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Abstract

In this perspective, I give my answer to the question of how quantum computing will impact on data-intensive
applications in engineering and science. I focus on quantumMonte Carlo integration as a likely source of (relatively)
near-term quantum advantage, but also discuss some other ideas that have garnered widespread interest.

Impact Statement

For the past several decades, it has been known that quantum mechanics gives rise to a computational paradigm
that offers spectacular speed-ups for certain tasks relative to the best possible conventional, “classical”
algorithms. In recent years, quantum computation has become a physical reality; and simultaneously there
has been an explosion in the volume of data that must be processed by computers. Thus the tantalizing possibility
of quantum computation aiding the processing of large classical datasets has gained widespread interest. This
article takes a broad look at the prominent proposals for how quantum computation may impact on data-centric
applications. The pros and cons of “quantum machine learning” algorithms are discussed, and quantum Monte
Carlo integration is identified as a potential source of (relatively) near-term quantum advantage. Finally, some
speculative predictions are given for when such quantum advantage may materialize.

1. Quantum Computing: AVery Brief Introduction

The conception of quantum computing is usually attributed to Richard Feynman, who in 1981 speculated
that simulating the behavior of a quantum mechanical system would require a computer that was itself
somehow quantum mechanical in nature (Feynman, 1982; Preskill, 2021). Manin (1980) and Benioff
(1980) also espoused similar ideas at around the same time. It was David Deutsch who in 1985 then laid
the groundwork for quantum computing as we now know it, by formalizing a quantummechanical model
of computation, and posing well-definedmathematical problemswhere quantum computing offers a clear
computational advantage (Deutsch, 1985). This in turn spawned a great profusion of activity in the
embryonic field of quantum computing in the late 1980s and early 1990s, leading to what remains to this
day two of the crowning achievements of the field: in 1994, Peter Shor proposed a quantum algorithm for
factoring in polynomial time (Shor, 1994) and in 1996, Lov Grover proposed an algorithm to search an
unstructured database in time proportional to the square root of the database size (Grover, 1996).
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Unstructured search (in this context) is the problem where we have some N ¼ 2n elements, indexed
0, 1f gn, to search through, and a “function” f , such that for exactly one x∈ 0, 1f gn, f xð Þ¼ 1, and f xð Þ¼ 0

otherwise. “Unstructured”means there is no algorithmic short-cut—f is a function in the technical sense
only and does not imply it can be represented as some simple algebraic expression—and hence classically
the best (only) strategy is exhaustive search, which requires f xð Þ to be evaluated for all N elements at
worse, and N=2 elements on average. Quantumly, we can prepare a superposition of all possible n-
bistrings, and hence “query” f for all possible x in a single step, however, this does not imply that quantum
unstructured search completes inO 1ð Þ operations. In fact, as the answer is encoded in a quantum state it
turns out that it takes at leastO

ffiffiffiffi
N

p� �
operations to extract—a lower bound that Grover’s search algorithm

achieves. This improvement fromO Nð Þ classical operations toO ffiffiffiffi
N

p� �
quantum operations is commonly

referred to as a “quadratic advantage.”
While the quadratic advantage is extremely valuable, the fact that quantum computing enables the

simultaneous querying of f for an exponential number of x (that is, we say the problem size is “n” andwe
query f for all N¼ 2n possible n-bistrings in superposition), dangles the tantalizing possibility of
exponential computational advantages. To see such advantages, we must move on from unstructured
search to problems with some specific structure that can be attacked by quantum, but not classical
algorithms. The manner in which this structure is attackable by the quantum algorithm can be a little
hard to grasp, but essentially amounts to the fact that the answer we are searching for is in some sense
determined by all 2n queries. But in such a way that a quantum mechanical “interference” step (for
which there is no analog in classical computation) can efficiently extract the solution. This is indeed the
case for Shor’s factoring algorithm, where the Quantum Fourier Transform (QFT) performs this
interference step (in fact many of the most prominent proposals for super-polynomial quantum
advantage use the QFT). Classically the best factoring algorithm is the number field sieve (Lenstra

et al., 1993), which has complexity exp Θ n1=3 log2=3n
� �� �

, whereas Shor’s algorithm requires only

O n2 logn log lognð Þ operations, where the problem size, n, is the number of bits required to express the
number being factored.

For the past 25 years, Shor’s and Grover’s algorithms have been the mighty pillars upon which many
other proposals for quantum algorithms have been built, and the computational complexity thereof
continues to provide some insight into the sorts of advantage we should expect from quantum
algorithms: if the algorithm is tackling a task with little structure, then we expect a quadratic
(or other polynomials) advantage; whereas if there is a structure that can be exploited by a quantum
interference step (such as the QFT) then we can get a super-polynomial speed-up. (Scott Aaronson
recently posted a very nice and concise article about the role of structure in quantum speed-ups
[Aaronson, 2022].)

Furthermore, an important point to note is that all of the “canonical” quantum algorithms presume an
abstract model of quantum computation, which is innately noiseless (quantum noise occurs when the
environment randomly perturbs the quantum state such that it departs from that predicted by the abstract
model of quantum computation). It was therefore a substantial and highly important breakthrough when it
was shown that real, noisy, and quantum hardware can efficiently simulate the noiseless model of
quantum computation in principle owing to the celebrated threshold theorem (Shor, 1996; Knill et al.,
1998; Kitaev, 2003; Aharonov and Ben-Or, 2008). However, in practice, this still requires a quantum
error-correction overhead that takes the noiseless model out of reach of near-term quantum hardware. In
the past several years, significant attention has been given to the question of whether useful quantum
advantage can be obtained by computing with noisy qubits, that is, without quantum error correction. For
this setting, John Preskill coined the term “NISQ” (noisy intermediate-scale quantum [computer])
(Preskill, 2018), and it has become commonplace to speak of the “NISQ-era” (computing with noisy
qubits) which will eventually give way to the “full-scale era” (when quantum error correction will mean
that we can essentially treat the qubits as noiseless), although I shall later argue that this is something of a
false dichotomy.
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In general, both “NISQ” and “full-scale” quantum algorithms are usually formulated using the
quantum circuit model,1 which is briefly introduced in Figure 1. It is common to use the circuit depth
(the number of layers of operations) as a proxy for computational complexity and in the case of NISQ
algorithms, the circuit depth dictates the number of operations that must be performed with the state
remaining coherent, that is, before the noise becomes too great and the information contained within the
state is lost. So it follows that, when designing quantum algorithms with resource constraints in mind, it is
important to keep the circuit depth as low as possible—in order to achieve the computation within the
physical qubit coherence time (NISQ) or with as little error correction as possible (full-scale).

Figure 2 summarizes some of themost important breakthroughs in quantum computing, and for further
information, the reader is directed to Nielsen and Chuang (2010), which remains the authoritative
textbook on the subject. The quantum algorithm zoo (Jordan, 2011) also provides a catalog of many
suggested quantum algorithms—although the total number of algorithms can be somewhat misleading:
many of the listed algorithms amount to different instances and applications of the same essential quantum
speed-up. Additionally, quantumalgorithms.org brings together many important quantum algorithms for
data analysis (Luongo, 2022).

2. How Will Quantum Computing Help Me With All My Data?

We can see, even from the concise introduction above, that quantum computation, as it is conventionally
broached, is very much bound up with the theory of computational complexity. However, when I speak to

Figure 1. The quantum algorithms discussed in this work are generally formulated in terms of the quantum
circuit (or quantum gate) model. Each wire corresponds to a qubit and the gates are unitary matrices, the
qubits are initialized in a computational basis state ∣0〉¼ 1, 0½ �T or ∣1〉¼ 0, 1½ �T, which are analogous to the
0 and 1 states of classical bits. Qubits differ as theymay be put in a superposition of the computational basis
states, for example, the Hadamard (H) gate in the circuit in panel (a) puts the first qubit in the superposition
1=

ffiffiffi
2

p� � j0〉þj1〉ð Þ (quantum states are such that the squaredmoduli of the coefficients of the computational
basis states sum to one). The qubits in the circuit are composed using the tensor product, and hence the full

state after the Hadamard gate is 1=
ffiffiffi
2

p� � j0〉þj1〉ð Þ⊗∣0〉 (which can equivalently be expressed
1=

ffiffiffi
2

p� � j00〉þj11〉ð Þ). The next gate is the two-qubit CNOT, which transforms the state into the “Bell state”
∣Φþ〉¼ 1=

ffiffiffi
2

p� � j00〉þj11〉ð Þ—a state which cannot be expressed as a tensor product of two single-qubit
states, and is thus referred to as an entangled state. As well as the Hadamard and CNOT, some further
important gates are shown in panel (b): the T gate, Toffoli, and measurement. Together H, T , and CNOT
form a universal gate set—any quantum circuit can be expressed (to arbitrary precision) as a circuit

containing just these; however, the Toffoli gate is also a useful primitive as it implements the classically
universal NANDgate as a (three-qubit) unitary operation.Measurements are needed to extract information
from the quantum state, and a (single-qubit computational basis) measurement yields a single classical bit.
The measurement outcome is random, and each computational basis state is measured with probability
equal to its coefficient’s modulus squared, for example, if the state 1=

ffiffiffi
2

p� � j0〉þj1〉ð Þ is measured, then the
classical bits 0 and 1 are each measured with 50% probability, this is known as the “Born rule.”

1 Alternatives to the quantum circuit model include linear optical quantum computing (Knill et al., 2001), adiabatic quantum
computation (Farhi et al., 2000), and measurement-based quantum computation (Briegel et al., 2009).
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computational researchers from outside of quantum computing, invariably what they say to me is not, for
example, “I am struggling with this computationally hard problem,” but rather they ask “how can
quantum computing help me with all of my data?” For we are living through an era of unprecedented
data generation, and this poses problems at every stage of the computational workflow. The most urgent
question that researchers are asking of nascent computational technologies is how they can remedy these
emerging and growing problems.

This is the challenge taken up by Aram Harrow in small quantum computers and large classical
datasets (Harrow, 2020), which proposes using the quantum computer to do computationally intensive
model searches when substantial data reduction is possible on the “large classical dataset.” However, the
question of what quantum computing can do to deal with “big data”more generally is tricky: loading data
onto the quantum computer is well-known to be a hard problem, not only with the small-scale quantum
hardware that is available at present, but a fundamental problem in principle, and one which if we are not
careful could easily nullify the quantum advantage. This has in turn brought about something of a divide
between “pessimists” who believe that the data-loading problem is fundamentally an insurmountable
obstacle, and “optimists”who focus on the unquestionable computational benefits once the data is loaded,
and assume that some solution will emerge to the data-loading problem itself.

The purpose of this article is to provide one answer to the motivating question of what quantum
computing can do to help with the massive proliferation of data, that is neither unduly pessimistic or
optimistic, but rather is realistic—and illuminates a plausible path ahead for the eventual integration of
quantum computing into data-centric applications.

3. Quantum Computing and Machine Learning: A Match Made in Heaven?

In recent years, there has been an explosion of papers on “Quantum Machine Learning” (QML), and a
cynic would say that this amounts to little more than a case of buzzword fusion to unlock funding sources
and generate hype. But I am not a cynic—for one thing, some of the most respected researchers in
quantum computing are working on QML—and there are (at least) two very good reasons to believe that
quantum computing may ultimately offer significant computational advantages for machine learning
tasks. These two reasons in turn inform two complementary approaches to QML.

One approach stems from the functional similarity between artificial neural networks (ANNs) and
parameterized quantum circuits (PQCs) (Benedetti et al., 2019b), as shown in Figure 3. In particular, by

Figure 2. A timeline of some of the most important results in quantum computing. The variational quantum
eigensolver (VQE) (Peruzzo et al., 2014) is widely acknowledged as one of the most promising NISQ
algorithms; and Google’s demonstration of (superconducting) quantum supremacy may be taken as the
start of the NISQ-era (in the sense that this was the first demonstration of a quantum algorithm significantly
outperforming its classical counterpart). Quantum supremacy on a photonic quantum computer was first

claimed by Jian-Wei Pan’s group (Zhong et al., 2020), and later by Xanadu (Madsen et al., 2022).
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virtue of the fact that we must always measure the quantum state to extract some information (and noting
that measurement triggers a probabilistic “collapse” of the quantum superposition into one of some
ensemble of possible states), a PQC is innately something we sample from, and is therefore, in a sense,
analogous to an ANN trained as a generative model (Lloyd andWeedbrook, 2018; Benedetti et al., 2019a;
Zoufal et al., 2019; Chang et al., 2021; Zoufal, 2021). (There aremyriad proposals to use PQCs in place of
ANNs for other learning tasks [Dong et al., 2008; Havlíček et al., 2019; Jerbi et al., 2021], but considering
generative models suffices to illustrate my point here.) The original hope of quantum advantage in
generative modeling stemmed from the fact that there is strong theoretical evidence for the existence of
probability distributions from which samples can be prepared quantumly in polynomial time, but would
require exponential time classically, for example, probability distributions sampled by IQP circuits
(Bremner et al., 2010). Indeed, most proposals and demonstrations ofQuantum Supremacy are sampling
experiments (Harrow and Montanaro, 2017; Arute et al., 2019). The ramifications for generative
modeling are that, should the target distribution be some such “classically intractable” distribution to
sample, then we would need an infeasibly large ANN to train a generative model thereof, but only a
relatively small PQC.

However, in practice, this is perhaps a slightly over-simplistic outlook: because the datasets of
interest in engineering and other typical applications will themselves have been generated by some
“classical” process, and so are unlikely to have probability distributions that we expect to be hard to
classically sample from. (For instance, we do not, in general, expect classical random processes such as
financial time series to exhibit the sort of correlations seen in the measurement statistics of highly
entangled quantum circuits.) To put it another way, even though PQCs have greater expressivity, it is
not clear that this can be harnessed for any useful application. Compounding this apparently
fundamental obstacle is the fact that PQCs are incredibly hard to train (Bittel and Kliesch, 2021),
and the cost function landscape is overwhelmingly dominated by large, flat regions termed barren
plateaus (McClean et al., 2018; Arrasmith et al., 2021; Cerezo et al., 2021; Thanasilp et al., 2021;
Wang et al., 2021). Nevertheless, in spite of these apparent problems, there is some evidence that QML
based on PQC training will yield useful quantum advantage in classical data science applications
(Coyle et al., 2020; Hubregtsen et al., 2020; Shalaginov and Dubrovsky, 2022). Indeed, in spite of the
question marks hanging over PQCs as ML models in terms of their trainability and expressivity, there
remains hope that such models may still have greater power in terms of generalization capability
(Schreiber et al., 2022).

Figure 3.Classical and quantumgenerativemodels: (a) A classical generative model will typically use an
artificial neural network to map samples from some standard latent space distribution (such as a uniform
or Gaussian distribution) to samples from the target distribution; (b) using a parameterized quantum
circuit as a quantum generative model is a similar concept, except that the measurement corresponds to a

random collapse of the quantum state, and hence suffices to generate samples from a probability
distribution even if the PQC operates on a fixed initial state such as ∣0〉.
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So we turn to the second approach to QML, which builds on the ability, in principle, of quantum
computers to perform certain linear algebra computations (exponentially) faster than the best classical
counterpart, and in particular, suggests that this feature can be used to enhance certain machine learning
and data science tasks. One recent paper has suggested that the findingBetti numbers, a task in topological
data analysis, may be feasible on NISQ machines (Akhalwaya et al., 2022)—although the question of
whether the Betti numbers for which the computation can be exponentially sped-up is practically relevant
has been raised (McArdle et al., 2022). Other than this, it is worth noting, that while the training of PQCs
as ML models is championed by its proponents as a naturally NISQ application, the quantum enhance-
ment of linear algebra computations is expected to require full-scale (fault-tolerant) quantum computers.

Themost famous quantum algorithm for linear algebra is Harrow, Hassidim, and Lloyd’s algorithm for
solving a linear system (ubiquitously known as “HHL”) (Harrow et al., 2009). Specifically, consider the
system of linear equations:

Ax¼ b; (1)

which is solved by inverting A and then pre-multiplying b by A�1 to find x. Classically this computation
takes time that is worse than linear in the size of A (even if A is sparse), whereas in certain circumstances
HHL runs in time that is only poly-logarithmic in the size ofA—thus giving an exponential improvement
over the best classical algorithms. HHL leverages the fact that an n-qubit quantum circuit is nothing
more than a 2n�2n unitary matrix and thus, in a sense, a quantum computer is simply a machine that
performs exponentially big matrix multiplications. When the matrix A is sparse and well-conditioned
(the ratio of its largest to its smallest eigenvalues is not too big) then it is possible to construct the matrix
operation A�1 as a quantum circuit. Moreover, this n-qubit circuit is only polynomially deep (in n) and
hence the entire algorithm runs in time that is poly-logarithmic in the size of the matrix, A (a full
complexity analysis also accounts for the fact that each attempt at inversion only succeeds with a certain
probability, however, the overall poly-logarithmic complexity continues to hold, even when this is
included).

HHL does, however, suffer from a number of caveats, one of which is the model for access to the
data: it is assumed that the quantum computer has access to b as some quantum state b, the preparation
of which is not counted in the algorithm’s complexity. Indeed, one can immediately see that
complexity at least linear in the size of x (and hence the size of A) would be incurred even to read
x, and so an overall poly-logarithmic complexity can only be possible if the appropriate quantum state
is pre-prepared. The question of the need for a reasonable data access model is one of the problems
raised by Scott Aaronson when discussing the potential for quantum advantage in machine learning
applications (Aaronson, 2015)].

This issue was clarified and generalized by Ewin Tang, who showed that all proposedQML algorithms
of this second approach can be dequantized if a classical algorithm is given commensurate data access
(Tang, 2019; Chia et al., 2020a,b; Gilyén et al., 2022; Tang, 2021). “Dequantized”means that there is no
exponential quantum advantage—although there could still be a practically useful polynomial advantage.
That is, with Tang’s results, the quantum and classical algorithms both run in time polynomial in the
logarithm of the size of the linear algebra objects in question, however that polynomial may be of much
higher degree for the classical algorithm—thus the quantum algorithms may still provide a practically
beneficial speed-up. This was indeed the case for Tang’s original dequantization breakthrough (Tang,
2019), where she proposed a “quantum-inspired” classical version algorithm of the quantum recommen-
dation system of Kerenidis and Prakash (2017).

Finally, it is also pertinent to note that HHL itself has only been dequantized for low-rank matrix
inversion (Chia et al., 2018, 2020b): there is still an exponential quantum advantage when the matrix to
be inverted is full- (or close to full-) rank. Indeed, fast matrix inversion is still seen as being a potential
“killer application” of quantum computing, and is a fertile area of research in, for example, partial
differential equation (PDE) solving, when a finite-difference approach can be used to turn the PDE into
a system of linear equations (Berry et al., 2017; Childs and Liu, 2020; Lloyd et al., 2020; Childs et al.,
2021; Liu et al., 2021).
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4. Quantum Data: The Holy Grail?

We have seen that the drawbacks of QML do not entirely diminish its potential practical utility. However,
what is in some ways even more notable is that, until now, we have solely been talking about classical
data, so we may ask: “what about quantum data?” That is, what if we have some quantum sensing or
metrology process delivering quantum states directly as training data?

Taking the two approaches to QML in turn, whenmanipulating quantum rather than classical data, it is
certainly more reasonable to expect that there may be some fundamental reason why a QML model may
be required. In particular, even if the quantum data is immediately measured to give a classical sample, in
general, such a sample may exhibit “nonclassical” correlations that cannot be reproduced by any
reasonable-sized classical algorithm (for instance, as already noted, the correlations present in measure-
ments of highly-entangled IQP circuits are believed to need exponentially large classical circuits to
reproduce). Moreover, it has been shown that, in certain instances, barren plateaus are not present in
generative modeling of quantum data (in this case, when the quantum state itself, not a measurement
thereof, is delivered as training data to the model) (Kiani et al., 2022; Kieferova et al., 2021).

Turning to the second approach to QML, to provide commensurate data access to compare classical
and quantum algorithms Tang’s dequantization results ordain the classical algorithms with sample and
query access to the data. Supposewe have someN-element vector x, “query access”means the value xi can
be extracted (for any i), and “sample access” means we sample a number, i between 0 and N�1 with
probability xi=

P
jxj. If the quantum state is prepared from classical data then (as Tang asserts) it is

reasonable to assume that sample and query access could be attained in about the same number of
operations. If, however, the data is presented as a quantum state, then only sample access is available to a
classical algorithm (sample access is obtained simply bymeasuring the quantum state in question). This in
turn implies that, when the input is quantum data, the dequantization results no longer necessarily hold,
and the possibility of exponential quantum advantage is upheld.

5. Monte Carlo or Bust?

Responding by basically saying “soon there may be even more data which is quantum in nature and thus
intrinsically needs QML” is only really half an answer to the motivating question of what quantum
computing can do to help processing vast datasets. For the implicit emphasis in the question was on the
data we already have, and expect in the immediate future. To answer this, it is helpful to step back and ask:
what is it we want from these large datasets? Invariably, the aim will be to extract some quantities
pertaining to the dataset as a whole and, moreover (even if it is not immediately thought of in these terms),
such quantities will usually amount to some sort of expectation of the distribution that the data has been
sampled from (or simple combinations of expectation values). For instance, obviously recognizable
quantities such as the mean and higher moments are expectation values, however other quantities such as
various measures of risk will be found by computing an appropriate expectation. Additionally, quantities
that are usually thought of not as expectations but rather as probabilities such as the probability of rain in a
weather forecast will actually be found by numerically integrating over a number ofmarginal parameters2.

Such a desideratum coincides with one of the (still relatively few) fundamental computational tasks
that we know admits a provable quantum advantage, namely quantum Monte Carlo integration (QMCI)
(Montanaro, 2015). Furthermore, significant progress has been made to allow such an advantage to be
realized with minimal quantum resources.

Monte Carlo integration (MCI) is the process of numerically estimating some expectation value

E f xð Þð Þ¼
Z
x
f xð Þp xð Þdx; (2)

2More generally, probabilities are expectations (over indicator functions). For instance, p Að Þ¼E I x∈Að Þð Þ, where I is the
indicator function.
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which cannot be evaluated analytically, but where the probability distribution, p xð Þ, can be sampled from
(and f :ð Þ is some function). Notably, on any digital computer (classical or quantum) the integral will
actually be a sum, owing to the necessary quantization and truncation of the support of p xð Þ, thus:

E f xð Þð Þ¼
X
x

f xð Þp xð Þ≈ 1
q

Xq
i¼1

f Xið Þ; (3)

where Xi � p xð Þ are i.i.d samples. The approximate equality represents the process of MCI, and in
particular, the mean squared error (MSE) is O q�1ð Þ. When performing high-dimensional integrals
numerically, MCI is the most efficient method. (Note that quasi-Monte Carlo (Morokoff and Caflisch,
1995) and other non-i.i.d classical methods have better convergence in q, but suffer the curse of
dimensionality—the complexity grows exponentially in the number of dimensions—and hence are
inefficient for high-dimensional integrals.)

If we break down (classical) MCI, we can see that it amounts to a very simple three-step process:
sample from p xð Þ, apply the function f :ð Þ, and then average over many such samples with the function
applied. In QMCI, there is an analogous three-step process: first, we take as an input a state preparation
circuit, P, which prepares a quantum state p that samples from p xð Þwhen measured on the computational
basis

∣p〉¼
X
x

ffiffiffiffiffiffiffiffiffi
p xð Þ

p
∣x〉; (4)

where, for simplicity, we assume that p xð Þ is supported over some N¼ 2n points.
Second, a circuit, denoted R, is applied to ∣p〉 with one further qubit appended such that the following

state is prepared:

R∣p〉∣0〉¼
X
x

ffiffiffiffiffiffiffiffiffi
p xð Þ

p
∣x〉

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f xð Þ

p
j0〉þ

ffiffiffiffiffiffiffiffi
f xð Þ

p
j1〉

� �
: (5)

The circuit R thus encodes the function applied, f :ð Þ and in particular has the property that, when
measured, the appended qubit has a probability of being one equal toX

x
p xð Þ f xð Þ; (6)

according to the Born rule, which tells us to square and sum all terms in the sumwhere the final qubit is in
state ∣1〉. This is exactly the value we are trying to estimate with MCI, and it turns out that the (quantum)
algorithm quantum amplitude estimation (QAE) can estimate this with MSEO q�2ð Þ, where q is now the
number of uses of the circuit P (Brassard et al., 2002). Accepting (for now) that this quantity “q”
corresponds to that in classicalMCI, we can see that this represents a quadratic advantage in convergence:
for a certain desired MSE, only about square root as many samples are required quantumly as would be
classically.

However, QAE was not originally seen as an ideal candidate as a source of near term quantum
advantage, as it uses quantum phase estimation (Kitaev, 1996) an algorithm that is expected to require
full-scale quantum computers. That all changed with the advent of amplitude estimation without phase
estimation (Suzuki et al., 2020), which showed how to obtain the full quadratic quantum advantage, but
using a number of shallow-depth circuits and classical post-processing to estimate the expectation value.
A number of other proposals have since followed in the same vein (Aaronson and Rall, 2020; Giurgica-
Tiron et al., 2022; Nakaji, 2020; Grinko et al., 2021).

Two more, complementary, breakthroughs have further fueled the hope that QMCI can be a source of
near-term quantum advantage:

1. Noise-awareQAE (Herbert et al., 2021) takes an advantage of the fact that QAE circuits have a very
specific structure to handle device noise as if it were estimation uncertainty. This suggests that
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significantly less error correctionmay be needed to achieve a useful advantage in QMCI, compared
to other calculations of comparable size.

2. Quantum Monte Carlo integration: the full advantage in minimal circuit depth (Herbert, 2022)
shows how to decompose theMonte Carlo integral as a Fourier series such that the circuit R, which
may in general constitute an unreasonably large contribution to the total circuit depth, can be
replaced by minimally deep circuits of rotation gates (this procedure is hereafter referred to as
“Fourier QMCI”).

In particular, the second of these informs us of the sorts of applications that are likely to see a (relatively)
early quantum advantage. For instance, Fourier QMCI is especially advantageous for numerical integrals
that can be decomposed as a product of some p xð Þ, for which a suitable encoding can be prepared by a
relatively shallow state preparation circuit (i.e., as described in equation 4); and some f xð Þ which can be
extended as a piecewise periodic function whose Fourier series can be calculated and satisfies certain
smoothness conditions. Areas in which computationally intensive numerical integrations are common-
place include computational fluid dynamics and high-energy physics—indeed, in the latter QMCI
solutions have begun to be explored (Agliardi et al., 2022).

For general numerical integrals, the randomness in MCI is a device to enable efficient numerical
integration; however, formost data-centricMCIs, we do expect that p xð Þwill have amore literal role as the
probability distribution from which the data has been sampled. This in turn raises the question of how to
construct the state preparation circuit, P.

From a theoretical point of view, it is always possible to construct a suitable P from the corresponding
classical sampling process (Herbert, 2021) (this resolves the earlier question of why the number of
classical samples can be compared to the number of quantumuses of the state preparation circuit—the two
uses of “q” that were treated as equivalent), and such a result may well ultimately find practical
application. For example, ANNs trained as generative models are instances of classical sampling
processes, and so such generative models can be converted into suitable circuits, P. However, in the
near-term such quantum circuits are likely to be infeasibly deep, and so instead we should focus on
applications that leverage the quantum advantage in a more direct manner. In particular, the quantum
advantage is manifested in a quadratic reduction in the number of samples required to attain a certain
required accuracy, and so applications, where a very large number of samples are required, provide a good
starting point—especially when those samples are from (relatively) simple stochastic processes.

With regards to data-centric engineering and science, one helpful way to think about which applica-
tions that QMCI will impact in the near-term is in terms of the distinction between parametric and
nonparametric models. For we have already established that we must operate on some model for the
generation of the observed data: in cases where the best (classical) approach is to use the dataset to fit
parameters from some parameterized family of distributions thenwe expect the corresponding circuitP to
be relatively easy to construct. Conversely, if the model is nonparametric (or even something like a deep
neural network that, by some, may be regarded as parametric—just with an enormous number of
parameters that do not correspond in the natural and straightforward way to the statistics of the observed
data as do traditional parametric models) then there is a real risk that the circuit Pwill be hard to construct
in the near-term.

Turning now to some specific examples, one promising area concerns time-series data, where some
large dataset is used to fit the parameters of some model such as a hidden Markov model, auto-regressive
model, or auto-regressive moving average model (amongst many others). Notably, using an abundance of
historical data to tune the parameters of time-series models is commonplace throughout applications of
MCI in financial and actuarial engineering. Indeed, it is the case that the vast majority of the early QMCI
literature has focused on financial applications (Rebentrost and Lloyd, 2018; Rebentrost et al., 2018;
Egger et al., 2020, 2021; Orús et al., 2019; Woerner and Egger, 2019; Bouland et al., 2020; Kaneko et al.,
2020; Stamatopoulos et al., 2020, 2022; An et al., 2021; Chakrabarti et al., 2021; Herman et al., 2022).

That is not to say, however, that QMCI will ultimately only find application in financial engineering.
For instance, the “function applied” in financial applications of QMCI usually corresponds to some sort of
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thresholded average—most obviously when calculating the expected return on a European option the
function applied is essentially a ReLU function—and functions of these types (i.e., piece-wise linear) are
likely to be similar to suitable functions to calculate notions of “cost” in, for example, supply-chain and
logistic-optimization applications (Ozkan and Kilic, 2019). Moreover, Monte Carlo methods are widely
used in virtually every area of data-centric engineering and science from medical imaging (Chen et al.,
2002) to chemical, biochemical, and environmental (Sin and Espuña, 2020) to energy modeling
(Dhaundiyal et al., 2019) and handling big data in general (Ji and Li, 2016). Indeed, rather than
exhaustively cataloging every conceivable application of QMCI to data-centric engineering and science,
a better approach is to set out the general framework, as is shown in Figure 4, such that expert readers can
see how the quantum advantage may be realized in their respective domains.

At first sight, the scheme laid out in Figure 4 may appear to side-step the central question of how
quantum computing will help with large datasets, as the data handling itself represents a classical pre-
processing step. However, this is simply a reflection of the reality that data-loading is generally hard and
that it is prudent to focus on tasks where there is an unequivocal quantum advantage (i.e., in estimate
converge as a function of number of samples). Moreover, many data-centric applications (e.g., those in
finance) are indeed of the form where the data-loading can be achieved by fitting the parameters of some
statistical model, but thereafter the statistical estimation is the bottleneck: and it is exactly those
applications that quantum computing can incontrovertibly enhance.

6. Outlook and Speculation

In this article, I have deliberately homed in onQMCI as a likely source of near-term quantum advantage in
data science applications. This is a personal view, and many others still focus on the possibility that there
will be genuine useful “NISQ advantage” (e.g., using PQCs as ML models). However, since this is my
view, as explicitly noted in the introduction, I see the established division into theNISQ and full-scale eras
of quantum computing as overly simplistic. Instead, I prefer to think about how we can use resource

Figure 4. The general framework of Fourier quantum Monte Carlo integration (QMCI) applied to large
classical datasets. In the future (as quantum hardware matures), the parametric statistical model may be
optionally replaced by a nonparametric (or ML) model; or perhaps even a quantum machine learning

model. In all cases, QMCI only ever requires sample access to the data.

e36-10 Steven Herbert

https://doi.org/10.1017/dce.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.36


constrained quantum hardware, that is neither strictly NISQ (there may be enough qubits for some mild
error correction) but neither is full-scale (in the sense that full-scale algorithms may be typified by an
attitude of being unconcerned with resource demands that appear only as negligible contributions to
asymptotic complexity)—and hence bridges between the established ideas of NISQ and full-scale
quantum computing. Certainly, it is true that the first applications of quantum computing with a provable
advantage will be those where consideration of resource management has been given special attention.
For reasons that have recurred throughout this article, I am of the view that QMCI shows great promise to
be such an application.

In light of this, I feel it is incumbent upon me to offer some predictions about when this will come to
fruition. As any responsible quantum computing researcher will attest, such predictions are hard to make
at present, but now that the leading quantum hardware manufacturers are beginning to commit to
roadmaps with quantified targets, it is at least possible for theorists to make loose predictions contingent
on said roadmaps being met. The first comment to make is that both IBM and Google have committed to
reaching 1 million qubit by the end of the decade (Google, 2021; IBM, 2021), and such a figure would
certainly be enough for useful quantum advantage in many applications including QMCI.

To make a more precise prediction, with regards to QMCI, we benefit from the fact that a leading
research group has published a paper setting out suitable benchmarks to facilitate resource estimation for
when there will be a useful quantum advantage in QMCI (Chakrabarti et al., 2021). The specific focus of
the paper in question is onQMCI applications in finance, but the broad principle is likely to extend to other
applications. We have estimated that our Fourier QMCI algorithm (Herbert, 2022) reduces resource
requirements (number of quantum operations) by at least 30% to over 90% in some cases for the
benchmarks set out, and if the circuits were re-constructed in a slightly different way we have estimated
that the total number of physical superconducting qubits required would be in the 1,000s to 10,000 s. The
exact value within this range depends on whether qubit qualities improve enough for low-overhead error-
correction codes (Tomita and Svore, 2014) to be practical; and in particular, whether the overhead can be
reduced by exploiting asymmetries in the noise (Ataides et al., 2021; Higgott et al., 2022)—both of which
remain very active research topics.

This resource estimation places a useful advantage in QMCI in the 5-year horizon for the leading
superconducting roadmaps and a similar timescale is likely for trapped-ion devices, for example
(Quantinuum, 2022), note that trapped-ion quantum computers typically have many fewer, but higher-
quality qubits, and tend to have less specific roadmaps). This is also consistent with other predictions, for
example, that of QCWare and Goldman Sachs (Goldman Sachs and QC Ware, 2021).

Rather than leaving the prediction at that, it is worth “playing devil’s advocate” and exploring whether
this is unreasonably hubristic—particularly in light of a widely-circulated paper suggesting that near-term
quantum advantagewould be hard to obtain for algorithms exhibiting only a quadratic speed-up (Babbush
et al., 2021). There are three central claims in (Babbush et al., 2021), which provide a useful framework to
scrutinize the legitimacy of my prediction:

1. Quadratic-advantage quantum algorithms are dominated by circuits of Toffoli gates, which are
extremely expensive to implement using error-corrected quantum computation. This is certainly
true for un-optimized algorithms, however, Fourier QMCI (Herbert, 2022) moves to classical post-
processing exactly those Toffoli-heavy circuits, while upholding the full quantum advantage.

2. Error-correction overheads are, in any case, expensive. Again, this is true, which is why bespoke
approaches to error correction that exploit the specific algorithm structure and handle a certain
amount of the device noise at the application level (as does noise-aware QAE [Herbert et al., 2021])
are crucial to achieve near-term quantum advantage.

3. Algorithms for which there is a quadratic quantum advantage can typically be massively paral-
lelized when performed classically, meaning that a useful quantum advantage only occurs at much
larger problems sizes, once the parallelism has been accounted for. This is again true in the case of
MCI, but leaves out one very significant detail, namely that QMCI can itself be massively
parallelized.
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The third item reveals an important subtlety: in the (quantum computing) sector, we obsess about the
“route to scale” in terms of adding ever more qubits to the same chip—but once quantum computers reach
moderate scale, it will be just as important to scale up the number of quantum computers available. Just as
classical HPC can accelerate classical data-centric applications by running calculations on different cores
in parallel, so it will be the case that running quantum circuits in parallel will be crucial for an early
advantage in data-centric applications. (To be clear, here the parallelization is classical—there is no need
for entangled connections between the different cores—although the subject of distributed quantum
computing, where there are entangled connections between the different quantum cores is a fascinating
topic in its own right, see, e.g., Cirac et al., 1999; Cuomo et al., 2020; Meter et al., 2007.) Indeed, for our
above resource estimates, we have only quantified when quantum hardware will be capable of running the
requisite quantum circuits—in order for this to translate into a practical benefit, sufficient quantum cores
must be available to the user.

Sowhere does that leave us? That there exist data science-relevant quantum algorithms, such asQMCI,
that exhibit a provable quantum advantage, coupled with the fact that the leading players are now
beginning to scale up quantum hardware, provides a great cause for optimism that quantum computing
will impact on data-centric engineering and science applications in the near- tomedium-term. However, in
quantum computing we have learned that optimism must always go hand-in-hand with caution: there are
serious engineering challenges at every layer, from the design of the quantum computer itself, to the
control software, to the optimization of the algorithms that run the desired applications. In particular, we
know that preparing quantum states that encode the relevantmodel or distribution is usually the bottleneck
in QMCI—cracking this data-loading problem is the key to unleashing the power of quantum compu-
tation onto myriad applications within finance, supply chain & logistics, medical imaging, and energy
modeling.
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