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1. Introduction
1.1. Statement of results. In this paper, let ρ : Zr → GLd(Z) = Aut(Td) be a group
morphism and denote indifferently by ρ the group action it induces on Td . Our main result
is the following theorem.

THEOREM 1.1. If an action ρ : Zr � Td by toral automorphisms contains no
hyperbolic automorphisms, then for any τ > 0, there exists an action α : Zr � Td by
C1-diffeomorphisms such that:
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(1) dC1(α, ρ) < τ ;
(2) αn = H̃ ◦ ρ ◦ H̃−1 for a homeomorphism H̃ : Td → Td that is homotopic to id;
(3) neither H̃ nor H̃−1 is differentiable.

Here theC1-distance dC1 between two actions is defined as dC1(α, ρ) = maxn∈� ‖αn −
ρn‖C1 , where � ∈ Zr is the generating set

� = {±ei : i = 1, . . . r}
with ei being the ith coordinate vector.

Definition 1.2. [DK10, Section 1.3.2] An action ρ : Zr � Td by toral automorphisms is
genuinely partially hyperbolic if ρ is ergodic with respect to the Haar measure on Td , but
ρn is not hyperbolic for any n.

As remarked in [DK10], a genuinely partially hyperbolic action contains an element
which has no root of unity among its eigenvalues, or equivalently an ergodic toral
automorphim.

COROLLARY 1.3. Suppose ρ : Zr � Td is a genuinely partially hyperbolic action
by toral automorphisms. Then for any τ > 0, there exists an action α : Zr � Td by
C1-diffeomorphisms such that:
(1) dC1(α, ρ) < τ ;
(2) α and ρ are not C1-conjugate.

Corollary 1.3 is deduced from Theorem 1.1 through a standard argument.

Proof. Let α be given by Theorem 1.1 and assume G̃ : Td → Td is a C1 diffeomorphism
such that αn ◦ G̃ = G̃ ◦ ρn for all n ∈ Zd . Then G := H̃−1 ◦ G̃ is a homeomorphism of
Td such that

ρn ◦G = ρn ◦ H̃−1 ◦ G̃ = H̃−1 ◦ αn ◦ G̃ = H̃−1 ◦ G̃ ◦ ρn = G ◦ ρn.

Since at least one of the ρn is an ergodic toral automorphism, G is affine by [W70,
Corollary 2]. So G̃ = H̃ ◦G cannot be C1 because H̃ is not, which contradicts our
assumption.

1.2. Background. Faithful linear actions by higher rank abelian groups on tori and
nilmanifolds, that is, Zr -actions generated by automorphisms where r ≥ 2, have since
been long expected to be rigid, in the following sense: under some additional assumptions,
a smooth action α in the same homotopy class should be smoothly conjugated to the linear
action itself, which we denote by ρ. The issue we address in this paper is whether the
conjugacy, denoted by h, should have the same smoothness as α.

One important rigidity phenomenon is the local rigidity of the actions ρ described
above, which stands for rigidity under perturbative assumptions. An action ρ is said
to be Cl,m,n-locally rigid if all Cl-actions that are sufficiently close to ρ in Cm

topology are Cn-conjugate to ρ. For Cartan actions (that is, faithful linear actions by
Zr with the largest possible r, modulo restriction to a finite index subgroup) on tori,
C∞,1,∞ local rigidity was proved by Katok and Lewis [KL91]. For some more general
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classes of hyperbolic actions, C∞,1,∞ local rigidity was proved by Katok and Spatzier
[KS94, KS97] and Einsiedler and Fisher [EF07]. For global rigidity see [F69],
[FKS11], [FKS13] and [RH07]. Damjanović and Katok [DK10] proved C∞,r ,∞ local
rigidity for genuinely partially hyperbolic Zr -actions by toral automorphisms by the
Kolmogorov–Arnold–Moser (KAM) method. For finitely differentiable actions, Cl,1,l is
not expected to follow from KAM methods because of the loss of regularity when solving
a cocycle equation of the form (2.1) below. When r = 1, that is, for the dynamics of a
single toral automorphism A of Td that is partially hyperbolic, such loss of regularity in
the cocycle equation was discussed by Veech in [V86], where it was shown that, although
the cocycle equation g ◦ A− A ◦ g = f can be solved in Cn if f ∈ Cl and n < l − d ,
there exists a C1-function f for which the equation has no C1-solutions.

Section 3 of this paper will describe similar loss of regularity when solving the cocycle
equation for general genuinely partially hyperbolic Zr -actions by toral automorphisms.
In §2, we propose a reversed KAM scheme that allows an accumulation of such losses
at certain sequences of periodic points, which leads to the failure of C1,1,1-rigidity in
Theorem 1.1.

1.3. Notation. In the rest of this paper:
• ρ will be fixed;
• all implicit constants in expression of the forms X � Y and X = O(Y) will be

assumed to be dependent on r, d, ρ, and �, but independent of other variables;
• e(t) will denote the function e2πit .

2. The inductive scheme
2.1. Sequence of conjugacies. We employ a reversed KAM scheme to construct a
counterexample. A sequence of conjugaciesHm will be constructed in later sections, where
Hm = id + hm for a sequence of C∞ smooth functions hm : Td → Rd that are small in
C1 norm. Inductively define

H̃m = H1 ◦ · · · ◦Hm, (2.1)

and

αn
m = H̃m ◦ ρn ◦ H̃−1

m . (2.2)

For m = 0, set H̃0 = id and α0 = ρ.
Notice that as Hm is homotopic to id, all the αm terms are homotopic to ρ.
Define a twisted coboundary gm : Zr × Td → Rd over ρ by

gn
m(x) = hm ◦ ρn(x)− ρnhm(x). (2.3)

We pose a list of technical conditions on hm and gm as follows.

Condition 2.1. The sequence {hm}∞m=1 will be chosen, together with:
• a positive number τ ∈ (0, 1);
• a sequence of positive numbers {θm}∞m=1;
• unit vectors v, w ∈ Rd , as well as two sequences of non-zero vectors {vm}∞m=1, {v∗

m}∞m=1
from Rd ,
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so that, for all m ∈ N:
(i)

∑∞
m=1 θm < τ ;

(ii) ‖hm‖C1 � τ and(
m−1
max
m′=1

‖H̃−1
m′ ‖C1

)(
m−1
max
m′=1

‖H̃m′‖C1

)
‖hm‖C0 < θm;

(iii) ‖H̃m−1‖C2‖H̃−1
m−1‖C1‖gn

m‖C1 < θm;
(iv) hm(0) = 0 and either (D0H̃m)v = v + τw if m is odd or (D0H̃m)v = v if m is

even;
(v) either w = v or (D0H̃m)w = w;

(vi) hm(vm′) = hm(v
∗
m′) = 0 for all 1 ≤ m′ ≤ m− 1, where vm′ is identified with its

projection in Td ;
(vii) ‖H̃m‖C2 |vm| < θm, ‖H̃m‖C1 |vm/|vm| − v| < θm, ‖H̃m‖C2 |v∗

m| < θm, and ‖H̃m‖C1

|v∗
m/|v∗

m| − (v + τw)/|v + τw|| < θm.

Along our proof, it will turn out that v and w may or may not be the same.

2.2. Sufficient inductive conditions. We now show the following proposition.

PROPOSITION 2.2. Given the action ρ, if Condition 2.1 is satisfied and the constant τ > 0
therein is sufficiently small, then:
(1) {H̃m}∞m=1 converges in C0 to a homeomorphism H̃ that is homotopic to id;
(2) for all n ∈ �, H̃ ◦ ρn ◦ H̃−1 is C1 differentiable and

‖H̃ ◦ ρn ◦ H̃−1 − ρn‖C1 � τ ;

(3) neither H̃ nor H̃−1 is differentiable.

We first recall a few technical facts regarding Ck norms.

LEMMA 2.3. For smooth maps φ, ψ : Td → Td and 
 : Td → Rd :
(1) ‖φ ◦ ψ‖C2 � ‖φ‖C2(1 + ‖ψ‖C0)2(1 + ‖ψ‖C2). If ψ is not homotopically trivial,

then ‖φ ◦ ψ‖C1 ≤ ‖φ‖C1‖ψ‖C1;
(2) ‖φ ◦ (ψ +
)− φ ◦ ψ‖C1 � ‖φ‖C2(1 + ‖ψ‖C1)‖
‖C1 ;
(3) there is ε = ε(d) such that if ‖φ − id‖C1 ≤ ε, then φ is invertible, and ‖φ−1‖C1 �

1 + ‖φ‖C1 and ‖φ−1‖C2 � 1 + ‖φ‖C2 .

Proof of Lemma 2.3. (1) The C2 bound is in [K99, Proposition A.2.3]. For the C1 bound,
note ‖φ ◦ ψ‖C0 = ‖φ‖C0 ≤ ‖φ‖C1‖ψ‖C1 , where we used ‖ψ‖C1 ≤ 1 because ψ is not
homotopically trivial. In addition, ‖D(φ ◦ ψ)‖C0 = ‖(Dφ ◦ ψ)Dψ‖C0 ≤ ‖φ‖C1‖ψ‖C1 .

(2) We have

‖φ ◦ (ψ +
)− φ ◦ ψ‖C0 ≤ ‖φ‖C1‖
‖C0 ≤ ‖φ‖C2(1 + ‖ψ‖C1)‖
‖C1 .

Moreover,

‖D(φ ◦ (ψ +
)− φ ◦ ψ)‖C0

= ‖(Dφ ◦ (ψ +
))(Dψ +D
)− (Dφ ◦ ψ))Dψ‖C0
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= ‖(Dφ ◦ (ψ +
)−Dφ ◦ ψ)Dψ + (Dφ ◦ (ψ +
))D
‖C0

≤ ‖Dφ ◦ (ψ +
)−Dφ ◦ ψ‖C0‖Dψ‖C0 + ‖Dφ‖C0‖D
‖C0

≤ ‖Dφ‖C1‖
‖C0‖Dψ‖C0 + ‖Dφ‖C0‖D
‖C0

≤ ‖φ‖C2‖ψ‖C1‖
‖C0 + ‖φ‖C1‖
‖C1

≤ ‖φ‖C2(1 + ‖ψ‖C1)‖
‖C1 .

(3) Is proven in [H82, Lemma 2.3.6].

Proof of Proposition 2.2. In the proof below, we will repeatedly use the fact that, because
H̃m−1 is homotopic to id,

‖H̃m‖C1 ≥ 1, ‖H̃−1
m−1‖C1 ≥ 1. (2.4)

(1) By Lemma 2.3, when τ is sufficiently small depending on the dimension d,
Hm = id + hm is invertible, and H−1

m is C1 differentiable and homotopic to id. So every
H̃m is invertible in C1.

By Condition 2.1(ii) and (2.4), for all x ∈ Td ,

|H̃m(x)− H̃m−1(x)|
= |H̃m−1(x + hm(x))− H̃m−1(x)|
≤ ‖H̃m−1‖C1‖hm‖C0 < θm.

It follows that {H̃m} is a Cauchy, and hence convergent, sequence in C0. Its limit, which
we denote by H̃ , is a continuous map that is homotopic to id. Note

‖H̃ − H̃m‖C0 ≤
∞∑

k=m+1

‖H̃k−1‖C1‖hk‖C0 . (2.5)

However, it is easy to see that H−1
m = id + h∗

m, where h∗
m = −hm ◦H−1

m . In particular,
‖h∗
m‖C0 = ‖hm‖C0 and

∞∑
m=1

‖h∗
m‖C0 ≤

∞∑
m=1

‖H̃m−1‖C1‖hm‖C0‖ <
∞∑
m=1

θm < τ . (2.6)

As H̃−1
m = H̃−1

m−1 + h∗
m ◦ H̃−1

m−1, it follows that {H̃−1
m } is a Cauchy sequence in C0

topology, and thus converges to a continuous map H̃ ∗. Additionally, H̃ ∗ is homotopic
to id. We also have

‖H̃ ∗ − H̃−1
m ‖C0 ≤

∞∑
k=m+1

‖hk‖C0 . (2.7)

Thus, for all m,

‖H̃ ◦ H̃ ∗ − id‖C0

= ‖H̃ ◦ H̃ ∗ − H̃m ◦ H̃−1
m ‖C0

≤ ‖H̃ ◦ H̃ ∗ − H̃m ◦ H̃ ∗‖C0 + ‖H̃m ◦ H̃ ∗ − H̃m ◦ H̃−1
m ‖C0

≤ ‖H̃ − H̃m‖C0 + ‖H̃m‖C1‖H̃ ∗ − H̃−1
m ‖C0
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≤
∞∑

k=m+1

‖H̃k−1‖C1‖hk‖C0 + ‖H̃m‖C1

∞∑
k=m+1

‖hk‖C0

≤
∞∑

k=m+1

θk +
∞∑

k=m+1

θk = 2
∞∑

k=m+1

θk , (2.8)

where we used equation (2.7) and the parts (i), (ii) of Condition 2.1. As
∑∞
m=1 θm < τ , it

follows that ‖H̃ ◦ H̃ ∗ − id‖C0 = 0. Therefore, H̃ ◦ H̃ ∗ = id.
Similarly, for all m,

‖H̃ ∗ ◦ H̃ − id‖C0

= ‖H̃ ∗ ◦ H̃ − H̃−1
m ◦ H̃m‖C0

≤ ‖H̃ ∗ ◦ H̃ − H̃−1
m ◦ H̃‖C0 + ‖H̃−1

m ◦ H̃ − H̃−1
m ◦ H̃m‖C0

≤ ‖H̃ ∗ − H̃−1
m ‖C0 + ‖H̃−1

m ‖C1‖H̃ − H̃m‖C0

≤
∞∑

k=m+1

‖hk‖C0 + ‖H̃−1
m ‖C1

∞∑
k=m+1

‖H̃k−1‖C1‖hk‖C0

≤
∞∑

k=m+1

θk +
∞∑

k=m+1

θk = 2
∞∑

k=m+1

θk . (2.9)

As above, we know H̃ ∗ ◦ H̃ = id.
We can now conclude that H̃ ∗ = H̃−1 and H̃ is a homeomorphism of Td .
(2) By Lemma 2.3, for n ∈ �,

‖αn
m − αn

m−1‖C1

= ‖H̃m−1 ◦Hm ◦ ρn ◦ H̃−1
m − H̃m−1 ◦ ρn ◦Hm ◦ H̃−1

m ‖C1

≤ ‖H̃m−1 ◦Hm ◦ ρn − H̃m−1 ◦ ρn ◦Hm‖C1‖H̃−1
m ‖C1

≤ ‖H̃m−1‖C2(1 + ‖Hm ◦ ρn‖C1)

· ‖Hm ◦ ρn − ρn ◦Hm‖C1‖H−1
m ‖C1‖H̃−1

m−1‖C1

≪ ‖H̃m−1‖C2(1 + ‖Hm‖C1‖ρn‖C1)

· ‖(ρn + hm ◦ ρn)− (ρn + ρnhm)‖C1‖Hm‖C1‖H̃−1
m−1‖C1

� ‖H̃m−1‖C2‖H̃−1
m−1‖C1‖gm‖C1 < θm.

Because
∑∞
m=1 θm < τ , the sequence {αn

m} is Cauchy in C1 topology. Denote the limit
by αn. Since ρn = αn

0 ,

‖αn − ρn‖C1 �
∞∑
m=1

θm < τ for all n ∈ �. (2.10)

Finally, we want to show that αn = H̃ ◦ ρn ◦ H̃−1. For all m ∈ N and n ∈ �,

‖αn
m − H̃ ◦ ρn ◦ H̃−1‖C0

≤ ‖H̃m ◦ ρn ◦ H̃−1
m − H̃m ◦ ρn ◦ H̃−1‖C0 + ‖H̃m ◦ ρn ◦ H̃−1 − H̃ ◦ ρn ◦ H̃−1‖C0
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≤ ‖H̃m ◦ ρn‖C1‖H̃−1
m − H̃−1‖C0 + ‖H̃m − H̃‖C0

� ‖H̃m‖C1

∞∑
k=m+1

‖hk‖C0 +
∞∑

k=m+1

‖H̃k−1‖C1‖hk‖C0

�
∞∑

k=m+1

(
k−1
max
k′=1

‖H̃k′ ‖C1)‖hk‖C0

<

∞∑
k=m+1

θk , (2.11)

which decays to 0 asm → ∞. Thus, H̃ ◦ ρn ◦ H̃−1 is the C0 limit of αn
m, which coincides

with αn.
The extension of the definition αn = H̃ ◦ ρn ◦ H̃−1 to general n ∈ Zr forms aC1 action

generated by {αn : n ∈ �}.
(3) Since Hm(0) = 0 + hm(0) = 0,

H̃m(0) = 0 for all m and H̃ (0) = 0.

In addition, for all positive integers m′ > m ≥ 1, hm′(vm) = 0 and thus Hm′(vm) = vm +
hm′(vm) = vm. Therefore, for all k > m ≥ 1,

H̃m′(vm) = H̃m ◦Hm+1 ◦ · · · ◦Hm′−1 ◦Hm′(vm)

= H̃m ◦Hm+1 ◦ · · · ◦Hm′−1(vm)

= · · · = H̃m(vm),

and

H̃ (vm) = lim
m′→∞

H̃m′(vm) = H̃m(vm). (2.12)

Set ym = vm + ∑m
m′=1 hm′ ◦Hm′+1 ◦ · · · ◦Hm(vm). Then H̃ (vm) = H̃m(vm) is the

projection of ym to Td , which we indifferently denote by ym.
We first claim that H̃ is not differentiable at 0. To show this, it is helpful to study the

asymptotic behavior of the sequence of vectors ym/|vm|.
Remark that since

∑∞
m=1 θm < τ , θm → 0. Moreover, as H̃m is homotopic to id,

‖H̃m‖C2 ≥ ‖H̃m‖C1 ≥ 1. Thus, Condition 2.1(vii) shows |vm| ≤ θm and |vm/|vm|−v| ≤ θm.
Thus, vm → 0 and vm/|vm| → v as m → ∞.

As H̃m(vm) = ym, by Condition 2.1(vii),

ym

|vm| − (D0H̃m)v

=
(
H̃m(vm)

|vm| − (D0H̃m)vm

|vm|
)

+
(
(D0H̃m)(

vm

|vm| − v)

)

= O(‖H̃m‖C2 |vm|2)
|vm| +O

(
‖H̃m‖C1 | vm|vm| − v|

)
= O(θm). (2.13)
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This shows, using Condition 2.1(iv),

lim
l→∞

y2l+1

|v2l+1| = lim
l→∞(D0H̃2l+1)v = v + τw, (2.14)

and similarly,

lim
l→∞

y2l

|v2l | = lim
l→∞(D0H̃2l)v = v. (2.15)

Non-differentiability of H̃ : Assume for the sake of contradiction that H̃ is differentiable
at 0. Then, as H̃ (vm) = ym as well,

ym

|vm| − (D0H̃ )

=
(
H̃ (vm)

|vm| − (D0H̃ )vm

|vm|
)

+
(
(D0H̃ )(

vm

|vm| − v)

)

= oH̃ (|vm|)
|vm| +OH̃

(∣∣∣∣ vm|vm| − v

∣∣∣∣
)

→ 0 (2.16)

as m → ∞. This contradicts equations (2.14) and (2.15) where different subsequences of
ym/|vm| have different limits. Therefore, H̃ cannot be differentiable at 0.

Non-differentiability of H̃−1: By equation (2.14), liml→∞(|y2l+1|/|v2l+1|) = |v + τw|.
Thus,

lim
l→∞

y2l+1

|y2l+1| = lim
l→∞

|v2l+1|
|y2l+1| · lim

l→∞
y2l+1

|v2l+1| = v + τw

|v + τw| (2.17)

and

lim
l→∞

v2l+1

|y2l+1| = lim
l→∞

|v2l+1|
|y2l+1| · lim

l→∞
v2l+1

|v2l+1| = v

|v + τw| . (2.18)

However, using v∗
m instead, we can define y∗

m = H̃ (v∗
m) = H̃m(y

∗
m) as in equation (2.12).

Then |v∗
m| → 0 and |y∗

m| → 0 as m → ∞. The same computations in equations (2.13),
(2.14), and (2.15) give rise to, in lieu of equation (2.16),

lim
l→∞

y∗
2l

|v∗
2l |

= lim
l→∞(D0H̃2l )

v + τw

|v + τw|
= lim
l→∞

(D0H̃2l )v + τ(D0H̃2l )w

|v + τw| . (2.19)

If w = v, then

lim
l→∞

y∗
2l

|v∗
2l |

= (1 + τ) liml→∞(D0H̃2l)v

|(1 + τ)v|
= (1 + τ)v

|(1 + τ)v| = v.

https://doi.org/10.1017/etds.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.18


Non-rigidity of partially hyperbolic abelian C1-actions 9

Therefore, liml→∞(y∗
2l/|v∗

2l |) = 1 and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

liml→∞
y∗

2l
|y∗

2l |
= v = liml→∞

y2l+1

|y2l+1|
liml→∞

v∗
2l

|y∗
2l |

= liml→∞
v∗

2l
|v∗

2l |
= v �= v

1 + τ
= liml→∞

v2l+1

|y2l+1| .
(2.20)

If w �= v, then by equation (2.19) and properties (iv), (v) of Condition 2.1,

lim
l→∞

y∗
2l

|v∗
2l |

= lim
l→∞

(v + τw)

|v + τw| = v + τw

|v + τw| ,

and therefore, liml→∞(y∗
2l/|v∗

2l |) = 1 and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

liml→∞
y∗

2l
|y∗

2l |
= v + τw

|v + τw| = liml→∞
y2l+1

|y2l+1|
liml→∞

v∗
2l

|y∗
2l |

= liml→∞
v∗

2l
|v∗

2l |
= v + τw

|v + τw| �= v

|v + τw| = liml→∞
v2l+1

|y2l+1| .

(2.21)

As v∗
2l = H̃−1(y∗

2l ) and v2l+1 = H̃−1(y2l+1), in both the cases of equations (2.20) and
(2.21), the same argument as in equation (2.16) shows H̃−1 is not differentiable at 0
either.

2.3. Fulfillment of the inductive conditions. We will construct the sequence {hm}∞m=1
based on the following proposition.

PROPOSITION 2.4. If the linear action ρ : Zr � Td contains no hyperbolic automor-
phism, then there exist unit vectors v, w ∈ Rd , such that for all δ > 0 and Q ∈ N, there
exists a C∞ function h : Td → Rd , such that:
(1) h(x) = 0 for all x ∈ ((1/Q)Zd)/Zd ⊆ Td ;
(2) (D0h)v = w; in addition, either v = w or (D0h)w = 0;
(3) ‖h‖C0 < δ and ‖h‖C1 � 1;
(4) for all n ∈ �, gn := ρnh− h ◦ ρn satisfies ‖gn‖C1 < δ.

The proof of the proposition will be deferred to §3.

PROPOSITION 2.5. Suppose the linear action ρ : Zr � Td contains no hyperbolic auto-
morphism and v, w are as in Proposition 2.4. Then for all sufficiently small τ > 0 and
positive numbers {θm}∞m=1 that satisfy

∑∞
m=1 θm < τ , there exist sequences {hm}∞m=1,

{vm}∞m=1 and {v∗
m}∞m=1 that satisfy Condition 2.1.

Proof. Part (i) is already assumed. So we only need to fulfill the remaining assumptions
from Condition 2.1.

To inductively construct hm, assume for all 1 ≤ m′ ≤ m− 1, there exist a C∞ function
hm′ , and non-zero vectors vm′ , v∗

m′ ∈ Qd that satisfy, together with v, w, the remaining
properties from Condition 2.1. Then the diffeomorphism H̃m′ is also determined for
all 1 ≤ m′ ≤ m− 1 by equation (2.1). Remark that with the convention H̃0 = id, the
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requirements of (D0H̃m)v = v and (D0H̃m)w = w from parts (iv) and (v) of the condition
are satisfied at the initial step m = 0.

Let

δm = θm

max
((

maxm−1
m′=1 ‖H̃−1

m′ ‖C1
)(

maxm−1
m′=1 ‖H̃m′ ‖C1

)
, ‖H̃m−1‖C2‖H̃−1

m−1‖C1
) (2.22)

and Qm be the least common multiple of the denominators of v1, . . ., vm−1, v∗
1 , . . .,

v∗
m−1 ∈ Qd . We obtain a C∞ function h̊m by applying Proposition 2.4 with parameters δm

and Qm, and define

hm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
τ h̊m if m is odd,
−τ

1 + τ
h̊m if v = w and m is even,

−τ h̊m if v �= w and m is even.

(2.23)

It in turn determines Hm = id+hm and H̃m = H̃m−1 ◦Hm. Remark that |−τ/(1+τ)|<τ .
We claim hm, Hm, and H̃m satisfy the clauses (ii)–(vii) in Condition 2.1:
(ii) ‖hm‖C1 ≤ τ‖h̊m‖C1 � τ and(

m−1
max
m′=1

‖H̃−1
m′ ‖C1

)(
m−1
max
m′=1

‖H̃m′ ‖C1

)
‖hm‖C0

≤
(
m−1
max
m′=1

‖H̃−1
m′ ‖C1

)(
m−1
max
m′=1

‖H̃m′‖C1

)
· τ‖h̊m‖C1

< τ
(
m−1
max
m′=1

‖H̃−1
m′ ‖C1

)(
m−1
max
m′=1

‖H̃m′ ‖C1

)
δm = τθm < θm.

(iii) For all n ∈ �, with g̊n
m = h̊m ◦ ρn − ρnh̊m,

‖H̃m−1‖C2‖H̃−1
m−1‖C1‖gn

m‖C1

≤ τ‖H̃m−1‖C2‖H̃−1
m−1‖C1‖g̊n

m‖C1

≤ τ‖H̃m−1‖C2‖H̃−1
m−1‖C1δm < τθm < θm.

(iv) Since 0 ∈ ((1/Q)Zd)/Zd , h̊m(0) = 0 and thus hm(0) = 0. As it was assumed
that h1(0) = · · · = hm−1(0) = 0, we know H1(0) = · · · = Hm(0) = 0 and H̃m(0) =
H̃m−1(0) = 0. So

(D0H̃m)v = (D0H̃m−1)(D0Hm)v = (D0H̃m−1)(v + (D0hm)v).

If m is odd and v = w, then v + (D0hm)v = v + τ(D0h̊m)v = (1 + τ)v, and by
inductive assumption, (D0H̃m−1)v = v. So (D0H̃m)v = (D0H̃m−1)((1 + τ)v) = v +
τv = v + τw.

If m is even and v = w, then v + (D0hm)v = v − τ/(1 + τ)(D0h̊m)v = v −
(τ/(1 + τ))v = v/(1 + τ), and by inductive assumption, (D0H̃m−1)v = v + τw =
(1 + τ)v. So (D0H̃m)v = (D0H̃m−1)(v/(1 + τ)) = v.

If m is odd and v �= w, then v + (D0hm)v = v + τ(D0h̊m)v = v + τw, and
by inductive assumption, (D0H̃m−1)v = v, (D0H̃m−1)w = w. So (D0H̃m)v =
(D0H̃m−1)(v + τw) = v + τw.
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If m is even and v �= w, then v + (D0hm)v = v − τ(D0h̊m)v = v − τw, and
by inductive assumption, (D0H̃m−1)v = v + τw, (D0H̃m−1)w = w. So (D0H̃m)v =
(D0H̃m−1)(v − τw) = (v + τw)− τ · w = v.

Therefore, we have proved that property (iv) continues to hold at the mth step in all
cases.

(v) Suppose v �= w. Then (D0h̊m)w = 0 and, thus, (D0hm)w = 0 too. So (D0Hm)w =
(id + (D0hm))w = w. Since by inductive assumption (D0H̃m−1)w = w, we still have
(D0H̃m)w = (D0H̃m−1)(D0Hm)w = w.

(vi) By the choice ofQm, we know vm′ , v∗
m′ are in ((1/Qm)Z)

d for all 1 ≤ m′ ≤ m− 1.
By Proposition 2.4, h̊m(vm′) = h̊m(v

∗
m′) = 0. So hm(vm′) = hm(v

∗
m′) = 0 as hm is

proportional to h̊m.
(vii) Now that hm and H̃m have been constructed, to finish the inductive step, it

remains to choose rational vectors vm, v∗
m that meet the requirement of property (vii),

which can obviously be achieved. In fact, it suffices to take any rational vector u ∈ Qd

such that |u− v| < θm/2‖H̃m‖C1 , and set vm = u/L for any sufficiently large integer
L > 2‖H̃m‖C1/θm. Additionally, v∗

m can be similarly chosen near the direction of
v + τw.

Proof of Theorem 1.1. Theorem 1.1 immediately follows from Propositions 2.2, 2.4,
and 2.5.

3. Cocycles with small coboundaries
In this section, we complete the only still missing component of the argument, namely the
proof of Proposition 2.4.

3.1. The linear algebra of commuting integer matrices. The linear algebra of the action
ρ is characterized by the following basic fact.

LEMMA 3.1. Suppose ρ : Zr → GLd(Z) is a representation of Zr in the group of toral
automorphism of Td . Then for some J1, J2 ≥ 0 and every 1 ≤ j ≤ J1 + 2J2, there exist:
• a number field Fj embedded in Lj , where L1 = · · · = LJ1 = R and LJ1+1 = · · · =

LJ1+2J2 = C;
• a positive dimension dj ≥ 1;
• a group morphism ζj : n → ζ n

j from Zr to the multiplicative group F×
j of Fj ;

• a group morphism Aj : n → An
j from Zr to the group Ndj (Fj ) of upper triangular

nilpotent matrices in SLdj (Fj );
• a linear transform μj ∈ Matdj×d(Fj );
such that:
(1) {ζ n

j : n ∈ Zr } �⊆ R generates Fj as a number field, and spans Lj over R;
(2) ζ1, . . . , ζJ1+2J2 are distinct and this list is invariant under the action by the Galois

group Gal(Q/Q). Actually, for all 1 ≤ j ≤ J1 + 2J2 and σ ∈ Gal(Fj /Q), there
exists a unique 1 ≤ j ′ ≤ J1 + 2J2 such that σ(Fj ) = Fj ′ , dj = dj ′ , σ(ζ n

j ) = ζ n
j ′ ,

σ(An
j ) = An

j ′ and σ(μj ) = σ(μj ′);

(3) ζ n
j = ζ n

J2+j for all J1 ≤ j ≤ J1 + J2, n ∈ Zr ;
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(4) with ιj = μj for 1 ≤ j ≤ J1 and ιj = 2 Re μj for J1 + 1 ≤ j ≤ J1 + J2, the linear

transform ι = ⊕J1+J2
j=1 ιj from

⊕J1+J2
j=1 L

dj
j to Rd is an R-linear isomorphism and

satisfies

ι ◦
J1+J2⊕
j=1

ζ n
j A

n
j = ρn ◦ ι.

The lemma should be a standard fact for experts. However, we still include the proof for
completeness.

Proof. Thanks to the commutativity of Zr , it is easy to show (see e.g. the proof of
[RHW14, Lemma 2.2]) that Cd = (Rd)⊗R C splits as a direct sum

⊕J̃
j=1 E

C
j , where

each EC
j is a maximal common generalized eigenspace of all the ρn terms. More precisely,

for every j, there exists a group morphism from Zr : ζj to C× such that

EC
j =

⋂
n∈Zr

kerCd (ρ
n − ζ n

j id)d =
⋂
n∈�

kerCd (ρ
n − ζ n

j id)d . (3.1)

(1) Because ρn ∈ GLd(Z), every eigenvalue ζ n
j is an algebraic integer. Denote by Fj

the field generated by {ζ n
j : n ∈ Zr}, which is a number field as Zr is finitely generated.

Let Lj ∈ {R, C} be the R-span of Fj .
(2) As the ρn|EC

j
terms commute, they can be triangularized simultaneously over C.

Actually, equation (3.1) asserts that EC
j is a linear subspace defined over Fj . Together with

the fact that the ρn ∈ GLd(Z), this shows that the simultaneous triangularization can be
carried out over Fj . In other words, one can find a basis yj1, . . . , yjdj ∈ EC

j ∩ Fdj of EC
j ,

such that the linear isomorphism μj : Cdj → EC
j sending the kth coordinate vector to yjk

satisfies

ρn ◦ μj = μj ◦ (ζ n
j A

n
j ). (3.2)

Note that μj is actually a matrix with coefficients in Fj .
Moreover, we can make the choices above equivariant under Galois conjugacies. Indeed,

for every σ ∈ Gal(Q/Q), the correspondence n → σ(ζ n
j ) is a group morphism from Zr to

σ(Fj )
×. By equation (3.1), σ(EC

j ∩ Q
d
) = ⋂

n∈Zr ker
Q
d (ρn − σ(ζ n

j )id)
d is a non-empty

Q subspace of dimension dimC E
C
j and its C-span is

⋂
n∈Zr kerCd (ρ

n − σ(ζ n
j )id)

d , which
is EC

j ′ for some 1 ≤ j ′ ≤ J̃ . (Note j = j ′ if and only if σ fixes every ζ n
j , or equivalently σ

acts trivially on Fj .) In this case, dj ′ = dj and ζ n
j ′ = σ(ζ n

j ). Furthermore, one may choose
the basis yj1, . . . , yjdj for all the indices j in such a way that, in the situation above,
yj ′k = σ(yjk) for 1 ≤ k ≤ dj , or equivalently μj ′ = σ(μj ). Then applying σ to equation
(3.2) yields

ρn ◦ μj ′ = μj ′ ◦ (ζ n
j ′σ(An

j )).

Since μj ′ is a linear embedding, this forces An
j ′ = σ(An

j ).
(3) By choice, ζ1, . . . , ζJ̃ are distinct. Additionally, the previous paragraph shows

that, by letting σ ∈ Gal(Q/Q) be the complex conjugation, each ζj is also in the list.
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Remark that ζj = ζj if and only if {ζ n
j : n ∈ Zr} ⊆ R, or equivalently Fj = R. After

rearranging the list, we may assume that there are J1, J2 such that J1 + 2J2 = J̃ , Fj = R

assume real values for j = 1, . . . J1; and that FJ2+j = Fj = C and ζJ2+j = ζj for
j = J1 + 1, . . . , J1 + J2.

(4) As in the statement, set ιj = μj for 1 ≤ j ≤ J1 and ιj = 2 Re μj for J1 + 1 ≤ j ≤
J1 + J2. To show ι ◦ ⊕J1+J2

j=1 ζ n
j A

n
j = ρn ◦ ι, we need for each 1 ≤ j ≤ J2 that

ρn ◦ ιj = ιj ◦ (ζ n
j A

n
j ). (3.3)

For 1 ≤ j ≤ J1, this is just equation (3.2). For J1 + 1 ≤ j ≤ J1 + J2, let u ∈ Cdj , because
ρn is a real matrix, for all n ∈ Zr and z ∈ Cdj ,

ρn(ιj (z)) = ρn(2 Re μj (z)) = 2 Re ρn(μj (z))

= 2 Re μj (ζ n
j A

n
j z) = ιj (ζ

n
j A

n
j z).

So equation (3.3) holds for all 1 ≤ j ≤ J1 + J2.
It remains to show that ι is an isomorphism. Recall that Cd = ⊕J1+2J2

j=1 EC
j is a

direct sum. However, the image of ιj = μj is contained in EC
j for 1 ≤ j ≤ J1; and

the image of ιj = 2 Re μj = μj + μj = μj + μJ2+j is contained in EC
j ⊕ EC

J2+j for

J1 + 1 ≤ j ≤ J1 + J2. Hence, the images of ι is the direct sum
⊕J1+J2

j=1 ιj (L
dj
j ).

In addition, we claim each ιj is injective. This is obvious in the case 1 ≤ j ≤ J1, where
ιj = μj . For J1 + 1 ≤ j ≤ J1 + J2, if ιj = 2 Re μj is not injective, thenμj (z) = −μj (z)
for some non-zero z ∈ Cdj . However, μj (z) �= 0, as μj is an embedding. This shows
EC
j ∩ EC

J1+j �= {0} as μj (z) ∈ EC
j and μj (z) ∈ EC

J2+j , which contradicts the fact that⊕J1+2J2
j=1 EC

j is a direct sum. Hence, ιj is injective for all 1 ≤ j ≤ J1 + J2.

So we may conclude that ι = ⊕J1+J2
j=1 ιj is injective from

⊕J1+J2
j=1 L

dj
j to Rd . As

dimR

J1+J2⊕
j=1

L
dj
j =

J1∑
j=1

dj +
J1+J2∑
j=J1+1

2dj =
J1+2J2∑
j=1

dj = dimC

J1+2J2⊕
j=1

EC
j

= dimC Cd = d ,

ι must be a linear isomorphism. The proof is completed.

COROLLARY 3.2. Suppose 1 ≤ k ≤ J1 + J2 and P is a Lk-vector subspace defined over
Q of the kth component Ldkk in

⊕J1+J2
j=1 L

dj
j , then there exists a subspace P ′ ⊂ Rd defined

over Q such that P = ι−1
k (P ′).

Proof. Choose a linear basis {p1, . . . , pN } of P from Qdk ⊂ L
dk
k .

There are j1, . . . , jM1 ∈ {1, . . . , J1} and jM1+1, . . . , jM1+M2 ∈ {J1 +1, . . . , J1 +J2}
such that, after defining jM2+m = J2 + jm for every M1 + 1 ≤ m ≤ M1 +M2,
{ζj1 , . . . , ζjM1+2M2

} form the orbit of ζk under the action by the Galois group Gal(Fk/Q).
For each m, let σm ∈ Gal(Fk/Q) be the element such that σm(ζk) = ζjm .

Define (P ′)C ⊆ Cd as the C-linear span of

{μjm(pn) : 1 ≤ m ≤ M1 + 2M2, 1 ≤ n ≤ N}. (3.4)
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Because μjm = σm(μk) and has image in EC
jm

, these vectors have algebraic entries and are
linearly independent, and this set is invariant by Galois conjugacies from Gal(Q/Q).
Hence, (P ′)C is defined over Q of dimension (M1 + 2M2)N . The intersection
P ′ := (P ′)C ∩ Rd is a real vector space defined over Q over the same dimension.

For each pn, ιk(pn) is either μk(pn) if 1 ≤ k ≤ J1 or 2 Re μk(pn) = μk(pn)+
μJ2+k(pn) if J1 + 1 ≤ k ≤ J1 + J2. In these cases, either k or both k and J2 + k are
among the list {j1, . . . , jM1+2M2}. It follows that ιk(pn) ∈ (P ′)C and hence ιk(pn) ∈ P ′.
We obtain that P ⊆ ι−1

k (P ′).
It remains to show that the equality holds. If 1 ≤ k ≤ J1, then Lk = R and

ιk(L
dj
k ) = μk(L

dj
k ) ⊆ EC

k . So ιk(ι−1
k (P ′)) ⊆ P ′ ∩ EC

k . As (P ′)C ∩ EC
k is the C-span of

μk(p1), . . . , μk(pN), all of which are real vectors, P ′ ∩ EC
k is contained in the R-span

of them. Because ιk is an embedding, dimR ι
−1
k (P ′) ≤ N = dimR P . Assume instead

J1 + 1 ≤ k ≤ J1 + J2. Then Lk = C and ιk(L
dj
k ) = (μk + μJ2+k)(L

dj
k ) ⊆ EC

k ⊕ EC
J2+k .

So ιk(ι
−1
k (P ′)) is contained in P ′ ∩ (EC

k ⊕ EC
J2+k). As (P ′)C ∩ (EC

k ⊕ EC
J2+k) is the

C-span of μk(p1), . . ., μk(pN), μJ2+k(p1), . . ., μJ2+k(pN) and has complex dimension
2N . Here, P ′ ∩ (EC

k ⊕ EC
J2+k) = Rd ∩ (P ′)C ∩ (EC

k ⊕ EC
J2+k) has real dimension 2N .

Again, since ιk is injective, dimR(ι
−1
k (P ′)) ≤ 2N = 2 dimC P = dimR P . We conclude

that in both cases, P = ι−1
k (P ′).

For 1 ≤ j ≤ J , 1 ≤ k ≤ dj , write ujk for the kth coordinate vector in L
dj
j , so that all

vectors s ∈ ⊕J
j=1 L

dj
j have the form

s =
J⊕
j=1

dj∑
k=1

πjk(s)ujk , (3.5)

where πjk is the projection to the ujk coordinate.
Since none of the ρn terms is hyperbolic, there must be at least one j0 such that |ζ n

j0
| = 1

for all n ∈ Zr . This is because otherwise, the linear functionals n → log |ζ n
j0

| on Zr are
all non-zero and one can find one n∗ that is not in the kernel of any of such functionals.
Then |ζ n∗

j | �= 1 for all j. In other words, ρn∗ has no eigenvalues in the unit circle, so ρn∗ is
a hyperbolic matrix, which contradicts our assumption.

After renormalizing ι if necessary, we may assume

|ι(uj0dj0
)| = 1.

We define vectors v̊, ẘ ∈ L
dj0
j0

and v, w ∈ Rd by

v̊ = uj0dj0
, ẘ = uj01

|ι(uj01)| , v = ι(v̊), w = ι(ẘ); (3.6)

as well as projections πv̊ :
⊕J

j=1 L
dj
j → Lj0 and ψv ∈ (Rd)∗ by

πv̊ = πj0dj0
, ψv = Re πv̊ ◦ ι−1. (3.7)
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Note that

|v| = |w| = 1, ψv(v) = 1. (3.8)

In the case where dj0 = 1, we have w = v and ψv(w) = ψv(v) = 1. However, when
dj0 > 1, v̊ �= ẘ and thus πv̊(ẘ) = 0, so ψv(w) = 0. In summary,

ψv(w) = 1v=w. (3.9)

Let W = ιj0(Lj0ẘ), which is isomorphic to Lj0 as a real vector space. For all n ∈ Zr

and w′ ∈ W , since w′ = ι(zẘ) for some z ∈ Lj0 , and An
j0

is an upper triangular nilpotent
matrix, An

j0
ẘ = ẘ and thus

ρnw′ = ι(ζ n
j0
An
j0
zẘ) = ι(ζ n

j0
zẘ) ∈ W .

So W is ρ-invariant and

|ρnw′| ≤ ‖ι‖|ζ n
j0

||zẘ| = ‖ι‖ · |zẘ| � |w′| for all n ∈ Zr , for all w′ ∈ W . (3.10)

Furthermore, for u ∈ L
j0
dj0

, πv̊(ζ n
j0
An
j0
u) = ζ n

j0
πv̊(u) and thus

πv̊

(( J⊕
j=1

ζ n
j A

n
j

)
u
)

= πv̊(ζ
n
j0
An
j0
πv̊(u)) = ζ n

j0
πv̊(u)

for all u ∈ ⊕J
j=1 L

dj
j . So

(ρn)Tψv = Re πv̊ ◦ ι−1 ◦ ρn = Re
(
πv̊ ◦

J⊕
j=1

ζ n
j A

n
j ◦ ι−1

)

= Re(ζ n
j0
πv̊ ◦ ι−1). (3.11)

In particular, as |ζ n
j0

| = 1, the size of (ρn)Tψv ∈ (Rd)∗ is uniformly bounded by

|(ρn)Tψv| ≤ ‖πv̊ ◦ ι−1‖. (3.12)

If dj0 > 1, by applying Corollary 3.2 to the Lj0 -subspace
⊕dj0

k=2 Lj0uj0k of L
dj0
j0

, there

is a subspaceW ′ ⊆ Rd defined over Q such that ι−1
j0
(W ′) = ⊕dj0

k=2 Ldj0
uj0k . In particular,

W ′ containsW = ιj0(Lj0uj0dj0
). Set� = {ψ ∈ (Rd)∗ : ψ |W ′ = 0}. Then� is a subspace

defined over Q, and

ψ |W = 0 for all ψ ∈ �. (3.13)

Moreover,

ι−1(W ′) ⊆
( dj0⊕
k=2

Ldj0
uj0k

)
⊕

( ⊕
1≤j≤J1+J2

j �=j0

L
dj
j

)
= ker πv̊ .
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It follows that ψv = Re πv̊ ◦ ι−1 annihilatesW ′, or equivalently, ψv ∈ �. Furthermore, for
all n ∈ Zr , we have

ρnv = ι(ζ n
j0
An
j0
v̊) = ι(ζ n

j0
v̊)+ ι(ζ n

j0
(An

j0
− id)v̊).

Because An
j0

is an upper triangular nilpotent matrix, ζ n
j0
(An

j0
− id)v̊ ∈ ⊕dj0

k=2 Ldj0
uj0k and

ι(ζ n
j0
(An

j0
− id)v̊) ∈ W ′. Thus,

ψ(ρnv) = ψ(ι(ζ n
j0
v̊)) for all ψ ∈ �. (3.14)

If dj0 = 1, take � = (Rd)∗ instead, which is also a rational subspace that contains ψv .
Additionally, equation (3.14) remains true in this case, because An

j0
= id. To summarize,

we have in any case the following corollary.

COROLLARY 3.3. There exists a subspace � ⊂ (Rd)∗ defined over Q which contains ψv
and satisfies equation (3.14). In addition, if dj0 > 1, then equation (3.13) holds as well.

It should be remarked that all the constructions above are determined by the actions ρ.

3.2. The construction of the cocycle. The construction is inspired by the construction of
Veech in [V86, Proposition 1.5].

Let ε > 0 be a small parameter to be specified later.
We identify (Rd)∗ with Rd in the standard way so that (Td)∗ ⊂ (Rd)∗ is realized as Zd .

Let � be as in Corollary 3.3. Then �Z := � ∩ Zd is a lattice in �. There is a constant
R > 0 such that for every ψ ∈ �, there exists η ∈ �Z with |ψ − η| < R. The choice of R
depends only on ρ.

Let ηv be the nearest vector to (Q/ε)ψv in the lattice Q�Z. Then∣∣∣∣ηv − Q

ε
ψv

∣∣∣∣ ≤ QR � Q. (3.15)

Recall W = ιj0(Lj0ẘ), which is isomorphic to Lj0 as an R-vector space and contains
w. The function h : Td → Rd will take value in W ⊆ Rd and have the form

h(x) = c
∑
n∈Zr|n|≤N

(e((ρn)Tηv · x)− 1)ρ−nw + (e(ηv · x)− 1)w
 (3.16)

for some c > 0, N ∈ N, and w
 ∈ W , all of which will be defined later. Remark that h is
C∞ as it is a Fourier series supported on finitely many frequencies.

LEMMA 3.4. If h has the form in equation (3.16), then property (1) in Proposition 2.4
holds.

Proof. Since ηv ∈ Q�Z ⊆ QZd and ρn ∈ GL(d, Z), (ρn)Tηv ∈ (QZ)d for all n. More-
over, if x ∈ ((1/Q)Zd)/Zd , then e(ηv · x) = 1 and e((ρn)Tη · x) = 1 for all n ∈ Zr .
Therefore, h(x) = 0. This proves part (1).
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The derivative of equation (3.16) at x = 0 is the matrix

D0h = c
∑
n∈Zr|n|≤N

((ρn)Tηv)⊗ (ρ−nw)+ ηv ⊗ w


= c
∑
n∈Zr|n|≤N

(
(ρn)T

Q

ε
ψv

)
⊗ (ρ−nw)

+ c
∑
n∈Zr|n|≤N

(
(ρn)T(ηv − Q

ε
ψv)

)
⊗ (ρ−nw)

+ ηv ⊗ w
. (3.17)

We first study the values of the first two terms in equation (3.17) with v or w as linear
input. By definition of v and w,

∑
n∈Zr|n|≤N

(((ρn)Tψv)⊗ (ρ−nw))v

=
∑
n∈Zr|n|≤N

(ψv · (ρnv))(ρ−nw)

=
∑
n∈Zr|n|≤N

Re πv̊ ◦ ι−1(ι(ζ n
j0
v̊)) · ι(ζ−n

j0
ẘ) = ι

( ∑
n∈Zr|n|≤N

Re(ζ n
j0
)ζ−n
j0
ẘ

)

= 1
2
ι

( ∑
n∈Zr|n|≤N

ζ−n
j0

· ζ n
j0
ẘ +

∑
n∈Zr|n|≤N

ζ−n
j0
ζ n
j0
ẘ

)

= 1
2
ι−1

(
(2N + 1)r ẘ +

∑
n∈Zr|n|≤N

ζ−n
j0
ζ n
j0
ẘ

)
. (3.18)

If Lj0 = R, then ẘ ∈ Rdj0 , ζ−n
j0
ζ n
j0

= 1, and thus

∑
n∈Zr|n|≤N

(((ρn)Tψv)⊗ (ρ−nw))v

= 1
2
ι−1((2N + 1)r ẘ + (2N + 1)r ẘ) = (2N + 1)rw. (3.19)

If Lj0 = C, then by Lemma 3.1(1), there is at least one i ∈ {1, . . . , r}, say i = 1 without
loss of generality, such that ζ ei

j0
/∈ R. Then ζ e1

j0
/ζ

e1
j0

is in the unit circle but not equal to 1.

In this case,
∑N
n=−N(ζ

e1
j0
/ζ

e1
j0
)n is uniformly bounded when N varies. Therefore,
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∣∣∣∣ ∑
n∈Zr|n|≤N

ζ−n
j0
ζ n
j0

∣∣∣∣ =
∣∣∣∣ ∑
n1,...,nr∈{−N ,...,N}

r∏
i=1

(ζ
ei
j0
)−ni (ζ ei

j0
)ni

∣∣∣∣

=
∣∣∣∣
r∏
i=1

N∑
n=−N

(
ζ

ei
j0

ζ
ei
j0

)n∣∣∣∣ =
r∏
i=1

∣∣∣∣
N∑

n=−N

(
ζ

ei
j0

ζ
ei
j0

)n∣∣∣∣
≤ (2N + 1)r−1

∣∣∣∣
N∑

n=−N

(
ζ

e1
j0

ζ
e1
j0

)n∣∣∣∣ � (2N + 1)r−1. (3.20)

So

∑
n∈Zr|n|≤N

(((ρn)Tψv)⊗ (ρ−nw))v

= 1
2
ι((2N + 1)r ẘ +O((2N + 1)r−1)ẘ)

= (2N + 1)r

2
ι

(
ẘ +O

(
1
N

))
= (2N + 1)r

2

(
w +O

(
1
N

))
. (3.21)

Both equations (3.19) and (3.21) can be expressed as

∑
n∈Zr|n|≤N

(((ρn)Tψv)⊗ (ρ−nw))v = (2N + 1)r

dimR Lj0

(
w +O

(
1
N

))
. (3.22)

We now attend to the second term in equation (3.17).
Since ηv − (Q/ε)ψv ∈ �, by equations (3.14), (3.15), and the fact that |ζ n

j0
| = 1,

∣∣∣∣
(
(ρn)T

(
ηv − Q

ε
ψv

))
v

∣∣∣∣ =
∣∣∣∣
(
ηv − Q

ε
ψv

)
(ι(ζ n

j0
v̊))

∣∣∣∣ �
∣∣∣∣
(
ηv − Q

ε
ψv

)∣∣∣∣ � Q.

Moreover, |ρ−nw| � 1 by equation (3.10). So∣∣∣∣
( ∑

n∈Zr|n|≤N

(
(ρn)T

(
ηv − Q

ε
ψv

))
⊗ (ρ−nw)

)
v

∣∣∣∣
≤

∑
n∈Zr|n|≤N

∣∣∣∣
(
(ρn)T

(
ηv − Q

ε
ψv

))
v

∣∣∣∣ · |ρ−nw|

� (2N + 1)rQ. (3.23)

Choose

c = ε dimR Lj0

(2N + 1)rQ
. (3.24)
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Then by equations (3.22) and (3.23),(
c

∑
n∈Zr|n|≤N

(
(ρn)T

Q

ε
ψv

)
⊗ (ρ−nw)

+ c
∑
n∈Zr|n|≤N

(
(ρn)T

(
ηv − Q

ε
ψv

))
⊗ (ρ−nw)

)
v

= c
Q

ε

(2N + 1)r

dimR Lj0

(
w +O

(
1
N

))
+ cO((2N + 1)rQ)

= w +O

(
1
N

+ ε

)
. (3.25)

To make (D0h)v = w, one needs to find the solution w
 ∈ W to

ηv(v)w
 = (ηv ⊗ w
)v

= −
((
c

∑
n∈Zr|n|≤N

(
(ρn)T

Q

ε
ψv

)
⊗ (ρ−nw)

+ c
∑
n∈Zr|n|≤N

(
(ρn)T

(
ηv − Q

ε
ψv

))
⊗ (ρ−nw)

)
v − w

)
, (3.26)

which by equation (3.25) is

w
 = − 1
ηv(v)

O

(
1
N

+ ε

)
.

Since ψv(v) = 1, by equation (3.15), ηv(v) = Q/ε +O(Q) = (Q/ε)(1 +O(ε)) and
thus, we have

w
 = 1
(Q/ε)(1 +O(ε))

O

(
1
N

+ ε

)
= O

(
ε

Q

(
1
N

+ ε

))
(3.27)

as long as ε � 1. Note that w
 is automatically in W because equation (3.25) and w ∈ W .
Moreover, if w �= v, or in other words dj0 = 1, then by Corollary 3.3 and the fact that

ηv ∈ �, ηv|W = 0. As ρnw ∈ W for all n, in this case,

(D0h)w = c
∑
n∈Zr|n|≤N

((ρn)Tηv)w) · (ρ−nw)+ ηv(w) · w
 = 0. (3.28)

LEMMA 3.5. Given c and h respectively from equations (3.16) and (3.24), for N , Q ∈ N

and sufficiently small ε � 1, there exist w
 ∈ W of size O((ε/Q)(1/N + ε)) such that
(D0h)v = w. In addition, (D0h)w = 0 if w �= v.

The first part of part (3) in Property 2.4 is given by the following lemma.

LEMMA 3.6. Suppose c, w
, and h are chosen as above. Then ‖h‖C0 � ε/Q.
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Proof. By equations (3.16), (3.24), and Lemma 3.5,

‖h‖C0 � c
∑
n∈Zr|n|≤N

|ρ−nw| + |w
|

� c(2N + 1)r + ε

Q

(
1
N

+ ε

)
� ε

Q
+ ε

Q

(
1
N

+ ε

)
� ε

Q
.

To bound the C1 norms of h and gn, write

‖ρ‖ = max
n∈� ‖ρn‖ ≥ 1

for the matrix norm of the linear action ρ, so that

‖ρn‖ ≤ ‖ρ‖|n| for all n ∈ Zr . (3.29)

For n ∈ Zr , we deduce from equations (3.12) and (3.15) that

‖(ρn)Tηv| ≤
∣∣∣∣(ρn)T

Q

ε
ψv

∣∣∣∣ +
∣∣∣∣(ρn)T

(
ηv − Q

ε
ψv

)∣∣∣∣
≤ Q

ε
|(ρn)Tψv| + ‖ρ‖|n|

∣∣∣∣ηv − Q

ε
ψv

∣∣∣∣
� Q

ε
(1 + ‖ρ‖|n|ε). (3.30)

By the construction in equation (3.16) of h, Lemma 3.6, as well as the bounds in equations
(3.10), (3.12), (3.27), and (3.30),

‖h‖C1 � ‖h‖C0 + c
∑
n∈Zr|n|≤N

|(ρn)Tηv||ρ−nw| + |ηv||w
|

� ε

Q
+ c(2N + 1)r

Q

ε
(1 + ‖ρ‖Nε)+ Q

ε
·
(
ε

Q

(
1
N

+ ε

))

� ε

Q
+ (1 + ‖ρ‖Nε)+

(
1
N

+ ε

)
� 1 + ‖ρ‖Nε. (3.31)

For every n ∈ �, gn = ρnh− h ◦ ρn is linearly controlled by h in C0 norm:

‖gn‖C0 ≤ |ρn|‖h‖C0 + ‖h‖C0 � ‖h‖C0 � ε

Q
. (3.32)

In addition, gn has the form

gn =
(
c

∑
a∈Zr|a|≤N

(e((ρa)Tηv · x)− 1)ρn−aw + (e(ηv · x)− 1)ρnw


)

−
(
c

∑
a∈Zr|a|≤N

(e((ρa)Tηv · ρnx)− 1)ρ−aw + (e(ηv · ρnx)− 1)w


)

=
(
c

∑
a∈Zr|a+n|≤N

(e((ρa+n)Tηv · x)− 1)ρ−aw + (e(ηv · x)− 1)ρnw


)
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−
(
c

∑
a∈Zr|a|≤N

(e((ρa+n)Tηv · x)− 1)ρ−aw + (e((ρn)Tηv · x)− 1)w


)

= c

( ∑
a∈Zr|a|>N ,|a+n|≤N

−
∑
a∈Zr|a|≤N ,|a+n|>N

)
(e((ρa+n)Tηv · x)− 1)ρ−aw

+ ((e(ηv · x)− 1)ρnw
 − (e((ρn)T ηv · x)− 1)w
). (3.33)

Because n ∈ �, the summations
∑

a∈Zr|a|>N ,|a+n|≤N
and

∑
a∈Zr|a|≤N ,|a+n|>N

each has

O(Nr−1) terms. Since |n| = 1 for all n ∈ �, in all the terms in both summations,
|a| ≤ N + 1 and |a + n| ≤ N + 1. For each of these terms, the derivative is bounded by

‖D(e((ρa+n)Tηv · x)− 1)ρ−aw)‖C1

≤ |(ρa+n)Tηv| · |ρ−aw|
� Q

ε
(1 + ‖ρ‖|a+n|ε) � Q

ε
(1 + ‖ρ‖N+1ε) � Q

ε
(1 + ‖ρ‖Nε) (3.34)

thanks to equations (3.10), (3.12), and (3.30). As w
 ∈ W , |ρnw
| � |w
| by
equation (3.10), and the derivative of ((e(ηv · x)− 1)ρnw
 − (e((ρn)T ηv · x)− 1)w
) is
bounded by

‖D((e(ηv · x)− 1)ρnw
 − (e((ρn)T ηv · x)− 1)w
)‖C1

≤ |ηv| · |ρnw
| + |(ρn)Tηv| · |w
|
� Q

ε
· |w
| + Q

ε
(1 + ‖ρ‖|n|ε) · |w
| � Q

ε
(1 + ‖ρ‖Nε)|w
| (3.35)

� Q

ε
(1 + ‖ρ‖Nε) · ε

Q

(
1
N

+ ε

)
= (1 + ‖ρ‖Nε)

(
1
N

+ ε

)
thanks to equations (3.12) and (3.10).

Combining the above inequalities yields:

‖gn‖C1 � ‖gn‖C0 + cNr−1Q

ε
(1 + ‖ρ‖Nε)+ (1 + ‖ρ‖Nε)

(
1
N

+ ε

)

� ε

Q
+ 1
N
(1 + ‖ρ‖Nε)+ (1 + ‖ρ‖Nε)

(
1
N

+ ε

)

� (1 + ‖ρ‖Nε)
(

1
N

+ ε

)
. (3.36)

To summarize equations (3.31) and (3.36), we have the following lemma.

LEMMA 3.7. Suppose c, w
, and h are chosen as above. Then ‖h‖C1 � 1 + ‖ρ‖Nε and
‖gn‖C1 � (1 + ‖ρ‖Nε)(1/N + ε) for all n ∈ �.

Proof of Proposition 2.4. The proposition follows directly from Lemmas 3.4, 3.5, 3.6,
and 3.7 after choosing N and ε appropriately. Indeed, with C > 1 denoting the largest
among the implicit constants from Lemmas 3.6 and 3.7, choose ε sufficiently small
such that N := �log‖ρ‖(1/ε)� > 4C/δ and C · (ε/Q) < δ. Then 1 + ‖ρ‖Nε < 2 and

https://doi.org/10.1017/etds.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.18


22 F. R. Hertz and Z. Wang

1/N + ε ≤ 2/N ≤ δ/2C. So ‖h‖C0 ≤ C · (ε/Q) < δ; ‖h‖C1 ≤ C(1 + ‖ρ‖Nε) < 2C;
and ‖g‖C1 < C(1 + ‖ρ‖Nε)(1/N + ε) < C · 2 · (δ/2C) = δ.
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