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1. Introduction. A real number, expressed as a decimal, is said to be 
normal (in the scale of 10) if every combination of digits occurs in the decimal 
with the proper frequency. If aia2 . . . ak is any combination of k digits, and 
N(i) is the number of times this combination occurs among the first t digits, the 
condition is tha t 

(1) S ~r = w 
I t was proved by Champernowne [2] t ha t the decimal -1234567891011 . . . is 
normal, and by Besicovitch [1] t ha t the same holds for the decimal -1491625 . . . . 
Copeland and Erdôs [3] have proved t ha t if pi, pi, . . . is any sequence of positive 
integers such that , for every 6 < 1, the number of p's up to n exceeds n6 if n is 
sufficiently large, then the infinite decimal -pipzpz . . . is normal. This includes 
the result t ha t the decimal formed from the sequence of primes is normal. 

In this note, we prove the following result conjectured by Copeland and 
Erdos : 

T H E O R E M 1. Let f(x) be any polynomial in x, all of whose values, for x = 1, 
2, . . . , are positive integers. Then the decimal - / ( l ) / (2) / (3) . . . is normal. 

I t is to be understood, of course, t ha t each / (w) is wri t ten in the scale of 10, 
and t ha t the digits of / ( l ) are succeeded by those o f / (2 ) , and so on. The proof 
is based on an interpretat ion of the condition (1) in terms of the equal distri
bution of a sequence to the modulus 1, and the application of the method of 
Weyl 's famous memoir [6]. 

Besicovitch [1] introduced the concept of the (e, k) normali ty of an individual 
positive integer q, where e is a positive number and k is a positive integer. The 
condition for this is t ha t if a^az . . . az is any sequence of / d ig i t s , where / ^ k, 
then the number of times this sequence occurs in q lies between 

( l - e ) l O - y and ( l + e)10~V 

where q' is the number of digits in q. Natural ly , the definition is only significant 
when q is large compared with 10*. We prove: 

T H E O R E M 2. For any e and k, almost all the numbers / ( l ) , / ( 2 ) , . . . are (e, k) 

normal; that is, the number of numbers n S x for which f(n) is not (e, k) normal 
is o(x) as x —> o° for fixed e and k. 
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This is a stronger result than that asserted in Theorem 1. But the proof of 
Theorem 1 is simpler than that of Theorem 2, and provides a natural intro
duction to it. 

2. Proof of Theorem 1. We defined N(i) to be the number of times a particu
lar combination of k digits occurs among the first t digits of a given decimal. 
More generally, we define N(u, t) to be the number of times this combination 
occurs among the digits from the (u + l)th to the /th, so that N(0,t) = N(t). 
This function is almost additive; we have, for / > u, 

(2) N(u, t) S N(t) - N(u) g N(u, t) + (k - 1), 

the discrepancy arising from the possibility that the combinations counted in 
N(t) — N(u) may include some which contain both the uth and (u + l)th 
digits. 

Let g be the degree of the polynomial/(x). For any positive integer n, let 
xn be the largest integer x for which f(x) has less than n digits. Then, if n is 
sufficiently large, as we suppose throughout, f(xn + 1) has n digits, and so have 
J(xn + 2), . . . ,/(#TO+i). It is obvious that 

(3) ^ ^ a ( 1 0 v T a s ^ - ^ o o , 

where a is a constant. 
Suppose that the last digit in f(xn) occupies the tnXh place in the decimal 

•/(l)/(2) . . . . Then the number of digits in the block 

f(xn+l)f(xn + 2)...f(xn+1) 

is 4+i — tn, and is also n(xn+\ — xn), since each /has exactly n digits. Hence 

(4) tn + 1 - tn = n(xn+i - xn). 

It follows from (3) that 

(5) tn~an(101/s)n asrc->co. 

To prove (1), it suffices to prove that 

(6) Nfoj) = l ( T * ( * - 0 +o(tn) 

as n —•» oo, for 4 < t ^ 4+i- For, by (2), we have 
n - l 

N(t) - N(th) = 2 N{tT, tr+1) + N(tn, t) + R, 

for a suitable fixed h, where \R\ < nk. Since (6) includes as a special case the 
result 

N(tr, tr+1) = l(T*(*r+i - tr) + o(tr), 

we obtain (1). 
In proving (6), we can suppose without loss of generality that / differs from 

tn by an exact multiple of n. Putting t = tn + nX, the number N(tn, t) is the 
number of times that the given combination of k digits occurs in the block 
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(7) f(Xn +l)f(xn + 2) . . .f(Xn+X), 

where 0 < X ^ xw+i — xn. We can restrict ourselves to those combinations 
which occur entirely in the same/(x), since the others number at most (k — 1) 
• (xn+i — xn), which is o(tn) by (3) and (5). 

The number of times that a given combination a\a2 . . . a* of digits occurs in a 
particular/(x) is the same as the number of values of m with k ^ m S n for 
which the fractional part of 10~mf(x) begins with the decimal -a\a2. . . ak. If 
we define 6{z) to be 1 if z is congruent (mod 1) to a number lying in a certain 
interval of length lO-*, and 0 otherwise, the number of times the given combina
tion occurs in f(x) is 

2 d(io-mf(x)). 
m=k 

Hence 
Xn + X 71 

N(tn, 0 = 2 2 8(l0-mf(x)) + 0(xn+1 - xn), 
x=xn +1 m=k 

the error being simply that already mentioned. 
To prove (6), it suffices to prove that 

(8) 2 * 2 * 0(1(T7(*)) = 10~*nX + o(n(xn+1 - xn)) 
m=k x—xn +1 

for 0 < X ^ xn+i — xn. We shall prove that if ô is any fixed positive number, 
and on < m < (1 — ô)n, then 

(9) ^i d(10-mf(x)) = l<r*X + tf(xw+i - xw) 
X=Xn + 1 

uniformly in m. This suffices to prove (8), since the contribution of the re
maining values of m is at most 2ônX, where ô is arbitrarily small. We have 

(10) X ^ xn+1 -xn< a ( 1 0 v T + 1 , 

and we can also suppose that 

(H) X > (Xn+1 ~ Xn)1^ > PilO1")»"-*'] 

where /3 is a constant, since (9) is trivial if this condition is not satisfied. 
The proof of (9) follows well-known lines. One can construct [6; 4, pp. 

91-92, 99] for any 77 > 0, functions 0\{z) and 62(z)} periodic in z with period 1, 
such that 0i(2) ^ 0(z) S 02(z), having Fourier expansions of the form 

0i(2) = 10"* - v+ 2'Av
(1)e(vz), 

02(z) = H T * + 17+ 2'A,l2)e(vz). 

Here the summation is over all integers v with v 3̂  0, and e(w) stands for e27riw. 
The coefficients Av are majorized by 
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\AV\ S m i n l - r j , — 
\\v\ rjv / 

Using these functions to approximate 0(lO~mf(x)) in (9), we see that it will 
suffice to estimate the sum 

Sn,m,v = XniX e(10~m vf(x)). 
X=Xn + 1 

We can in fact prove that 

(12) \Sntn.,\ < C X W 

for all m and v satisfying 

(13) on < m < (1 — ô)n, 1 ^ v < rf , 

where Cand f are positive numbers depending only on <5, rj and on the polynomial 
f(x). This is amply sufficient to prove (9), since X ;§ xn+i — xn. 

The inequality (12) is a special case of Weyl's inequality for exponential 
sums. The highest coefficient in the polynomial 10~w vf(x) is 10~w vc/d, where 
c/d is the highest coefficient in/(x), and so is a rational number. Write 

10 v -j = - , 
a q 

where a and q are relatively prime integers. Let G = 2°~l. Then, by Weyl's 
inequality1, 

(14) \Sn,m,,\° < CXW-1 + XV 1 + X°-°q) 
for any e > 0, where G depends only on g and e. In the present case, we have 

q S 10wd < 10a-8)nd, 
and 

g ^ 10 ^ c > 10 77 c . 

This relates the magnitude of q to that of n. Relations between n and X were 
given in (10) and (11), and it follows that 

C?Xa* <q< C3X0il-5/*\ 

where C2 and C% depend only on 77, c, d, and g. Using these inequalities for q 
in (14), we obtain a result of the form (12). 

3. Proof of Theorem 2. We again consider the values of x for which/(x) has 
exactly n digits, namely those for which xn < x S #n+i- We denote by T(x) 
the number of times that a particular digit combination a\a^. . . ax (where 
I ^ k) occurs in/(x). Then, with the previous notation, 

T(x) = 2 0(1(T7(*)). 

^ h e most accessible reference is [5, Satz 267]. The result is stated there for a polynomial 
with one term, but the proof applies generally. 
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We proved earlier that (putting X = xn+i — xn), 

2 T(x) ~ 10~lnX a s w — > o o . 
X=Xn + 1 

Now our object is a different one; we wish to estimate the number of values of 
x for which T(x) deviates appreciably from its average value, which is 10~ln. 

For this purpose, we shall prove that 

(15) *2 T\x) ~ 10~un2X as n -* oo. 
X=Xn + 1 

When this has been proved, Theorem 2 will follow. For then 

*2 (T(x) - 10" lnf = 2 f ( x ) - 2(10"'«) 2 r ( x ) + 10" 2 VZ 
X=Xn+l 

= (?(10~ ^ X ) asw-> oo. 

Hence the number of values of x with xn < x ^ xn+i> for which the combination 
aia2 . . . ai does ^ ^ occur between (1 — e)\0~ln and (1 + e)10~ln times, is 
o(xn+i — xn) for any fixed e. Since this is true for each combination of at most 
k digits, it follows that jf(x) is (e, k) normal for almost all x. 

To prove (15), we write the sum on the left as 

(16) Is 2 2 d(lQ-mif(x))d(lO-m>f(x)). 
x—xn+l m,i=l m,2=l 

Once again, we can restrict ourselves to values of mi and m2 which satisfy 

(17) bn < mi < (1 - 8)n, bn < m2 < (1 — b)n, 

since the contribution of the remaining terms is small compared with the right 
hand side of (15) when b is small. For a similar reason, we can impose the 
restriction that 

(18) m2 — nti > bn. 

Proceeding as before, and using the functions 6\(z) and #2(2), we find that it 
suffices to estimate the sum 

(19) S(n, mlf m2l vh v2) = 2 e((10"Wlv1 + l (T% 2 ) / (x)) , 
X=Xn + 1 

for values of v\ and v2 which are not both zero, and satisfy \v^\ < T;-2, \V2\ < rj~2. 
If either vi or v2 is zero, the previous result (7) applies. Supposing neither zero,, 
we write the highest coefficient again as 

(io-, l + io-v,)! = f. 
In view of (17) and (18), we have 

q ^ 10m'd < 10a-S)nd < CsXa-S)gd. 
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We observe that a cannot be zero, since 

i(rW3h| < io-Wi-5>2| < | io-W iM, 

provided that 2rj2 < 105n, which is so for large n. Hence 

2 > | l O W l h | - 1 c - 1 > CJC*. 

It now follows as before from Weyl's inequality that 

\S(n, mh ra2, vi, ^ ) | < CX1_f, 

where again C and f are positive numbers depending only on ô, 77, and the poly
nomia l /^ ) . Using this in (16), we obtain (15). 
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