NOTE ON NORMAL DEGIMALS

H. DAVENPORT AND P. ERDÖS

1. Introduction. A real number, expressed as a decimal, is said to be normal (in the scale of 10) if every combination of digits occurs in the decimal with the proper frequency. If $a_{1} a_{2} \ldots a_{k}$ is any combination of k digits, and $N(t)$ is the number of times this combination occurs among the first t digits, the condition is that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{N(t)}{t}=\frac{1}{10^{k}} . \tag{1}
\end{equation*}
$$

It was proved by Champernowne [2] that the decimal $\cdot 1234567891011 \ldots$ is normal, and by Besicovitch [1] that the same holds for the decimal 1491625 Copeland and Erdös [3] have proved that if p_{1}, p_{2}, \ldots is any sequence of positive integers such that, for every $\theta<1$, the number of p^{\prime} 's up to n exceeds n^{θ} if n is sufficiently large, then the infinite decimal $\cdot p_{1} p_{2} p_{3} \ldots$ is normal. This includes the result that the decimal formed from the sequence of primes is normal.

In this note, we prove the following result conjectured by Copeland and Erdös:

Theorem 1. Let $f(x)$ be any polynomial in x, all of whose values, for $x=1$, $2, \ldots$, are positive integers. Then the decimal $\cdot f(1) f(2) f(3) \ldots$ is normal.

It is to be understood, of course, that each $f(n)$ is written in the scale of 10 , and that the digits of $f(1)$ are succeeded by those of $f(2)$, and so on. The proof is based on an interpretation of the condition (1) in terms of the equal distribution of a sequence to the modulus 1 , and the application of the method of Weyl's famous memoir [6].

Besicovitch [1] introduced the concept of the (ϵ, k) normality of an individual positive integer q, where ϵ is a positive number and k is a positive integer. The condition for this is that if $a_{1} a_{2} \ldots a_{l}$ is any sequence of l digits, where $l \leqq k$, then the number of times this sequence occurs in q lies between

$$
(1-\epsilon) 10^{-l} q^{\prime} \quad \text { and } \quad(1+\epsilon) 10^{-l} q^{\prime}
$$

where q^{\prime} is the number of digits in q. Naturally, the definition is only significant when q is large compared with 10^{k}. We prove:

Theorem 2. For any ϵ and k, almost all the numbers $f(1), f(2), \ldots$ are (ϵ, k) normal; that is, the number of numbers $n \leqq x$ for which $f(n)$ is not (ϵ, k) normal is $o(x)$ as $x \rightarrow \infty$ for fixed ϵ and k.

[^0]This is a stronger result than that asserted in Theorem 1. But the proof of Theorem 1 is simpler than that of Theorem 2, and provides a natural introduction to it.
2. Proof of Theorem 1. We defined $N(t)$ to be the number of times a particular combination of k digits occurs among the first t digits of a given decimal. More generally, we define $N(u, t)$ to be the number of times this combination occurs among the digits from the $(u+1)$ th to the t th, so that $N(0, t)=N(t)$. This function is almost additive; we have, for $t>u$,

$$
\begin{equation*}
N(u, t) \leqq N(t)-N(u) \leqq N(u, t)+(k-1), \tag{2}
\end{equation*}
$$

the discrepancy arising from the possibility that the combinations counted in $N(t)-N(u)$ may include some which contain both the u th and $(u+1)$ th digits.

Let g be the degree of the polynomial $f(x)$. For any positive integer n, let x_{n} be the largest integer x for which $f(x)$ has less than n digits. Then, if n is sufficiently large, as we suppose throughout, $f\left(x_{n}+1\right)$ has n digits, and so have $f\left(x_{n}+2\right), \ldots, f\left(x_{n+1}\right)$. It is obvious that

$$
\begin{equation*}
x_{n} \sim a\left(10^{1 / g}\right)^{n} \quad \text { as } n \rightarrow \infty, \tag{3}
\end{equation*}
$$

where a is a constant.
Suppose that the last digit in $f\left(x_{n}\right)$ occupies the t_{n} th place in the decimal $\cdot f(1) f(2) \ldots$ Then the number of digits in the block

$$
f\left(x_{n}+1\right) f\left(x_{n}+2\right) \ldots f\left(x_{n+1}\right)
$$

is $t_{n+1}-t_{n}$, and is also $n\left(x_{n+1}-x_{n}\right)$, since each f has exactly n digits. Hence

$$
\begin{equation*}
t_{n+1}-t_{n}=n\left(x_{n+1}-x_{n}\right) \tag{4}
\end{equation*}
$$

It follows from (3) that

$$
\begin{equation*}
t_{n} \sim a n\left(10^{1 / g}\right)^{n} \quad \text { as } n \rightarrow \infty . \tag{5}
\end{equation*}
$$

To prove (1), it suffices to prove that

$$
\begin{equation*}
N\left(t_{n}, t\right)=10^{-k}\left(t-t_{n}\right)+o\left(t_{n}\right) \tag{6}
\end{equation*}
$$

as $n \rightarrow \infty$, for $t_{n}<t \leqq t_{n+1}$. For, by (2), we have

$$
N(t)-N\left(t_{h}\right)=\sum_{r=h}^{n-1} N\left(t_{r}, t_{r+1}\right)+N\left(t_{n}, t\right)+R
$$

for a suitable fixed h, where $|R|<n k$. Since (6) includes as a special case the result

$$
N\left(t_{r}, t_{r+1}\right)=10^{-k}\left(t_{r+1}-t_{r}\right)+o\left(t_{r}\right),
$$

we obtain (1).
In proving (6), we can suppose without loss of generality that t differs from t_{n} by an exact multiple of n. Putting $t=t_{n}+n X$, the number $N\left(t_{n}, t\right)$ is the number of times that the given combination of k digits occurs in the block

$$
\begin{equation*}
f\left(x_{n}+1\right) f\left(x_{n}+2\right) \ldots f\left(x_{n}+X\right) \tag{7}
\end{equation*}
$$

where $0<X \leqq x_{n+1}-x_{n}$. We can restrict ourselves to those combinations which occur entirely in the same $f(x)$, since the others number at most ($k-1$) - $\left(x_{n+1}-x_{n}\right)$, which is $o\left(t_{n}\right)$ by (3) and (5).

The number of times that a given combination $a_{1} a_{2} \ldots a_{k}$ of digits occurs in a particular $f(x)$ is the same as the number of values of m with $k \leqq m \leqq n$ for which the fractional part of $10^{-m} f(x)$ begins with the decimal $\cdot a_{1} a_{2} \ldots a_{k}$. If we define $\theta(z)$ to be 1 if z is congruent $(\bmod 1)$ to a number lying in a certain interval of length 10^{-k}, and 0 otherwise, the number of times the given combination occurs in $f(x)$ is

$$
\sum_{m=k}^{n} \theta\left(10^{-m} f(x)\right)
$$

Hence

$$
N\left(t_{n}, t\right)=\sum_{x=x_{n}+1}^{x_{n}+x} \sum_{m=k}^{n} \theta\left(10^{-m} f(x)\right)+O\left(x_{n+1}-x_{n}\right)
$$

the error being simply that already mentioned.
To prove (6), it suffices to prove that

$$
\begin{equation*}
\sum_{m=k}^{n} \sum_{x=x_{n}+1}^{x_{n}+X} \theta\left(10^{-m} f(x)\right)=10^{-k} n X+o\left(n\left(x_{n+1}-x_{n}\right)\right) \tag{8}
\end{equation*}
$$

for $0<X \leqq x_{n+1}-x_{n}$. We shall prove that if δ is any fixed positive number, and $\delta n<m<(1-\delta) n$, then

$$
\begin{equation*}
\sum_{x=x_{n}+1}^{x_{n}+X} \theta\left(10^{-m} f(x)\right)=10^{-k} X+o\left(x_{n+1}-x_{n}\right) \tag{9}
\end{equation*}
$$

uniformly in m. This suffices to prove (8), since the contribution of the remaining values of m is at most $2 \delta n X$, where δ is arbitrarily small. We have

$$
\begin{equation*}
X \leqq x_{n+1}-x_{n}<a\left(10^{1 / g}\right)^{n+1} \tag{10}
\end{equation*}
$$

and we can also suppose that

$$
\begin{equation*}
X>\left(x_{n+1}-x_{n}\right)^{1-\frac{1}{2} \delta}>\beta\left(10^{1 / g}\right)^{n\left(1-\frac{1}{2} \delta\right)}, \tag{11}
\end{equation*}
$$

where β is a constant, since (9) is trivial if this condition is not satisfied.
The proof of (9) follows well-known lines. One can construct [6;4, pp. 91-92, 99] for any $\eta>0$, functions $\theta_{1}(z)$ and $\theta_{2}(z)$, periodic in z with period 1 , such that $\theta_{1}(z) \leqq \theta(z) \leqq \theta_{2}(z)$, having Fourier expansions of the form

$$
\begin{aligned}
& \theta_{1}(z)=10^{-k}-\eta+\sum_{\nu}^{\prime} A_{\nu}^{(1)} e(\nu z), \\
& \theta_{2}(z)=10^{-k}+\eta+\sum_{\nu}^{\prime} A_{\nu}^{(2)} e(\nu z) .
\end{aligned}
$$

Here the summation is over all integers ν with $\nu \neq 0$, and $e(w)$ stands for $e^{2 \pi i w}$. The coefficients A_{ν} are majorized by

$$
\left|A_{\nu}\right| \leqq \min \left(\frac{1}{|\nu|}, \frac{1}{\eta \nu^{2}}\right)
$$

Using these functions to approximate $\theta\left(10^{-m} f(x)\right)$ in (9), we see that it will suffice to estimate the sum

$$
S_{n, m, \nu}=\sum_{x=x_{n}+1}^{x_{n}+x} e\left(10^{-m} \nu f(x)\right)
$$

We can in fact prove that

$$
\begin{equation*}
\left|S_{n, m, \nu}\right|<C X^{1-5} \tag{12}
\end{equation*}
$$

for all m and ν satisfying

$$
\begin{equation*}
\delta n<m<(1-\delta) n, \quad 1 \leqq \nu<\eta^{-2} \tag{13}
\end{equation*}
$$

where C and ζ are positive numbers depending only on δ, η and on the polynomial $f(x)$. This is amply sufficient to prove (9), since $X \leqq x_{n+1}-x_{n}$.

The inequality (12) is a special case of Weyl's inequality for exponential sums. The highest coefficient in the polynomial $10^{-m} \nu f(x)$ is $10^{-m} \nu c / d$, where c / d is the highest coefficient in $f(x)$, and so is a rational number. Write

$$
10^{-m} \nu \frac{c}{d}=\frac{a}{q}
$$

where a and q are relatively prime integers. Let $G=2^{g-1}$. Then, by Weyl's inequality ${ }^{1}$,

$$
\begin{equation*}
\left|S_{n, m, \nu}\right|^{G}<C_{1} X^{\epsilon} q^{\epsilon}\left(X^{G-1}+X^{G} q^{-1}+X^{G-\theta} q\right) \tag{14}
\end{equation*}
$$

for any $\epsilon>0$, where C_{1} depends only on g and ϵ. In the present case, we have
and

$$
q \leqq 10^{m} d<10^{(1-\delta) n} d
$$

$$
q \geqq 10^{m} \nu^{-1} c^{-1}>10^{\delta n} \eta^{2} c^{-1}
$$

This relates the magnitude of q to that of n. Relations between n and X were given in (10) and (11), and it follows that

$$
C_{2} X^{g \delta}<q<C_{3} X^{g(1-\delta / 3)}
$$

where C_{2} and C_{3} depend only on η, c, d, and g. Using these inequalities for q in (14), we obtain a result of the form (12).
3. Proof of Theorem 2. We again consider the values of x for which $f(x)$ has exactly n digits, namely those for which $x_{n}<x \leqq x_{n+1}$. We denote by $T(x)$ the number of times that a particular digit combination $a_{1} a_{2} \ldots a_{l}$ (where $l \leqq k$) occurs in $f(x)$. Then, with the previous notation,

$$
T(x)=\sum_{m=l}^{n} \theta\left(10^{-m} f(x)\right)
$$

[^1]We proved earlier that (putting $X=x_{n+1}-x_{n}$),

$$
\sum_{x=x_{n}+1}^{x_{n+}+X} T(x) \sim 10^{-l} n X \quad \text { as } n \rightarrow \infty
$$

Now our object is a different one; we wish to estimate the number of values of x for which $T(x)$ deviates appreciably from its average value, which is $10^{-l} n$.

For this purpose, we shall prove that

$$
\begin{equation*}
\sum_{x=x_{n}+1}^{x_{n+X}} T^{2}(x) \sim 10^{-2 l} n^{2} X \tag{15}
\end{equation*}
$$

as $n \rightarrow \infty$.
When this has been proved, Theorem 2 will follow. For then

$$
\begin{array}{rlr}
\sum_{x=x_{n}+1}^{x_{n}+X}\left(T(x)-10^{-l} n\right)^{2} & =\Sigma T^{2}(x)-2\left(10^{-l} n\right) \Sigma T(x)+10^{-2 l} n^{2} X \\
& =o\left(10^{-2 l} n^{2} X\right) & \text { as } n \rightarrow \infty
\end{array}
$$

Hence the number of values of x with $x_{n}<x \leqq x_{n+1}$, for which the combination $a_{1} a_{2} \ldots a_{\imath}$ does not occur between $(1-\epsilon) 10^{-l} n$ and $(1+\epsilon) 10^{-l} n$ times, is $o\left(x_{n+1}-x_{n}\right)$ for any fixed ϵ. Since this is true for each combination of at most k digits, it follows that $f(x)$ is (ϵ, k) normal for almost all x.

To prove (15), we write the sum on the left as

$$
\begin{equation*}
\sum_{x=x_{n}+1}^{x_{n}+X} \sum_{m_{1}=l}^{n} \sum_{m_{2}=l}^{n} \theta\left(10^{-m_{1}} f(x)\right) \theta\left(10^{-m_{2}} f(x)\right) \tag{16}
\end{equation*}
$$

Once again, we can restrict ourselves to values of m_{1} and m_{2} which satisfy

$$
\begin{equation*}
\delta n<m_{1}<(1-\delta) n, \quad \delta n<m_{2}<(1-\delta) n \tag{17}
\end{equation*}
$$

since the contribution of the remaining terms is small compared with the right hand side of (15) when δ is small. For a similar reason, we can impose the restriction that

$$
\begin{equation*}
m_{2}-m_{1}>\delta n \tag{18}
\end{equation*}
$$

Proceeding as before, and using the functions $\theta_{1}(z)$ and $\theta_{2}(z)$, we find that it suffices to estimate the sum

$$
\begin{equation*}
S\left(n, m_{1}, m_{2}, \nu_{1}, \nu_{2}\right)=\sum_{x=x_{n}+1}^{x_{n}+X} e\left(\left(10^{-m_{1}} \nu_{1}+10^{-m_{\mathbf{s}}} \nu_{2}\right) f(x)\right) \tag{19}
\end{equation*}
$$

for values of ν_{1} and ν_{2} which are not both zero, and satisfy $\left|\nu_{1}\right|<\eta^{-2},\left|\nu_{2}\right|<\eta^{-2}$. If either ν_{1} or ν_{2} is zero, the previous result (7) applies. Supposing neither zero, we write the highest coefficient again as

$$
\left(10^{-m_{1}} \nu_{1}+10^{-m_{2}} \nu_{2}\right) \frac{c}{d}=\frac{a}{q} .
$$

In view of (17) and (18), we have

$$
q \leqq 10^{m_{2}} d<10^{(1-\delta) n} d<C_{3} X^{(1-\delta),} d
$$

We observe that a cannot be zero, since

$$
10^{-m_{2}}\left|\nu_{2}\right|<10^{-m_{1}-\delta n}\left|\nu_{2}\right|<\frac{1}{2} 10^{-m_{1}}\left|\nu_{1}\right|,
$$

provided that $2 \eta^{2}<10^{\delta n}$, which is so for large n. Hence

$$
q>\frac{2}{3} 10^{m_{2}}\left|\nu_{1}\right|^{-1} c^{-1}>C_{4} X^{\delta g} .
$$

It now follows as before from Weyl's inequality that

$$
\left|S\left(n, m_{1}, m_{2}, \nu_{1}, \nu_{2}\right)\right|<C X^{1-\zeta}
$$

where again C and ζ are positive numbers depending only on δ, η, and the polynomial $f(x)$. Using this in (16), we obtain (15).

References

1. A. S. Besicovitch, The asymptotic distribution of the numerals in the decimal representation of the squares of the natural numbers, Math. Zeit., vol. 39 (1934), 146-156.
2. D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc., vol. 8 (1933), 254-260.
3. A. H. Copeland and P. Erdös, Note on normal numbers, Bull. Amer. Math. Soc., vol. 52 (1946), 857-860.
4. J. F. Koksma, Diophantische Approximationen (Ergebnisse der Math., IV, 4; Berlin, 1936).
5. E. Landau, Vorlesungen über Zahlentheorie (Leipzig, 1927).
6. H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann., vol. 77 (1916), 313-352.

University College, London ${ }^{\prime}$
The University, Aberdeen

[^0]: Received February 9, 1951.

[^1]: ${ }^{1}$ The most accessible reference is [5, Satz 267]. The result is stated there for a polynomial with one term, but the proof applies generally.

