorem 1(ii) instead, we can obtain a slight improvement in this corollary. Indeed, further small improvements can be obtained by incorporating Corollary (i) into the argument.
(d) Corollary (ii) shows that given s primes $p_{1}<\cdots<p_{s}$ in some interval $[X,(1+\varepsilon) X]$, where $\varepsilon>0$, we have that

$$
\Delta\left(p_{1} \ldots p_{s}\right) \leq 2^{s-1}-\frac{1}{(1+\varepsilon)} \frac{2^{s}}{p_{1}}+\frac{1}{(1+\varepsilon) p_{1}}
$$

THEOREM 2. Let $k \in \mathbf{N}$ and let N be composed of primes p with $p \equiv-1(\bmod k)$. Then

$$
\Delta(N) \geq 2^{\omega(N)-1}\left(\frac{k-2}{k}\right)
$$

In particular, given any prime p, all N with smallest prime factor p and with all other prime factors q satisfying $q \equiv-1(\bmod (p+1))$ has

$$
\Delta(N) \geq 2^{\omega(N)-1}\left(1-\frac{2}{p+1}\right)
$$

Theorem 3. For any $N>1$, we have

$$
\begin{gather*}
\frac{1}{\varphi(N)} \sum_{i=1}^{\varphi(N)} \Delta^{2}\left(\frac{a_{i}}{N}, N\right)=\frac{1}{12} 2^{\omega(N)} \frac{\varphi(N)}{N}+\frac{1}{6} \tag{i}\\
\Delta(N) \geq\left(\frac{1}{12} 2^{\omega(N)} \frac{\varphi(N)}{N}-\frac{1}{2}\right)^{\frac{1}{2}}+\frac{1}{2}
\end{gather*}
$$

THEOREM 4.
(i) (LEHMER) Let N be a squarefree integer which is divisible by a prime $p, p \equiv$ $1(\bmod k)$ and $k \in \mathbf{N}$. Then for any $a \in \mathbf{Z}$,

$$
\sum_{\substack{\frac{a N}{k}<n \leq \frac{(a+1) N}{k} \\(n, N)=1}} 1=\frac{1}{k} \varphi(N) .
$$

(ii) $\Delta(2 N)=\Delta(N)$ for any odd $N>1$.
(iii) $\Delta(N p) \geq\left(1-\frac{1}{p}\right) \Delta(N)$ for any $N \in \mathbf{N}$ and prime p with $p \nmid N$.
(iv) $\Delta(3 p)= \begin{cases}\frac{4}{3}-\frac{2}{p}, & p \equiv-1(\bmod 6) \\ \frac{4}{3}\left(1-\frac{1}{p}\right), & p \equiv 1(\bmod 6) .\end{cases}$
(v) For any $N>1$,

$$
\int_{0}^{1} \Delta^{2}(x, N) d x=\frac{1}{12} \frac{2^{\omega(N)} \varphi(N)}{N}
$$

Preliminary Discussion. Let $1=a_{1}<a_{2}<\cdots<a_{\varphi(N)}=N-1$ be the $\varphi(N)$ integers in $[1, N]$ which are coprime to N. For convenience, we shall also define $a_{0}=0$ and $a_{\varphi(N)+1}=N$. Note that the relation $N-a_{i}=a_{\varphi(N)-i+1}$ is true for all $i, 0 \leq i \leq \varphi(N)+1$.

We shall refer to points a / N with $(a, N)=1$ as N-nodal so that, in [0,1], these are precisely the points $a_{i} / N, 1 \leq i \leq \varphi(N)$.

From the definition of $\Delta(x, N)$, we have that

$$
\begin{gathered}
\Delta\left(\frac{a_{i}}{N}, N\right)=i-a_{i} \frac{\varphi(N)}{N}, \quad 0 \leq i \leq \varphi(N) \\
\Delta\left(\frac{a_{i+1}}{N}, N\right)=\Delta\left(\frac{a_{i}}{N}, N\right)+1-\left(a_{i+1}-a_{i}\right) \frac{\varphi(N)}{N}, \quad 0 \leq i<\varphi(N)
\end{gathered}
$$

and that if $\frac{a_{i}}{N} \leq x<\frac{a_{i+1}}{N}, 0 \leq i \leq \varphi(N)$, then

$$
\Delta(x, N)=\Delta\left(\frac{a_{i}}{N}, N\right)-\left(x-\frac{a_{i}}{N}\right) \varphi(N)
$$

These observations imply that $\Delta(x, N)$ is a piecewise linear function of x with each line-segment in $\left[a_{i} / N, a_{i+1} / N\right)$ having gradient $-\varphi(N)$ and that in the bounds

$$
-\Delta(N) \leq \Delta(x, N) \leq \Delta(N)
$$

equality is attained in the upper bound for some N-nodal point x while the lower bound is, in fact, a strict inequality. Note also that if x is N-nodal then we have the sharper lower bound

$$
\Delta(x, N)=1+\lim _{t \rightarrow x-} \Delta(t, N) \geq-\Delta(N)+1
$$

The relation $\Delta\left(\frac{a_{i}}{N}, N\right)=-\Delta\left(\frac{N-a_{i}}{N}, N\right)+1$ shows, in fact, that

$$
\inf _{1 \leq i \leq \varphi(N)} \Delta\left(\frac{a_{i}}{N}, N\right)=-\Delta(N)+1
$$

Proofs of Theorems. We begin with the proof of Theorem 4 because it contains some of the results which are required in the subsequent theorems.

Proof of Theorem 4. (i) Write $N=p M$ where $p \not \backslash M$ and $p \equiv 1(\bmod k)$. Identity (I) implies that for any $a, 0 \leq a \leq k-1$,

$$
\Delta\left(\frac{a}{k}, N\right)=\Delta\left(\frac{p a}{k}, M\right)-\Delta\left(\frac{a}{k}, M\right)=\Delta\left(\frac{a}{k}, M\right)-\Delta\left(\frac{a}{k}, M\right)=0
$$

and, clearly, this also holds for $a=k$. Hence

$$
0=\Delta\left(\frac{a+1}{k}, N\right)-\Delta\left(\frac{a}{k}, N\right)=\sum_{\substack{\frac{a N}{k}<n \leq \frac{(a+1) N}{k} \\(n, N)=1}} 1-\frac{1}{k} \varphi(N) .
$$

This proves (i).
(ii) For any $N>1$, we have that

$$
\Delta(x, N)=-\mu(N) \sum_{d \mid N} \mu(d)\left(\{x d\}-\frac{1}{2}\right)
$$

Hence for $(l, N)=1$,

$$
\begin{aligned}
\sum_{n=0}^{l-1} \Delta\left(\frac{u+n}{l}, N\right) & =-\mu(N) \sum_{d \mid N} \mu(d) \sum_{n=0}^{l-1}\left(\left\{\frac{u d}{l}+\frac{n d}{l}\right\}-\frac{1}{2}\right) \\
& =-\mu(N) \sum_{d \mid N} \mu(d) \sum_{n=0}^{l-1}\left(\left\{\frac{u d}{l}+\frac{n}{l}\right\}-\frac{1}{2}\right)
\end{aligned}
$$

The inner sum is $\{u d\}-\frac{1}{2}$ (see $e . g$. Landau [5], p. 170). We therefore deduce that for any $(l, N)=1$ and $u \in \mathbf{R}$,

$$
\begin{equation*}
\sum_{n=0}^{l-1} \Delta\left(\frac{u+n}{l}, N\right)=\Delta(u, N) \tag{4}
\end{equation*}
$$

Using (4) with $l=2$ and N odd together with identity (I), we have that

$$
\Delta\left(\frac{u}{2}, N\right)=\Delta(u, N)-\Delta\left(\frac{u+1}{2}, N\right)=\Delta\left(\frac{u+1}{2}, 2 N\right)
$$

By varying u through an interval of length 2 , we deduce that the set of values of $\Delta(x, N)$ and that of $\Delta(x, 2 N)$ is the same and (ii) follows.
(iii) Using (4) with $l=p$ where $p \nmid N$ and identity (I), we have that

$$
\begin{aligned}
\sum_{n=0}^{p-1} \Delta\left(\frac{u+n}{p}, N p\right) & =\sum_{n=0}^{p-1} \Delta(u, N)-\sum_{n=0}^{p-1} \Delta\left(\frac{u+n}{p}, N\right)=p \Delta(u, N)-\Delta(u, N) \\
& =(p-1) \Delta(u, N)
\end{aligned}
$$

Choosing u so that $\Delta(u, N)=\Delta(N)$, we deduce that

$$
(p-1) \Delta(N) \leq p \Delta(N p)
$$

which implies (iii).
(iv) For any a with $1 \leq a<3 p$ and $(a, 3 p)=1$, identity (I) yields

$$
\Delta\left(\frac{a}{3 p}, 3 p\right)=\Delta\left(\frac{a}{3}, 3\right)-\Delta\left(\frac{a}{3 p}, 3\right)
$$

It follows directly from the definition of $\Delta(x, 3)$ that

$$
\Delta\left(\frac{a}{3}, 3\right)= \begin{cases}1 / 3, & a \equiv 1(\bmod 3) \\ 2 / 3, & a \equiv 2(\bmod 3)\end{cases}
$$

and that

$$
\Delta\left(\frac{a}{3 p}, 3\right)=\left[\frac{a}{p}\right]-\frac{2 a}{3 p}
$$

We deduce that if $a \equiv 2(\bmod 3)$ and $a<p$ then

$$
\Delta\left(\frac{a}{3 p}, 3 p\right)=\frac{2}{3}+\frac{2 a}{3 p}
$$

and hence that if $p \equiv 1(\bmod 6)$ then

$$
\Delta\left(\frac{p-2}{3 p}, 3 p\right)=\frac{4}{3}\left(1-\frac{1}{p}\right)
$$

and if $p \equiv-1(\bmod 6)$ then

$$
\Delta\left(\frac{p-3}{3 p}, 3 p\right)=\frac{4}{3}-\frac{2}{p}
$$

We now show that these are indeed the largest values of $\Delta(x, 3 p)$. Clearly, this is indeed the case if $a \equiv 2(\bmod 3)$ and $a<p$. If $a \equiv 1(\bmod 3)$ then

$$
\Delta\left(\frac{a}{3 p}, 3 p\right)=\frac{1}{3}-\left[\frac{a}{p}\right]+\frac{2 a}{3 p} \leq \frac{1}{3}+\frac{2(p-1)}{3 p}=1-\frac{2}{3 p}<\frac{4}{3}-\frac{2}{p}
$$

for any $p \geq 5$ and so is smaller than either of the above candidates for $\Delta(3 p)$.
If $a \equiv 2(\bmod 3)$ and $2 p \leq a<3 p$ then

$$
\Delta\left(\frac{a}{3 p}, 3 p\right)=-\frac{4}{3}+\frac{2 a}{3 p}<\frac{2}{3}
$$

and this is also smaller. Finally, if $a \equiv 2(\bmod 3)$ and $p \leq a<2 p$ then

$$
\Delta\left(\frac{a}{3 p}, 3 p\right)=-\frac{1}{3}+\frac{2 a}{3 p} \leq \begin{cases}1-\frac{2}{p}, & p \equiv 1(\bmod 6) \\ 1-\frac{4}{3 p}, & p \equiv-1(\bmod 6)\end{cases}
$$

which are smaller as well. This completes the proof of (iv).
(v) Since $\Delta(x, N)=-\mu(N) \sum_{d \mid N} \mu(d)\left(\{x d\}-\frac{1}{2}\right)$, using a classical result of Franel [4], we have that

$$
\begin{align*}
\int_{0}^{1} \Delta^{2}(x, N) d x & =\sum_{d_{1}\left|N, d_{2}\right| N} \mu\left(d_{1}\right) \mu\left(d_{2}\right) \int_{0}^{1}\left(\left\{x d_{1}\right\}-\frac{1}{2}\right)\left(\left\{x d_{2}\right\}-\frac{1}{2}\right) d x \\
& =\frac{1}{12} \sum_{d_{1}\left|N, d_{2}\right| N} \mu\left(d_{1}\right) \mu\left(d_{2}\right) \frac{\left(d_{1}, d_{2}\right)^{2}}{d_{1} d_{2}} \tag{5}
\end{align*}
$$

Writing $r=\left(d_{1}, d_{2}\right), d_{1}=\delta_{1} r, d_{2}=\delta_{2} r$, the above sum is

$$
\sum_{\substack{r\left|N \\ \delta_{1}\right| N /, r, \delta_{2} \mid N / r \\\left(\delta_{1}, \delta_{2}\right)=1}} \frac{\mu\left(\delta_{1}\right) \mu\left(\delta_{2}\right)}{\delta_{1} \delta_{2}}=\sum_{r \mid N} \sum_{d \mid N / r} \frac{\mu(d) \tau(d)}{d}=\sum_{r \mid N} \sum_{d \mid r} \frac{\mu(d) \tau(d)}{d} .
$$

The function $f(r)=\sum_{d \mid r} \mu(d) \tau(d) / d$ is multiplicative with $f(p)=1-2 / p$. Further, the function $g(N)=\sum_{r \mid N} f(r)$ is also multiplicative with

$$
g(p)=1+f(p)=2\left(1-\frac{1}{p}\right)
$$

Hence, for squarefree $N, g(N)=2^{\omega(N)} \varphi(N) / N$. We deduce from (5) that

$$
\int_{0}^{1} \Delta^{2}(x, N) d x=\frac{1}{12} g(N)=\frac{1}{12} \frac{2^{\omega(N)} \varphi(N)}{N}
$$

as required. Using $\Delta(x, N)=\Delta(x L, \bar{N})$ as noted in the introduction, it follows easily that the result holds even if N is not squarefree.

Proof of Theorem 1. Let a with $(a, N p)=1$ and $1 \leq a<N p$ be chosen such that

$$
\Delta(N p)=\Delta\left(\frac{a}{N p}, N p\right)
$$

By identity (I), we have that

$$
\begin{equation*}
\Delta(N p)=\Delta\left(\frac{a}{N}, N\right)-\Delta\left(\frac{a}{N p}, N\right) \tag{6}
\end{equation*}
$$

Since $(a, N)=1,\{a / N\}$ is N-nodal but clearly $a / N p$ is not N-nodal. We can therefore define $i \in \mathbf{N}, 1 \leq i \leq \varphi(N)+1$, such that

$$
\frac{a_{i-1}}{N}<\frac{a}{N p}<\frac{a_{i}}{N}
$$

This implies that $a<p a_{i}$ and so we can write $a=p a_{i}-r$ with $r \in \mathbf{N}$.
We shall prove the validity of both

$$
\begin{equation*}
\Delta(N p) \leq 2 \Delta(N)-\frac{r}{N p} \varphi(N) \tag{7}
\end{equation*}
$$

and, if $r \leq N p / \varphi(N p)$,

$$
\begin{equation*}
\Delta(N p) \leq 2 \Delta(N)-1+\frac{r}{N p} \varphi(N p) \tag{8}
\end{equation*}
$$

We begin by considering the case $i=\varphi(N)+1$ on its own. Here $a_{i}=N$ and hence $a=p N-r$ so that

$$
\Delta\left(\frac{a}{N p}, N\right)=\Delta(1, N)+\left(1-\frac{a}{N p}\right) \varphi(N)=\frac{r \varphi(N)}{N p}
$$

so that we deduce immediately from (6) that (7) is true. Note also that in this case

$$
\begin{aligned}
\Delta(N p) & =\Delta\left(\frac{a}{N p}, N p\right) \leq \Delta(1, N p)+\left(1-\frac{a}{N p}\right) \varphi(N p) \\
& =\frac{r \varphi(N p)}{N p} \leq 2 \Delta(N)-1+\frac{r \varphi(N p)}{N p},
\end{aligned}
$$

since $\Delta(N) \geq 1 / 2$ for $N>1$. This proves (8).
We may therefore assume from now onward that $1 \leq i \leq \varphi(N)$. Hence, using our preliminary observations,

$$
\begin{aligned}
\Delta\left(\frac{a}{N p}, N\right) & =\Delta\left(\frac{a_{i}}{N}, N\right)-1+\left(\frac{a_{i}}{N}-\frac{a}{N p}\right) \varphi(N) \\
& =\Delta\left(\frac{a_{i}}{N}, N\right)-1+\frac{r}{N p} \varphi(N)
\end{aligned}
$$

so that (6) implies that

$$
\begin{aligned}
\Delta(N p) & =\Delta\left(\frac{a}{N}, N\right)-\Delta\left(\frac{a_{i}}{N}, N\right)+1-\frac{r}{N p} \varphi(N) \\
& \leq \Delta(N)-(-\Delta(N)+1)+1-\frac{r}{N p} \varphi(N)
\end{aligned}
$$

since a_{i} / N is N-nodal. This implies (7).
On the other hand, identity (I) implies that

$$
\Delta\left(\frac{a+r}{N p}, N p\right)=\Delta\left(\frac{p a_{i}}{N}, N\right)-\Delta\left(\frac{a_{i}}{N}, N\right)
$$

and hence

$$
\begin{equation*}
\Delta\left(\frac{a+r}{N p}, N p\right) \leq \Delta(N)-(-\Delta(N)+1)=2 \Delta(N)-1 \tag{9}
\end{equation*}
$$

Since $i \leq \varphi(N)$, we have that

$$
\frac{a}{N p}<\frac{a_{i}}{N} \leq 1-\frac{1}{N}<1-\frac{1}{N p}=\frac{N p-1}{N p}
$$

and hence $a / N p$ is not the largest $N p$-nodal point in $(0,1)$. Denoting by $b / N p$ the least $N p$-nodal point larger than $a / N p$, the definition of $a / N p$ implies that

$$
0 \geq \Delta\left(\frac{b}{N p}, N p\right)-\Delta\left(\frac{a}{N p}, N p\right)=1-\frac{(b-a) \varphi(N p)}{N p}
$$

and hence $b-a \geq N p / \varphi(N p)$. Since $(a+r) / N p$ is not $N p$-nodal, we deduce that if $r \leq N p / \varphi(N p)$ then

$$
\frac{a}{N p}<\frac{a+r}{N p}<\frac{b}{N p}
$$

For such r, we use (9) to infer that

$$
\begin{aligned}
\Delta(N p) & =\Delta\left(\frac{a}{N p}, N p\right)=\Delta\left(\frac{a+r}{N p}, N p\right)+\frac{r}{N p} \varphi(N p) \\
& \leq 2 \Delta(N)-1+\frac{r}{N p} \varphi(N p)
\end{aligned}
$$

This proves (8) and hence completes the proof of (7) and (8).
We now prove (i).
If $r \geq N / \varphi(N)$ then (7) immediately yields

$$
\Delta(N p) \leq 2 \Delta(N)-\frac{1}{p}
$$

If, on the other hand, $r<N / \varphi(N)$ then certainly $r<N p / \varphi(N p)$ so that (8) yields

$$
\Delta(N p) \leq 2 \Delta(N)-1+\frac{N}{\varphi(N)} \cdot \frac{1}{N p} \varphi(N p)=2 \Delta(N)-\frac{1}{p}
$$

This completes the proof of (i).
We now prove (ii). Put $l=[N / \varphi(N)]$.
If $r \geq l+1$ then (7) implies that

$$
\Delta(N p) \leq 2 \Delta(N)-\frac{(l+1) \varphi(N)}{N p}
$$

If $r \leq l$ then certainly $r<N p / \varphi(N p)$ so that (8) yields

$$
\Delta(N p) \leq 2 \Delta(N)-1+\frac{l}{N p} \varphi(N p)=2 \Delta(N)-(l+1) \frac{\varphi(N)}{N p}+\frac{\varphi(N)}{N p}+\frac{l \varphi(N)}{N}-1
$$

Hence, in any case,

$$
\Delta(N p) \leq 2 \Delta(N)-(l+1) \frac{\varphi(N)}{N p}+\max \left(0, \frac{\varphi(N)}{N p}+\frac{l \varphi(N)}{N}-1\right)
$$

as required.
This completes the proof of Theorem 1.
Proof of Corollaries. In Theorem 1(ii), put $N=q \geq 3$. Then $l=1$ and so we obtain

$$
\begin{aligned}
\Delta(p q) & \leq 2 \Delta(q)-\frac{2}{p q}(q-1)+\max \left(0, \frac{q-1}{p q}+\frac{q-1}{q}-1\right) \\
& =2\left(1-\frac{1}{q}\right)-\frac{2}{p}\left(1-\frac{1}{q}\right)=2\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)
\end{aligned}
$$

as required for Corollary (i). Corollary (ii) follows on iterating Theorem 1(i). If $p_{1}=$ 2, we just use Theorem 4(ii) to note that $\Delta\left(p_{1} \ldots p_{s}\right)=\Delta\left(p_{2} \ldots p_{s}\right)$ before iterating Theorem 1(i).

Proof of Theorem 2. We use induction on $\omega(N)$ to first show that

$$
\Delta\left(\frac{a}{k}, N\right)=-\mu(N) 2^{\omega(N)}\left(\frac{a}{k}-\frac{1}{2}\right)
$$

for any $a, 1 \leq a \leq k-1$.
If $p \equiv-1(\bmod k)$ then

$$
\Delta\left(\frac{a}{k}, p\right)=\frac{a}{k}-\left\{\frac{p a}{k}\right\}=\frac{a}{k}-\left(1-\frac{a}{k}\right)=2\left(\frac{a}{k}-\frac{1}{2}\right)
$$

and so the result is true for $\omega(N)=1$. Suppose that it is true for some N whose prime factors q satisfy $q \equiv-1(\bmod k)$ and let p be another prime with $p \equiv-1(\bmod k)$ and $p \nmid N$. By identity (I),

$$
\Delta\left(\frac{a}{k}, N p\right)=\Delta\left(\frac{p a}{k}, N\right)-\Delta\left(\frac{a}{k}, N\right)
$$

Since $\left\{\frac{p a}{k}\right\}=\frac{k-a}{k}$, the induction hypothesis implies that

$$
\begin{aligned}
\Delta\left(\frac{a}{k}, N p\right) & =-\mu(N) 2^{\omega(N)}\left(\frac{k-a}{k}-\frac{1}{2}-\left(\frac{a}{k}-\frac{1}{2}\right)\right) \\
& =-\mu(N p) 2^{\omega(N p)}\left(\frac{a}{k}-\frac{1}{2}\right)
\end{aligned}
$$

as required. Hence

$$
\Delta(N) \geq\left|\Delta\left(\frac{k-1}{k}, N\right)\right|=2^{\omega(N)-1}\left(\frac{k-2}{k}\right)
$$

Proof of Theorem 3. For the proof of Theorem 3, we shall need an elementary lemma which we state in a general context since it may be of independent interest.

LEMmA. Let $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{l}$ be l points in $(0,1)$ and define for any $x \in[0,1]$,

$$
\Delta(x)=\sum_{\substack{i \\ \alpha_{i} \leq x}} 1-x l
$$

Then

$$
\frac{1}{l} \sum_{i=1}^{l} \Delta^{2}\left(\alpha_{i}\right)=\int_{0}^{1} \Delta^{2}(x) d x+\frac{1}{6}-\left(\sum_{i=1}^{l} \alpha_{i}-\frac{l}{2}\right)
$$

PROOF. Define $\alpha_{0}=0$ and $\alpha_{l+1}=1$. Observe that if $\alpha_{i} \leq x<\alpha_{i+1}$, then $\Delta(x)=i-x l$.
Hence

$$
\begin{align*}
\int_{0}^{1} \Delta^{2}(x) d x & =\sum_{i=0}^{l} \int_{\alpha_{i}}^{\alpha_{i+1}} \Delta^{2}(x) d x \\
& =\sum_{i=0}^{l} i^{2}\left(\alpha_{i+1}-\alpha_{i}\right)-l \sum_{i=0}^{l} i\left(\alpha_{i+1}^{2}-\alpha_{i}^{2}\right)+\frac{l^{2}}{3} \sum_{i=0}^{l}\left(\alpha_{i+1}^{3}-\alpha_{i}^{3}\right) \tag{10}\\
& =\frac{l^{2}}{3}+\sum_{i=1}^{l} \alpha_{i}-2 \sum_{i=1}^{l} i \alpha_{i}+l \sum_{i=1}^{l} \alpha_{i}^{2}
\end{align*}
$$

Further, since $\Delta\left(\alpha_{i}\right)=i-\alpha_{i} l$,
(11) $\sum_{i=1}^{l} \Delta^{2}\left(\alpha_{i}\right)=\sum_{i=1}^{l}\left(i^{2}-2 i \alpha_{i} l+l^{2} \alpha_{i}^{2}\right)=\frac{l(l+1)(2 l+1)}{6}-2 l \sum_{i=1}^{l} i \alpha_{i}+l^{2} \sum_{i=1}^{l} \alpha_{i}^{2}$.

Comparing (10) and (11), we deduce that

$$
\frac{1}{l} \sum_{i=1}^{l} \Delta^{2}\left(\alpha_{i}\right)=\int_{0}^{1} \Delta^{2}(x) d x-\sum_{i=1}^{l} \alpha_{i}+\frac{l}{2}+\frac{1}{6}
$$

as required.

COROLLARY. If, in addition, the points α_{i} are symmetric about $\frac{1}{2}$ then

$$
\frac{1}{l} \sum_{i=1}^{l} \Delta^{2}\left(\alpha_{i}\right)=\int_{0}^{1} \Delta^{2}(x) d x+\frac{1}{6}
$$

For $N>1$, we apply the above corollary with $\alpha_{i}=\frac{a_{i}}{N}, 1 \leq i \leq \varphi(N)$, and use Theorem 4(v) to obtain Theorem 3(i).

Since

$$
\begin{equation*}
\sum_{i=1}^{\varphi(N)} \Delta\left(\frac{a_{i}}{N}, N\right)=\sum_{i=1}^{\varphi(N)}\left(i-a_{i} \frac{\varphi(N)}{N}\right)=\frac{\varphi(N)}{2} \tag{12}
\end{equation*}
$$

we deduce that

$$
\begin{equation*}
\frac{1}{\varphi(N)} \sum_{i=1}^{\varphi(N)}\left(\Delta\left(\frac{a_{i}}{N}, N\right)-\frac{1}{2}\right)^{2}=\frac{1}{12} 2^{\omega(N)} \frac{\varphi(N)}{N}-\frac{1}{12} \tag{13}
\end{equation*}
$$

Since $\inf \Delta\left(\frac{a_{i}}{N}, N\right)=-\sup \Delta\left(\frac{a_{i}}{N}, N\right)+1$, we deduce from (13) that

$$
\left(\Delta(N)-\frac{1}{2}\right)^{2} \geq \frac{1}{12} 2^{\omega(N)} \frac{\varphi(N)}{N}-\frac{1}{12}
$$

Theorem 3(ii) now follows on observing that (12) implies that $\Delta(N) \geq \frac{1}{2}$.

References

[1] H. Delange, Sur la distribution des fractions irréductibles de dénominateur n ou de dénominateur au plus égalà x. In: Hommage au Professeur Lucien Godeaux. Centre Belge de Recherches Mathématiques, Louvain, 1968, 75-89.
[2] P. Erdös, Some remarks on a paper of McCarthy. Canad. Math. Bull. (2) 1(1958), 71-75.
[3] P. Erdös, Remarks and corrections to my paper "Some remarks on a paper of McCarthy". Canad. Math. Bull. (2) 3(1960), 127-129.
[4] J. Franel, Les suites de Farey et les problèms des nombres premiers. Göttinger Nachr., 1924, 198-201.
[5] E. Landau, Vorlesungen über Zahlentheorie. Band 2, Teil 7, Kapitel 13. Chelsea, New York, 1950.
[6] D. H. Lehmer, The Distribution of Totatives. Canad. J. Math. 7(1955), 347-357.
[7] P. J. McCarthy, Note on the distribution of the totatives. Amer. Math. Monthly 64(1957), 585-586.
[8] A. Perelli and U. Zannier, An extremal property of the Möbius function. Arch. Math. 53(1989), 20-29.
[9] D. Suryanarayana, On $\Delta(x, n)=\varphi(x, n)-x \varphi(n) / n$. Proc. Amer. Math. Soc. (1) 44(1974), 17-21.
[10] L. van Hamme, Sur une généralisation de l'indicateur d'Euler. Acad. Roy. Belg. Bull Cl. Sci. Sér. 5 57(1971), 805-817.
[11] T. Vijayaraghavan, On a problem in elementary number theory. J. Indian Math. Soc. 15(1951), 51-56.

Dipartimento di Matematica	Department of Mathematics
Università di Ferrara	University of Glasgow
via Machiavelli 35	Glasgow G12 8QW
44100 Ferrara	UK
Italy	email: mknn@maths.gla.ac.uk
email: cod@dns.unife.it	

