Canad. Math. Bull. Vol. 48 (4), 2005 pp. 576-579

On a Theorem of Kawamoto on Normal Bases of Rings of Integers, II

Humio Ichimura

Abstract. Let $m = p^e$ be a power of a prime number p. We say that a number field F satisfies the property (H'_m) when for any $a \in F^{\times}$, the cyclic extension $F(\zeta_m, a^{1/m})/F(\zeta_m)$ has a normal p-integral basis. We prove that F satisfies (H'_m) if and only if the natural homomorphism $Cl'_F \to Cl'_K$ is trivial. Here $K = F(\zeta_m)$, and Cl'_F denotes the ideal class group of F with respect to the p-integer ring of F.

1 Introduction

A finite Galois extension N/F over a number field F with group G has a normal integral basis (NIB for short) when \mathcal{O}_N is cyclic over the group ring $\mathcal{O}_F[G]$. Here, \mathcal{O}_F denotes the ring of integers of a number field F. Let p be a prime number. We say that F satisfies the property (H_p) when for any $a \in F^{\times}$, the cyclic extension $F(\zeta_p, a^{1/p})/F(\zeta_p)$ has a NIB if it is tame. Here, for an integer m, ζ_m denotes a primitive m-th root of unity. It is Kawamoto [9, 10] who first noticed this property when F equals the rationals \mathbb{Q} and proved that \mathbb{Q} satisfies (H_p) for all primes p. We studied this property in some detail [4, 5, 7]. In particular, we gave [7, §2] some necessary (resp. sufficient) conditions for a number field F to satisfy (H_p) . The purpose of this note is to give a p-integer version of these results.

We fix a prime number p in all what follows. For a number field F, let $\mathcal{O}'_F = \mathcal{O}_F[1/p]$ be the ring of p-integers of F, and Cl'_F the ideal class group of the Dedekind domain \mathcal{O}'_F . A finite Galois extension N/F with group G has a normal p-integral basis (p-NIB for short) when \mathcal{O}'_N is cyclic over $\mathcal{O}'_F[G]$. Let $m = p^e$ be a power of p, F a number field, and $K = F(\zeta_m)$. We say that F satisfies the property (H'_m) when for any $a \in F^{\times}$, the cyclic extension $K(a^{1/m})/K$ has a p-NIB. Further, we say that F satisfies $(H'_{m,\infty})$ when for any $\lambda \ge 1$ and any elements a_1, \ldots, a_{λ} of F^{\times} , the abelian extension $K(a_{\lambda}^{1/m}, \ldots, a_{\lambda}^{1/m})$ over K has a p-NIB. We prove the following theorem on these properties.

Theorem Let $m = p^e$ be a power of a prime number p. Let F be a number field, and $K = F(\zeta_m)$. Then, the following three conditions are equivalent to each other.

- (i) *F* satisfies the property (H'_m) .
- (ii) *F* satisfies the property $(H'_{m,\infty})$.
- (iii) The natural homomorphism $Cl'_F \to Cl'_K$ is trivial.

Received by the editors December 2, 2003; revised January 15, 2004.

The author was partially supported by Grant-in-Aid for Scientific Research (C) (No. 16540033), the Ministry of Education, Culture, Sports, Science and Technology of Japan.

AMS subject classification: 11R33.

Normal Integral Bases

2 Proof of Theorem

Let *m* be as in the Theorem, *F* a number field, and \mathfrak{A} an *m*-th power free integral ideal of \mathcal{O}'_F . Namely, $\mathfrak{P}^m \nmid \mathfrak{A}$ for all prime ideals \mathfrak{P} of \mathcal{O}'_F . We can uniquely write

$$\mathfrak{A}=\prod_{i=1}^{m-1}\mathfrak{A}_{i}^{i}$$

for some square free integral ideals \mathfrak{A}_i of \mathfrak{O}'_F relatively prime to each other. The associated ideals \mathfrak{B}_i of \mathfrak{A} are defined by

(1)
$$\mathfrak{B}_j = \prod_{i=1}^{m-1} \mathfrak{A}_i^{[ij/m]} \quad (0 \le j \le m-1).$$

Here, for a real number x, [x] denotes the largest integer $\leq x$. Clearly, we have $\mathfrak{B}_0 = \mathfrak{B}_1 = \mathfrak{O}'_F$. The following lemma is a p-integer version of theorems of Gómez Ayala [2, Theorem 2.1] and the author [6, Theorem 2]. For this, see also [8, Theorem 3].

Lemma 1 Let *m* be as in the Theorem, and *K* a number field with $\zeta_m \in K^{\times}$. A cyclic extension *L/K* of degree *m* has a *p*-NIB if and only if there exists an integer $a \in O'_K$ with $L = K(a^{1/m})$ such that (i) the principal integral ideal aO'_K of O'_K is *m*-th power free and (ii) the ideals associated to aO'_K by (1) are principal.

The following is generalization of a classical result in Greither [3, Proposition 0.6.5], and is an immediate consequence of Lemma 1.

Lemma 2 Let m and K be as in Lemma 1. Let $a \in O'_K$ be an integer such that the integral ideal aO'_K is square free. Then, the cyclic extension $K(a^{1/m})/K$ has a p-NIB.

Let us prove the Theorem. The implication (ii) \Rightarrow (i) is obvious. So, it suffices to show (i) \Rightarrow (iii) and (iii) \Rightarrow (ii).

(i) \Rightarrow (iii): Assume that *F* satisfies (H'_m) . Let \mathfrak{P} be a prime ideal of \mathfrak{O}'_F , and *d* the order of the ideal class $[\mathfrak{P}] \in Cl'_F$. Then, we have $\mathfrak{P}^d = b_1 \mathfrak{O}'_F$ for some $b_1 \in \mathfrak{O}'_F$. Let $b_2 \in \mathfrak{O}'_F$ be an integer such that $\mathfrak{Q} = b_2 \mathfrak{O}'_F$ is a prime ideal of \mathfrak{O}'_F with $\mathfrak{P} \neq \mathfrak{Q}$. Let $b = b_1 b_2$ and $L = K(b^{1/m})$. For any square free (resp. *m*-th power free) integral ideal \mathfrak{A} of \mathfrak{O}'_F , the lift \mathfrak{AO}'_K is also square free (resp. *m*-th power free) as K/F is unramified outside *p*. Hence, as $b\mathfrak{O}'_K = (\mathfrak{PO}'_K)^d(\mathfrak{QO}'_K)$, the cyclic extension L/K is of degree *m*. It has a *p*-NIB as *F* satisfies (H'_m) . Therefore, there exists an integer $a \in \mathfrak{O}'_K$ with $L = K(a^{1/m})$ satisfying conditions (i) and (ii) of Lemma 1. As [L:K] = m, we have $a = b^s x^m$ for some $x \in K^{\times}$ and some *s* with $1 \leq s \leq m - 1$ and $p \nmid s$. Writing ds = mq + r with $0 \leq r \leq m - 1$, we have

$$a\mathcal{O}'_{K} = (\mathfrak{PO}'_{K})^{r} (\mathfrak{QO}'_{K})^{s} (x\mathfrak{P}^{q}\mathcal{O}'_{K})^{m}.$$

We see that $x \mathfrak{P}^q \mathfrak{O}'_K = \mathfrak{O}'_K$ since $a \mathfrak{O}'_K$ is *m*-th power free by condition (i) of Lemma 1. Hence we obtain

(2)
$$a\mathcal{O}_K' = (\mathfrak{P}\mathcal{O}_K')^r (\mathfrak{Q}\mathcal{O}_K')^s = (\mathfrak{P}\mathcal{O}_K')^r (b_2\mathcal{O}_K')^s.$$

H. Ichimura

It also follows that $\mathfrak{P}^{q[K:F]} = y \mathfrak{O}'_F$ with $y = N_{K/F} x^{-1}$, and hence

 $d \mid q[K:F].$

Assume that r = 0 (or equivalently, ds = mq and $q \neq 0$). As $p \nmid s$, we have

$$\operatorname{ord}_p(mq) = \operatorname{ord}_p(d) \le \operatorname{ord}_p([K:F]q).$$

Hence, it follows that

$$\operatorname{ord}_{p}(m) \leq \operatorname{ord}_{p}([K:F]) \leq \operatorname{ord}_{p}([\mathbb{Q}(\zeta_{m}):\mathbb{Q}]).$$

This is clearly impossible. Therefore, we obtain $r \ge 1$. When r = 1, it follows from (2) that \mathfrak{PO}'_K is principal. Let us deal with the case $2 \le r \le m - 1$. Let j be an integer with $2 \le j \le m - 1$ and [rj/m] = 1. Then, it follows from (1) and (2) that the associated ideal \mathfrak{B}_j of $a\mathcal{O}'_K$ equals $\mathfrak{PO}'_K(b_2\mathcal{O}'_K)^{[sj/m]}$. Therefore, we see that \mathfrak{PO}'_K is principal since \mathfrak{B}_j is principal by condition (ii) of Lemma 1.

(iii) \Rightarrow (ii): Let μ_K be the group of roots of unity in K, and $E'_K = (\mathfrak{O}'_K)^{\times}$ the group of units of \mathfrak{O}'_K . Let ζ be a generator of the cyclic group μ_K , and $\epsilon_1, \ldots, \epsilon_s$ a system of fundamental units of \mathfrak{O}'_K . For each prime ideal \mathfrak{P} of \mathfrak{O}'_F , we can choose an integer $\pi_{\mathfrak{P}} \in \mathfrak{O}'_K$ such that $\mathfrak{PO}'_K = \pi_{\mathfrak{P}}\mathfrak{O}'_K$ since the homomorphism $Cl'_F \to Cl'_K$ is trivial. For elements a_1, \ldots, a_λ of F^{\times} , let $L = K(a_1^{1/m}, \ldots, a_\lambda^{1/m})$. We show that the abelian extension L/K has a *p*-NIB. We may as well assume that $a_r \in \mathfrak{O}'_F$. We can write

$$a_r \mathfrak{O}'_F = \prod_{i=1}^{m-1} \mathfrak{A}^i_{r,i} \cdot \mathfrak{A}^m_{r,m} \quad (1 \le r \le \lambda)$$

for some integral ideals $\mathfrak{A}_{r,i}$ of \mathfrak{O}'_F such that $\mathfrak{A}_{r,1}, \ldots, \mathfrak{A}_{r,m-1}$ are square free and relatively prime to each other. We have $\mathfrak{A}_{r,m}\mathfrak{O}'_K = x_r\mathfrak{O}'_K$ for some $x_r \in \mathfrak{O}'_K$ as $Cl'_F \to Cl'_K$ is trivial. Hence, we see that

$$b_r := a_r x_r^{-m} = \eta_r \cdot \prod_{i=1}^{m-1} \left(\prod_{\mathfrak{P}} \pi_{\mathfrak{P}}\right)^i$$

for some unit $\eta_r \in E'_K$. Here, in the second product, \mathfrak{P} runs over the prime ideals of \mathfrak{O}'_F dividing $\mathfrak{A}_{r,i}$. Therefore, *L* is contained in

$$ilde{L} = K(\zeta^{1/m}, \epsilon_j^{1/m}, \pi_{\mathfrak{P}}^{1/m} \mid 1 \leq j \leq s, \mathfrak{P}|b_1 \cdots b_\lambda),$$

where \mathfrak{P} runs over the prime ideals of \mathfrak{O}'_F dividing the product $b_1 \cdots b_\lambda$. The integral ideal $\pi_{\mathfrak{P}} \mathfrak{O}'_K = \mathfrak{P} \mathfrak{O}'_K$ is square free as K/F is unramified outside p. Hence, by Lemma 2, the extensions $K(\zeta^{1/m})$, $K(\epsilon_j^{1/m})$, and $K(\pi_{\mathfrak{P}}^{1/m})$ over K have a p-NIB. On the other hand, we easily see that these extensions over K are linearly disjoint, and that their relative discriminants over K with respect to \mathfrak{O}'_K are relatively prime to each other. Therefore, it follows that the composite \tilde{L}/K has a p-NIB by a classical result on rings of integers (cf. Fröhlich and Taylor [1, III (2.13)]). Hence, L/K has a p-NIB as $L \subseteq \tilde{L}$. Therefore, F satisfies $(H'_{m,\infty})$.

578

Normal Integral Bases

References

- [1] A. Fröhlich and M. J. Taylor, *Algebraic Number Theory.* Cambridge Studies in Advanced Mathematics 27, Cambridge Univ. Press, Cambridge, 1993.
- [2] E. J. Gómez Ayala, Bases normales d'entiers dans les extensions de Kummer de degré premier. J. Théor. Nombres Bordeaux 6(1994), 95-116.
- [3] C. Greither, *Cyclic Galois Extensions of Commutative Rings*. Lecture Notes in Mathematics 1534, Springer-Verlag, Berlin, 1992.
- [4] H. Ichimura, Note on the ring of integers of a Kummer extension of prime degree. II. Proc. Japan Acad. Ser A Math. Sci.77(2001), 25–28.
- [5] _____, Note on the ring of integers of a Kummer extension of prime degree. IV. Proc. Japan Acad. Ser A Math. Sci. 77(2001), 92–94.
- [6] _____, On the ring of integers of a tame Kummer extension over a number field. J. Pure Appl. Algebra **87**(2004), 169–182.
- [7] <u>,</u> On a theorem of Kawamoto on normal bases of rings of integers. Tokyo J. Math. 27(2004), 527–540.
- [8] _____, *On the ring of p-integers of a cyclic p-extension over a number field.* To appear in J. Théor. Nombres Bordeaux.
- [9] F. Kawamoto, On normal integral bases. Tokyo J. Math. 7(1984), 221–231.
- [10] _____, Remark on "On normal integral basis". Tokyo J. Math. 8(1985), 275.

Faculty of Science Ibaraki University Bunkyo 2-1-1, Mito 310-8512 Japan e-mail: hichimur@mx.ibaraki.ac.jp