J. Functional Programming 4 (2): 127-206, April 1994 © 1994 Cambridge University Press 127

A paradigmatic object-oriented programming
language :
Design, static typing and semantics’

KIM B. BRUCE
Williams College, Williamstown, MA 01267, USA (Email: kim@cs.williams.edu)

Abstract

To illuminate the fundamental concepts involved in object-oriented programming languages,
we describe the design of TOOPL, a paradigmatic, statically-typed, functional, object-oriented
programming language which supports classes, objects, methods, hidden instance variables,
subtypes and inheritance.

It has proven to be quite difficult to design such a language which has a secure type system.
A particular problem with statically type checking object-oriented languages is designing type-
checking rules which ensure that methods provided in a superclass will continue to be type
correct when inherited in a subclass. The type-checking rules for TOOPL have this feature,
enabling library suppliers to provide only the interfaces of classes with actual executable code,
while still allowing users to safely create subclasses. To achieve greater expressibility while
retaining type-safety, we choose to separate the inheritance and subtyping hierarchy in the
language.

The design of TOOPL has been guided by an analysis of the semantics of the language,
which is given in terms of a model of the F-bounded second-order lambda calculus with fixed
points at both the element and type level. This semantics supports the language design by
providing a means to prove that the type-checking rules are sound, thus guaranteeing that
the language is type-safe.

While the semantics of our language is rather complex, involving fixed points at both
the element and type level, we believe that this reflects the inherent complexity of the basic
features of object-oriented programming languages. Particularly complex features include the
implicit recursion inherent in the use of the keyword, self, to refer to the current object,
and its corresponding type, MyType. The notions of subclass and inheritance introduce the
greatest semantic complexities, whereas the notion of subtype is more straightforward to deal
with. Our semantic investigations lead us to recommend caution in the use of inheritance,
since small changes to method definitions in subclasses can result in major changes to the
meanings of the other methods of the class.

1 Introduction

Over the last few years, object-oriented programming languages and the object-
oriented style of programming have been ‘hot’ topics in computer science, both

t An extended abstract of this paper appeared in the Proceedings of the 20th ACM Symposium
on the Principles of Programming Languages.

52

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

128 Kim B. Bruce

at the theoretical and applied levels. While theoreticians have struggled to under-
stand clearly the concepts of object-oriented languages, programmers have rushed
ahead to use object-oriented programming languages because of their perceived
advantages. For example, several well-known computer companies (both hardware
and software) are in the midst of or have recently completed rewriting major
system software (including operating systems) and applications in object-oriented
languages. Unfortunately, several of these object-oriented languages have signifi-
cant type-insecurities, compromising the construction of reliable, type-safe computer
programs.

This paper presents the design of a statically-typed object-oriented programming
language, TOOPL (Typed Object-Oriented Programming Language), which includes
the most important notions commonly associated with object-oriented programming
languages. The features supported by this language include:

static typing;

classes;

objects;

methods,

dynamic method-lookup;
hidden instance variables;
subtypes; and
inheritance.

Moreover, we provide keywords which allow the programmer to reference the
object executing a method, self, its type, MyType, and the record of methods of its
superclass, super.

One of the most important features of our language is that we can prove that the
type system is safe. In particular, no program which type checks will ever fail with
an error due to sending a message to an object that it does not understand.

One of the major selling points of object-oriented languages is the support for
reusability. Because of the relative ease of modifying classes by creating subclasses,
it is expected that libraries of classes will become even more important than the
provision of libraries in more traditional imperative languages such as Fortran,
Modula-2, Ada and C.

Because library vendors often wish to retain a competitive advantage, many will
prefer to provide libraries in the form of compiled code only, providing sufficient
interface information (e.g. types and specifications of routines) to allow the user to
make effective use of the library components. Since the original source code for the
library will not be available, it is important that the user has sufficient information
available to predict the behaviour of subclasses derived from library classes.

What is necessary to assure the user that these classes, and the subclasses derived
from them, behave properly? Clearly, objects created from the library classes should
always meet their specifications. In particular, no run-time type errors should occur
as long as messages and their associated parameters meet the given specifications.
Moreover, the specification of subclasses definable via inheritance from a library
class should be derivable from the specifications of the superclass and the new

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 129

code provided to implement the subclass. Another way of putting this is that any
compile-time or run-time errors which arise from a subclass should be explainable
from the library class specification and subclass code. In this paper, we solve a
version of this problem where the specifications are restricted to type information.

While it is possible to write down a variety of type-checking rules for features
of object-oriented programming languages, how can the user be assured that these
type checking rules are sound? That is, if the type checker indicates that a term has
type 7, how can the user be assured that the value produced by the evaluation of
that term will belong to the set of elements of type 1? More specifically, how can the
user be assured that type-incorrect computations will never take place; for example,
that an object will never be sent a message that it does not understand?

The approach taken here is to provide a careful denotational semantics for the
constructs of our language. In particular, the meaning of all terms of the language
will be interpreted in well-understood mathematical models. This will allow us to
prove that the meaning of a term belongs to the set of elements of the type assigned
to it, and in particular, an object will not be sent any messages that it does not
understand.

While some of the constructs of object-oriented programming languages (e.g.
subtypes) can be interpreted in relatively straightforward ways, others (subclasses
and inheritance, in particular) seem to require much more complex semantics. As a
result, most theoretical studies of object-oriented language features have tended to
look at only isolated aspects of the languages, e.g. only subtyping, or inheritance
without.subtyping.

The language TOOPL, presented in this paper, includes all of the most important
features of object-oriented languages. Most of TOOPL’s features should be familiar
to those acquainted with object-oriented languages. One major difference from
most current object-oriented languages is that we have separated the subtyping and
inheritance hierarchies. This was necessary to provide a more expressive language,
while retaining the advantages of safe type checking.

While we have succeeded in presenting relatively straightforward type-checking
rules, the semantics of our language are far from straightforward. As a result, we
have endeavored to keep the rest of the language as simple as possible by leaving
many of the features commonly found in programming languages out of the formal
language definition. Obviously, any usable programming language must contain
such features (and indeed, we use them in examples), but they can be added easily,
with little or no complication to the language.

The most significant restriction in TOOPL is that it is a purely functional language.
Even so, this should not be seen as a severe restriction, since we do provide for
updatable instance variables (the meaning of updating an instance variable in
an object will be to create a new copy of the object, with new values stored
in the instance variable). More recently, with Robert van Gent (van Gent, 1993,
Bruce and van Gent, 1993), we have designed an imperative version of this language
which has a similar type system, and which can also be proved to be type-safe.

The language described here is first-order, providing no direct support for para-
metric polymorphic functions or higher-order types in the language itself. However,

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

130 Kim B. Bruce

the semantics is given in terms of a model for the bounded, higher-order, polymor-
phic lambda calculus. This reflects the fact that object-oriented languages support
what is sometimes called subtype polymorphism.

An alternative to providing the semantics in terms of such a model is sim-
ply to provide a translation into a variant of bounded higher-order lambda cal-
culus, FZ, and then interpret this language in any appropriate model. This re-
ally corresponds to compiling the program in the source language into a tar-
get language consisting of the bounded higher-order lambda calculus, and then
running — or more correctly, interpreting — this program. We prefer working
directly with a model, since it allows us to avoid some of the difficulties in-
volved in the creation of appropriate syntax for a core language which can en-
code the features of object-oriented languages (see (Cardelli, 1992b, Cardelli, 1992a,
Cardelli and Mitchell, 1990, Pierce and Turner, 1993) for various attempts in this
direction.) We have bypassed that step here by going directly to an appropriate
model for the language. Not coincidentally, though, the model we use was originally
designed for the bounded higher-order lambda calculus.

It is an important open problem to find a core language based on a higher-order
typed lambda calculus which allows one to express all of the features (and programs)
which are expressible in TOOPL. Nevertheless, there are several advantages to our
approach of bypassing this problem. One is that our semantics provides a relatively
simple example of what such a core language must encompass. In fact, we hope that
this semantically-based work will provide hints as to the appropriate syntax for an
extension of the lambda calculus which can express all features of object-oriented
languages.

Another possible advantage of our approach is that the language F., which
has been used as the starting point for efforts at finding a core language, ap-
pears to be simultaneously too weak and too strong to serve as a basis for
object-oriented programming languages. It is too weak in that it must be extended
with recursively-defined elements, recursive types, either F-bounded quantification
(Canning et al., 1989) or higher-order functions from types to types, and some sort
of record extension operator in order to express many of the features of object-
oriented languages. An important place where the limitations of F< show up is in its
inability to express polymorphic record updates in the presence of subtyping (see the
discussion in section 6 of Bruce and Longo, 1990). This capability seems necessary
to express updating of instance variables in the presence of inheritance. (See Pierce
and Turner, 1993, for one approach to extending F< to express updates.)

A recent result of Pierce (1992) indicates that F. may be viewed as too strong
(at least in its full strength) to use as a foundation for object-oriented languages.
He has shown that type checking in F< is undecidable. While more recent results
(Castagna and Pierce, 1994) show that it is possible to provide a rather natural (and
minimal) restriction to this language whose type-checking problem is decidable, it
is not yet known whether the extensions needed here cause more problems. Thus, it
seemed wise at this point to take a somewhat more conservative approach. Moreover,
we perform type checking directly in TOOPL, not in higher-order terms into which
it might be translated. In fact, with others (see Bruce et al., 1993), we have recently

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 131

shown that if we modify TOOPL by insisting that the programmer provide a small
amount of extra type information for class expressions, the type checking problem
for TOOPL is decidable. We have decided not to include that extra type information
here since it would only clutter our presentation.

We have chosen not to include parametric polymorphism in the core language to
make it clear that the complexity in both type checking and semantics that arises in
our language comes solely from the first-order features of the language. Moreover,
as discussed in section 7, the addition of polymorphism to the language presented
can be made simply and naturally. This arises from the fact that the language is
interpreted in a model supporting polymorphism.

I undertook to write this paper at this time because of a conviction that the
theoretical programming languages community had finally developed enough tools
to fully understand and explain the most important basic notions in object-oriented
programming languages. A large number of researchers have made important con-
tributions to a number of different aspects of object-oriented languages, all of which
have combined to make this paper possible. Their contributions are acknowledged
in section 9.

It may be useful to explain the process by which the language contained in
this paper came to be designed. My earlier work on describing the semantics
of programming languages, which included only a few of the basic concepts of
object-oriented languages (Bruce and Longo, 1990, Bruce, 1992), convinced me that
designing a language combining all of the common features of OOLs was likely
to be quite difficult and error-prone. Thus I started with the denotational model
of bounded higher-order lambda calculus given in Bruce and Mitchell (1992), and
began to integrate the semantics of subtyping given in Bruce and Longo (1990) with
the semantics of inheritance, as explained in Bruce (1992) (which itself was based on
the work of Mitchell, 1990a, and Cook et al., 1990). While the language described
in this paper does not appear to be closely related to the bounded higher-order
lambda calculus, the semantics are given with respect to a model of this language.

The type checking rules and semantics were checked (and corrected several times)
with respect to the denotational model. Only after the language design stabilized
and the appropriate soundness theorem was proved did I go on to add such features
as references to superclasses, which turned out to be easy, and instance variables,
which turned out to be more difficult. The existence of a mathematical model for
the semantics of the language made it relatively straightforward, though somewhat
tedious, to check the correctness of the type checking rules and formal semantics.
While language designers who do not use formal tools of this nature may be
surprised later by counter-examples to type safety, in this circumstance we actually
prove the type safety of the language.

In section 4.1.3 we discuss — in some detail — the problems with type-checking
object-oriented languages, and some of the compromises made by existing lan-
guages. One of the biggest problems with existing languages is the identifica-
tion of the subtype and subclass hierarchies. This forces language designers to
choose between type-safety and expressibility in statically-typed languages. Lan-
guages like C++, Beta and Eiffel choose to compromise the safety of their type

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

132 Kim B. Bruce

systems to achieve greater expressibility, while others such as Trellis/Owl and Sather
sacrifice expressibility to achieve type-safety. (See 4.1.3 for references for these
languages.) ‘

In TOOPL we have retained both expressibility and type-safety by separating the
subtype and subclass hierarchies. Moreover, this separation leads to opportunities
for even greater flexibility in defining and using classes and objects.

I have attempted to organize this paper to be more understandable to the reader
by introducing features gradually. We begin with a.very brief overview of the main
features of object-oriented programming languages in section 2, and then begin to
describe a succession of increasingly complicated languages. We begin in section
3 with a rudimentary object-oriented language (ROOPL) which includes classes,
objects, methods and dynamic method lookup, but no subtyping, subclasses or
instance variables. In section 4 we add subtyping and subclasses to our language
to get our next approximation, SOOPL (for Simple Object-Oriented Programming
Language), of our desired language. Finally, in section 5, we introduce the full
language TOOPL with instance variables. In each of these sections we begin with an
informal discussion of the new language features, followed by a presentation of the
formal syntax and type-checking rules for the language. We conclude each section
with a description of the denotational semantics of the language and a proof of
the soundness of type checking with respect to the denotational semantics. While
the formal denotational semantics are the most difficult part of each section, it is
hoped that the accompanying informal discussion of semantics will help the reader
through these portions of the paper.

In section 6 we present several sample programs illustrating the use of various
features of the language. The reader may wish to peek ahead to this section to see
some more motivating examples early on. In section 7 we discuss possible additions
to the language, such as polymorphism. In section 8, we summarize our contributions
and raise some concerns about what seems to be the inherent complexity of some of
the basic features of object-oriented programming languages. In particular, we offer
strong cautions on the excessive reliance on inheritance in object-oriented languages.
In section 9 we discuss the relevance of other research in object-oriented languages
to this paper. Finally in section 10 we summarize more recent related results of this
project.

Though we provide definitions below, we presume that the reader has some
familiarity with the concepts of object-oriented programming languages. General
sources of information on object-oriented languages include Meyer (1988), Cox
(1986) and Goldberg and Robson (1983). General background on type-theoretic
issues for object-oriented languages can be found in Danforth and Tomlinson
(1988), Cardelli (1988a) and Cook et al. (1990).

We also assume that the reader is familiar with lambda notation and the standard
notations for representing type checking rules and denotational semantics. (See
Gunter (1992) or Mitchell (1990b), for instance.) It is also helpful for the more
technical sections on semantics to be familiar with the second-order (polymorphic)
bounded lambda calculus and the extension to so-called ‘F-bounded’ polymorphism.
The former language was first introduced by Cardelli and Wegner (1985), while the

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 133

latter was introduced by Canning et al. (1989). However, the non-technical sections
of this paper should be accessible to those without this background.

2 Terminology for object-oriented features

The language described in this paper offers full support for object-oriented features
including objects, classes, methods, instance variables, dynamic method invocation,
subclasses and subtypes. Moreover, we provide mechanisms to allow the programmer
to refer to the current object, its type and the record of methods of its superclass.
These concepts are described briefly below. Later sections of the paper go into more
detail.

Objects consist of a collection of instance variables, representing the state of the
object, and a collection of methods, which are routines for manipulating the object.
When a message is sent to an object, the corresponding method of the object is
executed. Classes are extensible templates for creating objects. In particular, classes
contain initial values for instance variables and the bodies for methods. All objects
generated from the same class share the same methods, but may contain different
values for their instance variables. A subclass may be defined from a class by either
adding to or modifying the methods and instance variables of the original class.
(Some restrictions on the modification of the types of methods and instance variables
in subclasses are necessary to preserve type safety.)

All terms of the language, including both classes and objects, have associated types.
In the language described in this paper, instance variables are not visible outside of
objects. The instance variables in classes are visible, however, since subclasses often
need this information. Since types describe the public interfaces of terms, object
types do not mention the types of instance variables, while class types do.

We say type T is a subtype of U if a value of type T can be used in any context
in which a value of type U is expected. Note that subtyping depends only upon
the types of values, while inheritance depends upon their implementations. We give
examples later that show that when one class inherits from another, the type of
the objects generated by the derived class need not be a subtype of the type of the
objects generated by the original class.

Virtually all object-oriented languages provide programmers with a mechanism
for sending a message to an object from inside one of its own methods. We will use
a bound variable, usually written as self, as a name for the current object. Since our
language is statically typed, it will be necessary to assign a type to all occurrences
of self. While one could simply give self the same type as the object being defined,
complications involving subclasses lead us to find a different solution. The problem
is that when a method whose body involves self is inherited in a subclass, self
will now refer to objects generated from the subclass rather than the original class.
Because the meaning of self will change in subclasses, its type will change as well.
Thus we will use a bound variable, usually written as MyType, as the type of self.

Finally, when new definitions are given to methods in a subclass, it is useful to
be able to refer to the methods of the superclass. For instance, one often wishes to
apply the method body from the superclass and then perform a few more operations

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

134 Kim B. Bruce

before returning from the redefined method. We provide a bound variable, usually
written as super, to refer to the record of methods of the superclass.

We will see later that the inclusion of hidden instance variables will add several
complications to our language. Rather than describing these here, we will put the
description off until later.

3 ROOPL: A Rudimentary Object Oriented Programming Language

In this section, we discuss a very simple initial approximation of our object-oriented
language, called ROOPL (for Rudimentary Object-Oriented Programming Lan-
guage). This first approximation includes objects, methods and classes, but important
features like subclasses, inheritance and subtypes will be postponed to section 4,
and the important concept of instance variable will be deferred until section 5. Our
hope is that an introduction via this greatly simplified language will make it easier
to understand the more complex versions which will be introduced later.

3.1 Classes, objects, methods and dynamic method lookup

In this subsection we provide an informal description of the important concepts of
classes, objects and methods as they are used in ROOPL. The following subsection
provides a formal definition of the language.

Classes provide templates for the creation of objects. A typical class is written in
ROOPL as

class (self :MyType){m; =ey,...,m, = e,}

where the m, are the names of its methods and the ¢; are terms representing the
bodies of the methods. (We explain the role of ‘self : MyType’ in the notation later.)

Classes in ROOPL are not types, but instead represent values. While this is
not common in object-oriented programming languages, it is a natural decision
since classes describe values rather than interfaces. In particular, classes provide the
bodies of methods (and, in the full language, will eventually provide initial values for
instance variables). As with all other terms, classes have types, which specify their
public interfaces; in particular, the types of their methods. In the above example, if
each e; has type 1; then the type of the above class is

ClassType (MyType){m;:t1;...;my Tn}

If ¢ is a class, then
newc

denotes a new object which responds to messages by evaluating the corresponding
method body in the definition of the class c¢. If the term ¢ has type of the form
ClassType(MyType){m,:11;...;m,:1,}, then the type of the object created by newc
will be written as

Object Type(MyType){my:1y;...;mn: Ty}

The essential difference between classes and objects is that objects can be the targets

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 135

of messages, while classes can only be instantiated to objects (through the new
command) or modified via inheritance, as described later.
If 0 is an object which has a method with name m, then we write

o<=m

for the results of evaluating the method m on o (some languages use the notation
o.m instead). This is often described as “sending message m to object 0.” The bound
variable, self, which occurs in the heading of a class definition can be used in the
body of a method to stand for the object to which the corresponding message has
been sent. C++ uses the notation this, while Eiffel uses Current to refer to this object.
For example, if, in the body of a method m, one wishes to send the message m’ to
the current object, one writes self <= m’. The bound type variable, MyType, which
occurs in class definitions and in ClassType and Object Type definitions stands for
the type of the current object (i.e. the type of the corresponding self). Eiffel would
use the notation like Current to refer to the type of the current object.
The following simple example of a class should help clarify these ideas. Let

PointClass = class (self : MyType)
{ x=47,
y =13,
eq = fun(p:MyType)([(p < x) = (self <= x)] &
[(p <= y) = (self <= y))}

where a term of the form fun(x:t)e represents a function with body e which takes
a parameter x of type 7.
The type of PointClass is

PointClassType = ClassType(MyType){x: Num;y: Num;eq:MyType — Bool}

where a type of the form A — B represents the type consisting of functions from A
to B.
Let

MyPoint = new PointClass
Then MyPoint is an object with type

PointType = ObjectType(MyType){x: Num;y: Num;eq: MyType — Bool}.

In particular, MyPoint <= eq is a function with type PointType — Bool. That is, it
takes an argument whose type is the same as that of MyPoint (namely PointType),
returning either true or false depending on whether its x and y components are
equal to those of MyPoint. Note that when a message is sent to an object, each
occurrence of the bound variable MyType in the type of the method is replaced by
the actual type of the object to which the message is sent.

At this point the reader may wonder why we didn’t just write PointType in place
of MyType in the type of eq in Point Type. One reason is that we would like to give
the type of eq without having to give a name to the entire object type. However,
a more important reason is that we will be modifying classes by inheritance. When
we do so, the meaning of MyType will depend on whatever modifications we have

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

136 Kim B. Bruce

made to the type. It will turn out to be best to think of Object Type(MyType) as a
kind of fixed point operator over MyType. Thus MyType (along with self) will be
treated as a bound variable in class and type definitions.

As a consequence of our definitions, there may be many classes with the same
class type, and objects of a particular object type may have been generated by
several different classes (though all of the generating classes must have had the same
class type). Because most object-oriented programming languages identify classes
with types, it is not possible to have objects of the same type generated by distinct
classes, even though this is very natural. Later, for instance, when we introduce
instance variables, we will see that we can have objects of type Point which are
generated by classes using both Cartesian and polar representations of points.

Suppose classes ¢ and ¢’ both generate objects of the same type t. If an object o of
type t is sent the message m, how do we determine whether the method m from ¢ or
from ¢’ is invoked? The answer to this question is at the heart of the object-oriented
style of programming. The key is that each object keeps track of its own methods.
That is, if 0 was generated from class ¢, then 0 <= m will result in the execution of
the body of the method m in ¢, while if 0 was generated from ¢/, it will execute the
body of m from ¢’. The introduction of subtypes in section 4 makes this dynamic
method lookup (sometimes called dynamic method invocation) even more powerful.

Because we have not yet introduced instance variables, all objects generated from
the same class are identical. Of course, we may define parameterized classes for
added flexibility. For example, C: Num — Num — PointClassType could be defined
so that new (C(a)(b)) results in an object whose x and y components are a and b.
In Section 5 we will add updatable instance variables to provide a more realistic
language.

We start with this very simple language because it allows us to present a fairly
straightforward set of type checking rules and semantics in the next section to get
the reader used to our notation. Both type checking rules and semantics become
gradually more complex as we add subtyping, subclasses and instance variables.

3.2 Syntax and type checking for ROOPL

In this section, we provide a formal definition of the language ROOPL introduced
in the previous section. The definition includes the syntax of types and terms, and
the formal type checking rules. In the next section, we present the formal semantics
of ROOPL. The definitions in these sections should be understood as preliminary,
as we will replace them by more complex type checking rules and semantics when
we introduce more features into the language.

3.2.1 Type and term expressions
We begin with the formal definition of the types of our language.

Definition 3.1
Let 77 be an infinite collection of type variables, .# be an infinite collection of
labels, and €77 be a collection of type constants which includes at least the type

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 137

constants Bool and Num. The type expressions with respect to ¥ 77 and €77 are
defined by the following production:

tii=c|tlt=7 | {mets. . meital |
ObjectType(MyType)t | ClassType(MyType)t
In the above grammar, ¢ € 477 and t € ¥ TP. Moreover, the 7's appearing
in ObjectType and ClassType definitions must be record types (ie. of the form
{my:ty;...imyiTa})

As mentioned earlier, types of the form ¢ — 1 denote functions from ¢ to t.
Also, as described earlier, the bound variable MyType occurring in the method types
of object and class types stands for the type of the object which is executing the
method. We will consider two type expressions to be the same if they are the same
up to renaming of bound variables and reordering of record components.

The terms of ROOPL include the usual programming language constructs as
well as the object-oriented features that were described in the previous section. The
following context-free grammar defines the pre-terms of the language. A pre-term
will be considered a term only if it can be type checked with respect to a given
assignment of types to free variables.

Definition 3.2
The pre-terms of ROOPL are given by the following production:

M ::= x|if Bthen Melse N| funv:e)M | M N| M =N | Rm,|
{my = M,,...,m, = M,;}| class(self :MyType)R | new c |0 <= m

In the above grammar, B, M, N, R, M;, ¢ and o all represent pre-terms. M, N,
and the M; are intended to suggest general pre-terms, B a Boolean expression, R a
record, ¢ a class and o an object. The m; are labels, while o is a type.

3.2.2 Type checking rules

The type-checking rules of the language are given with respect to a kind of environ-
ment which indicates the types of free variables which may occur in terms.

Definition 3.3

A syntactic type assignment, E, is a finite set of the form {x:7y,..,x,:7,}, where
each 7; is a type expression, and in which no variable x; appears more than once in
E. We write E(x)=tif x:1 € E.

A formula of the form E F M:q, for E a syntactic type assignment, M a term of
our language, and ¢ a type, is said to be a type assignment. Its intuitive meaning is
that M has type ¢ under the type assignment, E. The axioms and rules for deriving
type assignments are given in Fig, 1. A rule with name Rname will be written in the
form

Rname 4.
B...

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

138 Kim B. Bruce

Var Eu{x:t}F x:t
Cond EFB:Bool, EFM:t, EFN:t
EVlif Bthen M else N:t
Abs Eu{vie}+M:1
EF fun(vie)M:a— 1
Appl Er-rM.0 -1, EFN:c
bp EFMN:t
E EF M:Num, E+ N:Num
4 E+ M = N:Bool
Record EFM,:t, forall1<i<n
EF{m =M,...,omy=M,}:{m:t;...;m:7,}
. EFR:{mi:ty;...mg 1.}
Proj EFRmyt, forall I<i<n
Class E U {self : Object Type(MyType)t} - (R: 1)[Object Type(MyType)t /MyType]
E F class(self : MyType)R : ClassType(MyType)t
Object Etec: Class.Type(MyType)r
E * new c:ObjectType(MyType)t
Message E - 0:0bject Type(MyType){my:ty;...my 14}

EF o <= m;:1,[Object Type(MyType){m; :11;...my: 1.} /MyType]

Fig. 1. Type assignment axioms and rules for ROOPL

where A ... is the hypothesis and B... is the conclusion of the rule. We say that M
is a term of ROOPL with respect to syntactic type assignment E if there exists a
type T such that E- M: 1.

Most of the type checking rules for ROOPL should be familiar to those who have
worked with the typed lambda calculus. For example, the rule Abs indicates that to
show a term of the form fun(v:o)M has type ¢ — 1, it is sufficient to show that
the body M has type t under the extra assumption that the formal parameter v has
type 6. We describe the intuition behind the type-checking rules for object-oriented
terms here.

The rule Object formalizes the fact indicated earlier that when new is applied
to a class, ¢, of type ClassType(MyType)z, it results in an object with type
Object Type(MyType)t.

Because MyType represents the type of self, a class whose intended type is
ClassType(MyType)r should be type checked under the assumption that self has
type Object Type(MyType)t, the type of objects generated from that class. This is

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 139

exactly the content of rule Class. Note that the notation M[u/t], which occurs in
this typing rule, denotes the term obtained from M by replacing all free occurrences
of tin M by u.

Finally, the rule Message just says that the type of a message-passing expression
is the type of the method, with MyType replaced by the type of the object. This
corresponds to the intuition that the meaning of MyType is to be the type of the
receiving object.

We present these relatively straightforward rules here to make it easier for the
reader to understand the somewhat more complex rules that will be necessary when
we add inheritance to the language.

3.3 Semantics

While we present the semantics of ROOPL using a formal denotational model, we
will also discuss informally the meanings of terms. The reader who is not familiar
with formal denotational semantics may skim the formal definitions and go on to
the intuitive discussions of the meanings of terms. However, we urge readers to
make the effort to understand this section as it will provide a deeper understanding
of the constructs introduced so far.

The semantics of terms of ROOPL are given with respect to a model, &, of
the F-bounded second-order polymorphic lambda calculus with recursive types
and elements. This model contains denotations of functions which take types as
parameters as well as recursively-defined types and terms. The need to support these
features will be seen in the formal description of the semantics of terms of ROOPL.
The reason for including models of ‘F-boundedness’ will not be apparent until after
we have introduced subtyping.

It can be shown that the existence of such a model is sufficient to show that all
typed expressions of ROOPL have interpretations in 7. If & is the interpretation or
meaning of a type expression, o, then .2/¢ denotes the set of elements of that type. If
¢ € €7P then &7, denotes the interpretation of ¢ in 7. For simplicity, we will assume
that &/°~% = o/° — o/* and that &5 = {true, false, 1}. It is straightforward to
replace this by the more complex (but more flexible) definition given in Bruce et al.
(1990) and Bruce and Longo (1990) in case these two assumptions do not hold.

In the following, [],cs Ti denotes the set of all functions, f, with domain, S, such
that forallie §, f(i) e T..

The meanings of types are given with respect to a type environment, p, which
maps type variables to types in the model, o/. We write [[t]p for the meaning of
7 with respect to environment p. The expression p[£/t] denotes the environment
which is identical to p except that (p[£/¢])(t) = £. The definition of the semantics of
types is given in Fig. 2.

The meanings of types are sometimes better understood in conjunction with the
meanings of terms of that type. Nevertheless, we discuss the meanings of types first,
with the interpretations of terms following. The reader should feel free to go back
and forth between terms and their corresponding types to gain the most complete
understanding of their meanings.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

140 Kim B. Bruce

[clp = . for c € €7>.

[tDp = p(¢) for t € ¥ 7P,

4 — Blp = [Allp — [Blp.

[{mi: i, ma 1300 = [ctmy,my [1P-

[Object Type(MyType)tlp = FI1X(A&.[]p[E/MyType]).

[ClassType(MyType)tlp = ¢ — [cllpll/MyTypel,
where & = [[ObjectType(MyType)1]p.

Fig. 2. Semantics of type expressions in ROOPL

The meanings of most non-object-oriented types should be familiar. Records are
interpreted as functions with domain the set of labels for the record fields. These
functions should take each label of the record to an element of the meaning of the
associated type for that label.

Object types are defined as fixed points. Recall that if F: T — T, then FIX(F)
is an element ¢F such that F(tr) = tp. By the semantic definition given above,
ObjectType(MyType)t is interpreted as a recursively-defined record type, 7, in which
every occurrence of MyType is replaced by ObjectType(MyType)t. Another way of
writing this is

[ObjectType(MyType)t]lp = [lp[[Object Type(MyType)t]p/MyType]

This corresponds to our intuition that MyType stands for the object type itself.

Class types are the most difficult to make sense of at this point, though the
meaning should come clearer when we discuss the interpretation of class terms.
Briefly, classes are interpreted as functions which take a parameter which will
provide the interpretation for self and return the record of corresponding methods.
Thus the meaning of type ClassType(MyType)t will be a function type with domain
[Object Type(MyType):lp and range [t p[[Object Type(MyType)t]p/MyType].

Of course, by the above, we can rewrite the range as [Object Type(MyType)tl p.
We write the range in the longer, more awkward form because our more complex
definition when we add inheritance is most easily seen as a modification of this
form. Understanding the meaning of classes as functions with both domain and
range [Object Type(MyType)t]p is also useful, since objects will be formed as fixed
points of classes, and we need the domain and range to be the same so as to have
fixed points.

The definition of the meaning of terms is given with respect to semantic environ-
ments which assign types to type variables as well as values to term variables.

Definition 3.4

Let p be a semantic environment mapping type variables to types and regular
variables to elements of .«/. We say p is consistent with respect to E, if for all x in
the domain of E, if E(x) = ¢ then p(x) € [o]p.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 141

[E F x:t]p = p(x).

[E F M:1]p, if [E F B:Bool]p,
[E F if B then M else N:tllp =< [E+ N:tlp, if not [[E + B:Bool]p,
1, otherwise.

[E F fun(v:o) M:6 — t]lp = id € "W [E - M:<]p[d/v).
[EFMN:tp=([E+ M:0 — tJp)}([E F N:c]p)
1, if[E-rM:tlp=1lor[EFN:t]p=1,
[E F M = N:Boolllp = < true, if [EFM:tlp=[EF N:tllp# L,
false, otherwise.
[EF{m =Mi,...omy=M}:{m:1y;...;me:ta}lp =1,
where dom(f) = {my,...,m,} and for 1 <i<n,f(m)=[E+ Mi:t]p.
[EFRm:t]p=([EtF R:{m:ty;...;mui7a}]p) (my).

[E V+ class(self : MyType)e: ClassType(MyType)tllp =

Ao € o¢.[[E U {self : MyType} i~ e: 1] p[é/MyType,o/self],
where & = [ObjectType(MyType)t] p.
[E + new c:ObjectType(MyType)tllp = Fix([[E - c: ClassType (MyType)t]p).

[E F o <= m:z[y/MyTypelllp = ([E F o:y]p) (m).

Fig. 3. Semantics of terms in ROOPL

Each clause of the definition of the semantics of terms in Fig. 3 corresponds to a
type assignment axiom or rule from the previous subsection. We write [E F e:t]lp
for the meaning of e with respect to environment p.

The meanings of most terms should be familiar to those with previous exposure
to denotational semantics. We note again that the meanings of records are functions
and that field extraction corresponds to applying the function representing the
meaning of the record to the appropriate label.

As suggested above in the definition of the meaning of class types, the meaning of
a class term is a function which takes a parameter of its corresponding object type.
This parameter is used as the meaning of self in the interpretation of the methods
of the class.

The meaning of new c¢ is obtained by taking a fixed point of this function.
Another way of putting this is that if 0 = [[E + new c: Object Type(MyType)t]lp, then
o = ([E F c:ClassType (MyType)t]p)(0). To understand this in more detail, suppose
¢ =g class(self : MyType)e: ClassType(MyType)t. By the semantics of classes,

[E V class(self : MyType)e: ClassType(MyType)tlp =
40 € o.[[E U {self :MyType} +- e:t]lp[¢ /MyType, o/self]

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

142 Kim B. Bruce

where & = [Object Type(MyType)z]p. Thus

0 =g [E - new c:0bjectType(MyType)t]p
= ([E + c:ClassType (MyType)z]p)(o)
= [E U {self : MyType} \- e:t]p[¢/MyType, o/self]

Thus the meaning of new ¢ is the meaning of its record of methods where MyType
is interpreted as the corresponding object type, and self is interpreted as the object
as a whole. This is exactly the intuition that we were attempting to model.

In this simple language, the meaning of message passing is just field extraction
from the recursively-defined record corresponding to the meaning of the object. The
addition of inheritance and subtypes will not have much effect on the meaning of
message passing, but the inclusion of instance variables will make message passing
significantly more complex.

It is relatively straightforward to show by induction that if E - e:7 and p is
consistent with E then [[E - e: t]lp € «I710. A similar theorem will be proved in the
next section about the language SOOPL.

4 SOOPL: Adding subtypes and inheritance to ROOPL

In this section, we introduce the more complex notions of subtype, subclass and
inheritance, which will be added to our language. We draw careful distinction
between the notions of subclass and subtype (as suggested in Cook et al., 1990).
While this distinction may at first seem to add extra complexity to the language,
the confusion between these concepts in most existing object-oriented languages has
resulted either in unnecessary restrictions on expressibility or to type insecurities in
the languages. The notion of subtype has only to do with the interface (type) of
objects, while that of subclass has to do with the implementation of their defining
classes.

4.1 Informal introduction to subtypes and inheritance

Before providing a formal definition for our next language, SOOPL, and its se-
mantics, we provide an intuitive description of subtyping and inheritance. We also
provide a brief description of the difficulties in type checking which arise from the
addition of these features.

4.1.1 Subtypes

The intuition behind subtypes is that one type is a subtype of another if the first
is a specialization or refinement of the second. Operationally, this means that any
object of the first type can be used in any context which expects an object of the
second type. In terms of type-checking, this implies that any value of the first type
can be treated as a value of the second type.

This is made explicit, for example, in Bruce and Longo (1990) and Breazu-Tannen
et al. (1991) by requiring the existence of a well-behaved ‘coercion’ function which

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 143

takes values of the first type to the second. Thus we will treat the relation ‘o is a
subtype of 7’ (abbreviated as ¢ < t) as asserting the existence of a well-behaved
coercion function from elements of type ¢ to elements of type 1. It will not be
necessary to define what a ‘well-behaved coercion function’ is here, as we will simply
use this notion to argue for .the intuitive correctness of our subtyping rules. See
Bruce and Longo (1990) or Breazu-Tannen et al. (1991) for details on these coercion
functions.

The subtype relation between types is reflexive and transitive. If ¢ is a subtype
of 1, we say that 7 is a supertype of ¢. A language may have non-trivial subtype
relations defined between base types. For instance, Integer may be a subtype of
Float.

For record and function types, rules for determining subtypes are relatively
straightforward. For objects, the rules are more complex due to the implicit mutual
recursion in the definition of objects which arises through the use of self.

Record types present the most interesting examples of subtypes. A record type
can be a specialization of another record type in two ways. One way is if the fields
of the first are a superset of those of the second. For example, suppose

PersonType = {Name: string ; Address : string }

and
StudentType = {Name : string ; Address : string ; YearOfGrad : integer }

Clearly, any record of type StudentType can be understood as a subtype of Per-
sonType by simply ignoring the fact that it has a field, YearOfGrad. More formally,
a coercion function between the two types takes a value of type StudentType and
simply returns the record consisting of the Name and Address fields of the original
value. Thus StudentType < PersonType.

One record type can also be a subtype of another record type if the types of one
or more of the second type’s components are replaced by subtypes in the first record
type. For instance, if

FriendType = {Who: PersonType; HowLong : integer}

and
StudentFriendType = {W ho: Student Type; HowLong : integer},

we can define a coercion function from StudentFriendType to FriendType which
coerces the Who component from type StudentType to type PersonType, leaving
the HowLong component unchanged. Thus StudentFriendType < Friend T ype.

These two mechanisms for constructing subtypes of records can be combined into
one rule which can be found in section 4.2.1.

The subtyping rules for function spaces are a bit more complex. If ¢ and t are
types, let ¢ — © denote the type of functions from type ¢ to type t. If T < 7, then
¢ — 1 < ¢ — 7’ since any function of type ¢ — 1 can be coerced to be a function
of type ¢ — 7’ by applying the function to a value of type ¢ and then coercing the
result (which is of type 7) to a value of type 7. More explicitly, if C;py:1 > 7' is a
coercion function from 7 to 7/, define Cy—rgrr(f) = Cov o f.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

144 Kim B. Bruce

Modifying the domain of a function is a bit trickier. If ¢’ < 6 theno - 1< ¢’ > 1,
the reverse of what might be expected. This can be seen as follows. Suppose f is
a function of type ¢ — 1. Then f can be coerced to be a function from ¢’ to 7 as
follows. To apply f to a value of type ¢’, first coerce the value of type ¢’ to a value
of type o, and then apply f. Using the same notation as above, if Cy,:0' > 0 15 a
coercion function from ¢’ to g, define Cyyro:(f) = f 0 Coryg.

Adopting terminology from category theory, we say that subtyping for function
spaces is covariant in the range (i.e. increasing the range type results in increasing
the resulting function space type), but contravariant in the domain (i.e. increasing
the domain type results in decreasing the resulting function space type).

In many ways, an object is like a record. For instance, the methods of an object
can be accessed in a way similar to the fields of a record. Thus we might expect that
ObjectType(MyType)s < Object Type(MyType)r if ¢ < 1. Unfortunately, however,
this straightforward rule does not hold for object types. The reason that this rule
fails has to do with the recursion implicit in the definitions of self and its type,
MyType.

We use the point example from section 3.1 to illustrate the problem. Let

PointType = Object Type(MyType){x: Num;y: Num;eq: MyType — Bool}.
and

ColorPointType = Object Type(MyType)
{x: Num;y: Num;color:ColorType;eq: MyType — Bool}.

The only difference between the two types is that ColorPointType has an extra
color method not found in Point Type. The types of the shared x, y, and eq methods
are exactly the same. If these were records (ie. if the ObjectType(MyType) were
removed from the beginning of the type definition) they would certainly be subtypes.
However, we can show easily that ColorPointType is not a subtype of PointType
by writing a piece of code that works correctly for points but not color points.

The function, PointFunc, is defined as:

PointFunc = fun(p: PointType) (p <= eq(new PointClass)).

PointFunc is a function of type PointType — Bool which determines whether its
parameter is equal to a new point object created from PointClass. However, if we
try to use a parameter of type ColorPointType in a call of PointFunc we get a type
error.

The problem is that if cp is an object expression of type ColorPointType, the
expression cp <= eq has type ColorPointType — Bool. Yet in the body of PointFunc,
cp < eq is applied to new PointClass which has type PointType, rather than
ColorPointType. This type error corresponds to problems that one might expect
in the body of the eq method of ColorPointType. For instance, if cp’ is the
formal parameter of the method eq in a color point, then a test of the form
(self < color) = (cp’ <= color) is likely to occur in the body of that method.
Needless to say, if the actual parameter corresponding to cp’ is only a point then
cp’ < color will be undefined.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 145

The source of the problem is the use of MyType in the definition of the
type of objects. Let p be an object of type PointType and cp be an object of
type ColorPointType. Though the eq methods of PointType and ColorPointType
are both MyType — Bool, the types of p < eq and cp < eq are, respectively,
PointType — Bool and ColorPointType — Bool. We note that while this somewhat
counterintuitive behaviour is annoying in the case of subtyping, it is essential to the
use of inheritance, as we shall see in a later section.

How, then, can we show that one object type is a subtype of another? The
correct solution to this problem is reflected in the recursive nature of MyType.
Suppose ©(MyType) and t'(MyType) are record types, where we have indicated
with our notation that each of t and 7’ involve the type variable MyType. Let
o6 = ObjectType(MyType)t(MyType) and ¢’ = Object Type(MyType)t' (MyType).
Then ¢ < ¢’ if we can show t(MyType) < tv'(MyType') under the assumption that
MyType < MyType'. This is similar to the way that one shows that two mutually
recursive functions satisfy their specifications. That is, show the first is correct under
the assumption that the second is correct, and vice versa. The solution presented here
is based on the criteria presented in Amadio and Cardelli (1990) for determining
when two recursively defined types are subtypes.

As indicated above, the place where our example with points breaks down is
with the eq method. If MyType < MyType' then MyType — Bool need not be
a subtype of MyType’ — Bool. (In fact, the reverse is true: MyType’ — Bool <
MyType — Bool, since MyType occurs in a contravariant position in the type of
eq.) As a result, if all we know is that MyType < MyType', we cannot show that
{x:Num;y: Num;color: Color Type;eq:MyType — Bool} is a subtype of the type
{x:Num;y:Num;eq:MyType' — Bool}. Thus ColorPointType cannot be shown to
be a subtype of PointType. Note that if the eq method in each of PointType and
ColorPoint Type were dropped or replaced by a method such as mv: Num x Num —
MyType, in which MyType occurs only in a covariant position, then it would follow
that ColorPointType < PointType.

A formal statement of the subtyping rules, including that for object types, will be
given in section 4.2.1.

The difficulty in finding a correct subtyping rule for object types has resulted in
the creation of statically-typed object-oriented languages which are not type safe.
We discuss problems with type-checking rules in some of these languages in more
detail after the next section.

4.1.2 Inheritance and subclasses

While the definition of subtype depends upon the types or interfaces of objects
(and hence the types of their associated methods), inheritance is based on the
implementations of methods, as specified in the bodies of their generating classes.
In particular, inheritance is used to construct a class by making modifications to
a previously defined class. Subclasses of a class are constructed by adding new
methods or modifying old methods while inheriting all other methods from the

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

146 Kim B. Bruce

first class (superclass) which are not modified. (We remind the reader that we are
ignoring instance variables for now.) In C++, subclasses are called derived types.

Classes can be modified in two ways. First, a class may be updated by modifying
the value of a method. If ¢ is a class with method m;, we write

update c by (self : MyType){m; = M;}

for the new class whose m; component is replaced by M/, but all of whose other
methods are as given in c. The type of M, must be a subtype of the type of the
body of m; in c.

For example, using PointClass defined in section 3.1, we can define

DifferentPointClass = update PointClass by (self : MyType){x = 17}

Objects generated from this new class will be of the same type as those gener-
ated from PointClass, but will have an x value of 17 rather than 47. We write
update c by (self : MyType){m), = Mj,...,m, = M,} as an abbreviation for the ob-
vious series of updates of single methods. Because of the advantages to allowing
several methods to be updated at once (e.g. in updating mutually-recursive methods),
a more practical version of this language would allow the simultaneous updating of
multiple methods. We have chosen to modify just one at a time here for notational
convenience.

Second, a class may be extended by adding a new method. If ¢ is a class which
does not contain a method m’ then we write

extend ¢ with (self : MyType){m = M'}

for the new class obtained from ¢ which contains all of the methods of ¢ plus a new
method m’ with body M’. Again, we can write

extend c with (self : MyType){m) = My,...,m, = M,}

as an abbreviation for the obvious series of extensions formed by adding methods
one at a time. As before the restriction on adding only one method at a time would
be dropped in a more practical version of this language.

As an example of a class extension, we define

ColorPointClass = extend PointClass with (self : MyType){color = red}

where PointClass was defined in section 3.1.

We say that a class ¢’ is an immediate subclass of a class ¢ if ¢’ is of the form
update ¢ by (self : MyType)R or extend ¢ with (self : MyType)R. A class ¢’ is a subclass
of cif ¢ = ¢, ¢ is an immediate subclass of ¢, or ¢’ is a subclass of an immediate
subclass of ¢. (In other words, the ‘subclass’ relation is the reflexive and transitive
closure of the ‘immediate subclass’ relation.) If ¢ is a subclass of ¢ then we say that
¢ is a superclass of ¢’ (similarly for the definition of immediate superclass).

To type check classes formed by updating or extending classes, it will be useful
to define a relation between types which will be satisfied by the types of objects
generated by classes formed by updating or extending a previously given class. If
ObjectType(MyType)o and ObjectType(MyType)t are both object types then we

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 147

write
Object Type(MyType)6 Zmemn ObjectType(MyType)t iff ¢ <7

i€. Ty <men T> iff Ty can be obtained from T> by adding new methods or by
replacing the types of methods in T, by subtypes. Thus the intuitively plausible
subtyping rule which failed for object types has been resurrected here to generate
the <,...; relation between types. In particular, note that if ¢’ is a subclass of ¢ then
their corresponding object types are in the <, relation.

We are now ready to reexamine our counter-example to subtyping in the last
section. Recall that in that section we defined:

PointType = Object Type(MyType){x: Num;y: Num;eq: MyType — Bool}
and

ColorPoint Type = Object Type(MyType)
{x: Num;y: Num;color:ColorType;eq:MyType — Bool}

Notice that ColorPointType is the type of objects generated by the class ColorPoint-
Class defined above. We saw in the last section that ColorPointType is not a subtype
of PointType. Clearly, however, ColorPointType <., PointType.

This example should help clarify the difference between subtypes and inheritance.
Subtyping has only to do with the interfaces of objects, and reflects the usability of
objects of one type in a context which expects the other. Inheritance, on the other
hand, is related to the modification of a class to either update old methods or add
new ones. All methods from the superclass which are not mentioned in the update
or extend term are inherited from the superclass, and may be used as though they
were defined directly in the subclass.

Our ColorPointClass example shows that the creation of a subclass need not result
in the corresponding object types being subtypes. The ordering < is related to
subtyping, but is only concerned with the subtyping relation on the types of methods
in object types. The example above results in object types o and 7 such that ¢ <jn T
but such that ¢ < 7 fails.

4.1.3 Difficulties in type checking object-oriented languages

As motivation for the discussion of the type-checking rules and semantics for the
language with subtypes, subclasses and inheritance which will be given beginning in
section 4.2.1, we next discuss problems which arise in attempting to design type-safe
statically-typed object-oriented programming languages. We begin with a discus-
sion of problems with some existing statically-typed object-oriented programming
languages.

The advantages of statically-typed languages are well-known. They include earlier
detection of errors and the provision of better information to allow compiler op-
timizations. However, early object-oriented languages either had gaping type holes
(Simula-67), or provided only very weak dynamic typing (Smalltalk). Some lan-
guages, such as C++ (Stroustrop, 1986), make no pretense to being type safe. The
designers of the language Beta originally seemed to be interested in designing a

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

148 Kim B. Bruce

type-safe language, but have recently argued that they don’t care if the language is
completely type safe (Madsen et al., 1990). In fact, we argue below that fundamental
decisions (especially the decision to identify subclasses and subtypes) made by some
of the language designers would make it extremely difficult to create a language as
expressive as desired, and still have a safe type system.

To make this discussion more concrete, we discuss three of the more successful
attempts to define statically-typed object-oriented programming languages, Eiffel
(Meyer, 1988; 1992), Sather (Omohundro, 1991), which is a variant of Eiffel, and
Trellis/Owl (Schaffert et al., 1986). We note that each of these languages, as well as
those languages mentioned earlier, identify classes with types. As a result, in the
discussion below of Eiffel we make the same identification.

Eiffel originally had rather serious holes in the typing system, but these are
repaired, though in a way that we consider relatively unsatisfactory, in Eiffel 3.0.
The most important problem is that Eiffel uses the ‘covariant’ rule for parameters in
redefining methods. That is if ¢ is a class with method m, one is allowed to redefine
m in a subclass, ¢/, of ¢ in such a way that the classes of the parameters of m in ¢’ are
subclasses of the classes of the original parameters of m in ¢. Unfortunately, many
examples exist which show this rule is not type-safe. For example, we can rewrite
PointClass and ColorPointClass so that the parameter of the eq method is explicitly
PointType and ColorPointType, respectively, in the two classes. (Of course, since
Eiffel identifies classes and types, the types would really be declared as PointClass
and ColorPointClass.) Our example showing the failure of subtyping in subclasses
breaks the type system of Eiffel 2.0. In fact, the ‘contravariant’ rule for subtyping
functions as given in section 4.1.1 is the type-safe one for parameters, i.e. the types
of the parameters of m in ¢’ should be supertypes (or superclasses in Eiffel) of the
types (classes) of the original parameters in c.

To compensate for this deficiency (and others) in the type system, in version 3.0
of Eiffel an extra level of type checking is performed at link time. This system-wide
type checking essentially performs a data flow analysis of the program to ensure that
only type-safe message sends are performed (see Meyer, 1992, for more details). We
consider this solution unsatisfactory since the addition of a new class to a system
may result in link-time type errors which would not be predictable from looking
at the interface of the previous classes or the code of the new class. In particular,
this system-wide type checking will not be feasible if library vendors only distribute
the interfaces of supplied classes along with the object code. The source code or
equivalent high-level information will be necessary to run this type check.

In spite of these difficulties, Eiffel retains the ‘covariant’ rule for parameters
because of its usefulness. As we have seen in our example of PointClass and
ColorPointClass in the previous section, it is very convenient to extend a class with
an eq method by adding new attributes. Suppose the definition of method eq in class
¢ determines if another object of class c is equal to the current object. The type of
eq is clearly ¢ — Bool. If a subclass ¢’ of ¢ is defined, it is natural to want to redefine
eq so that it now has type ¢’ — Bool. The covariant typing rule for parameters
would allow this redefinition, while the contravariant rule would disallow it. We
accommodate this example in our language by giving the parameter type MyType.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 149

Our MyType corresponds to the use of ‘like Current’ in Eiffel. This example helps
explain why we felt it was extremely important to provide for the type of self in
TOOPL.

The language Sather is derived from Eiffel. One of the most important differences
from Eiffel is that it adopts the contravariant rule for parameters, fixing this type
insecurity. Trellis/Owl was designed independently from Eiffel, but also essentially
adopts the contravariant rule. (Technically, in Trellis/Owl one may not define a
subclass unless it is also a subtype.) As a result, one could not define ¢’ as described
above by inheritance in either Sather or Trellis/Owl. (Of course, one could still define
a class with the same behaviour as ¢’ by just copying all necessary methods from ¢
in the definition of ¢.) Thus, in practical terms, the adoption of the contravariant
parameter typing rule in these languages implies a loss of expressibility relative to
Eiffel.

We have extricated ourselves from this type-safety versus expressiveness trade-off
in our language design by adopting the separation of classes and types suggested
in Cook et al. (1990). This allows us to write down subclasses like ColorPointClass
of PointClass without breaking the type system. The trade-off in this case is that
the corresponding object types are not subtypes. Notice, however, that we have not
chosen to adopt the covariant subtyping rule for function types. We are able to write
down subclasses like ColorPointClass because our definition of <, allows us to
check for type-safety without considering whether the resulting object type (which
results from a fixed point) is itself a subtype.

Moreover, we gain extra expressibility by our use of MyType in specifying the
types of methods. In particular, by the definition of <., the fact that the meaning
of MyType changes in defining subclasses may be disregarded when inheriting or
modifying methods. This flexible use of MyType results in a much more expressive
language, allowing us to define many more subclasses than would otherwise be
possible.

Unfortunately, there are more things that we need to consider to ensure that we
have a type-safe language. Just as we needed to be careful in defining the subtype
relation on objects, we must be careful in type checking methods of a class, since
these methods must remain type-correct when updating or extending the class to
create other classes, i.e. if a class ¢ is type correct, and we define ¢’ by updating or
extending ¢, we want the inherited methods to remain type correct.

There are two alternatives if we want a type-safe language. We can either type
check all inherited methods again when we inherit them, or we can attempt to type
check the methods of a class in such a way that they will remain type correct under
all possible legal updates or extensions. Since we have already committed ourselves
to supporting a language in which the source code for library classes (and hence for
their methods) may not be available, we design our language to support the second
alternative. (There is a third alternative, which is adopted by most object-oriented
languages, which is simply to ignore the issue and hope the user will not write
type-unsafe programs.)

The key to designing type checking rules which guarantee type correctness in all
possible subclasses is the choice as to which assumptions are made about the bound

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

150 Kim B. Bruce

type variable, MyType, in type checking a term of the form class(self : MyType)R.
Suppose we wish to show class(self: MyType)R has type ObjectType(MyType)r.
Before we introduced subtyping and inheritance, we assumed that MyType =
ObjectType(MyType)t, for © the type of R, in type-checking class(self : MyType)R
(see the type-checking rules in section 3.2). However, in the presence of inheritance
we may end up with methods that type check for the original class, but fail to type
check when inherited in subclasses. Recall that one of our goals is to type check
methods only once, when they are originally defined, so that we do not have to type
check them again in every class in which they are inherited.
The following example illustrates the problems that may occur. Let

X Type = Object Type(MyType){x: Num;eq: MyType — Bool;test: Bool}
and let xob be any fixed expression of type X Type. Then define

X Class = class(self : MyType){ x=0;

eq = fun(p:MyType) ((self <= x) = (p < x));
test = ...(self <= eq)(xob)...}

where we indicate only that the body of test includes the subexpression (self <
eq)(xob). If we assume that MyType = X Type then, because self will have type
X Type (and presuming the body of test type checks to have type Bool), X Class will
type check with type

ClassType(MyType){x: Num;eq: MyType — Bool ;test: Bool}

Therefore as expected, objects generated from it would have type X Type, and in
fact we encounter no problems with the use of objects generated from X Class.
However, suppose we modify X Class to create:

TempColoredX Class = extend X Class with(self : MyType){color = red}
and then update the eq method in

ColoredX Class = update PartColoredX Class by(self : MyType)

{eq = fun(p:MyType) ((self < x) = (p <= X))
& ((self <= color) = (p < color))}

which generates objects of type

ColorX Type = Object Type(MyType){x: Num;eq:MyType — Bool;
test: Bool; color: Color Type}

Then the test method which is inherited from XClass is no longer type-correct
in ColoredX Class (actually, it was already type-incorrect in TempColoredX Class).
The problem lies with the subterm, ‘(self < eq)(xob). This was correctly typed in
the original definition, but in ColorXClass, self has type MyType, which will now
correspond to ColorX Type, and thus the type of self < eq is ColorX Type — Bool
rather than X Type — Bool. As xob has type X Type and not ColorX Type, (self <=
eq)(xob) is not well-typed. Moreover, if we try to evaluate the term, we see that it
will crash when it attempts to examine the color field of xob.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 151

One solution to this problem is to explicitly check that all inherited methods are
still correctly typed each time a class is modified. This, however, would require that
all classes defined by inheritance have access to the actual code for all methods of
the classes from which it inherits. (Note that one must not only repeat the type
checking for all methods defined in the immediate superclass, but all the classes
it inherits from, etc.) Aside from being time consuming, this violates our normal
expectations of the kind of information necessary to use external (and perhaps
separately compiled) segments of code in a program.

We avoid these problems by adopting a more conservative type-checking regimen.
Again, the key is our assumption about the relation of MyType to the type of
objects generated by the class when type checking methods of that class. We have
seen that in type checking a term of the form class(self : MyType)R, the assumption
that MyType = Object Type(MyType)r, where 1 is the type of R, leads to possibly
incorrect typing when methods are inherited. On the other extreme, if we make
no assumptions at all about MyType then we will be unable to type check any
term of the form self <= m, since we will know nothing about MyType, the type of
self.

The position taken here is between these extremes. We assume just enough
information about MyType to ensure that methods remain well-typed in all possible
updates and extensions of MyType. If ObjectType(MyType)t' is the type of objects
generated from a subclass ¢’ of a class ¢ and ObjectType(MyType)r is the type of
objects generated from c, then ObjectType(MyType)t <men ObjectType(MyType)t.
As a result, we type check the methods of the class ¢ under the assumption that
MyType <men ObjectType(MyType)r. Under these conditions, the method test of
the X Class example fails to type check, since the parameter of self < eq should be
of type MyType, not X Type. The reader should note the importance of having a
bound variable like MyType to carry out this type checking.

This conservative assumption on the relationship of MyType to the class being
defined may seem to be rather severe, but it appears necessary if we wish to guarantee
that inherited methods remain well-typed.

The rule adopted here is a generalization of Mitchell’s assumption (Mitchell, 1990a)
that methods should type-check assuming only that MyType is some extension of the
intended object type. Since his paper did not deal with subtypes, it was not possible
to replace the type of a method by a subtype there.

On the other hand, notice that, unlike C++ and Object Pascal, we do allow the
types of methods to be changed in subclasses, as long as the new type is a subtype of
the original type of the method. It is easy to create examples in which an inherited
method m breaks when the type of another method m’ called in the body of m,
has its type changed in an undisciplined way. For example, if m’ used to return a
number, but is redefined to return a string, other methods of the superclass which
depended on m' to return a number will now break when inherited in the subclass. If
the new type of m’ is a subtype of the original type, however, then it can be used in
any context which expected a value of the original type. Hence, inherited methods
will continue to type check properly.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

152 Kim B. Bruce

4.1.4 Referring to superclass methods

In the definition of a subclass in object-oriented programming, it is quite common
to refer to methods of the immediate superclass. For instance, if method m is being
redefined in a subclass, it may be desirable to first perform some preliminary actions,
next execute the method body as defined in the superclass, and then perform some
final actions. This sort of computation is typically supported by making available
the methods of the immediate superclass via a keyword super.

We will provide that access in our language via a bound variable (similar in usage
to self), which will usually be designated as super. It is added to the heading of
subclass definitions and denotes a record containing all of the method definitions of
the immediate superclass. Thus if ¢ has type ClassType(MyType){my:t1;...;Mp:7,}
and ¢’ is obtained by updating method m;, for some 1 < i < n, then we write:

¢’ = update c by (self : MyType; super){m; = M|}

where M| may contain occurrences of both self and super, and where super has type
{my:71;...,m,:7,}. Note that because super has a record type rather than an object
type, its methods are invoked by super.m rather than super <= m. The variable super
can also be used in subclasses formed by extension, though it may not be as useful.

A good example of the use of super is in defining a subclass of ColorPointClass.
Recall that ColorPointClass was defined by simply adding a new color field. However,
it also makes sense to change the definition of the eq method so that it also ensures
that the color fields are equal. Therefore, we define,

BetterColorPointClass = update ColorPointClass by (self : MyType ; super)
{eq = fun(p: MyType) super.eq(p) & (p <= color) = (self < color)}

Thus we see that we can combine the effect of the old method with additional
actions to define the new operation.

4.2 Syntax and type-checking rules for SOOPL

Now that we have completed our informal discussion of subtyping, inheritance and
type checking, we are ready to present the formal syntax and type-checking rules for
SOOPL. We begin with a formal definition of our two orderings on object types.

4.2.1 Rules for < and <. for SOOPL

In this section, we provide formal axioms and rules for the orderings < and <em
on type expressions. The syntax for type expressions for SOOPL is exactly the same
as for ROOPL.

As explained in sections 4.1.1 and 4.1.2, < represents the subtype relation between
types, while <., is a pointwise ordering relating types of objects in which the class
of the first object could have been generated by inheritance from the class of the
second.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 153

Refl(<) Cht<1
Var(<) C;t<t;Ckt<t

Cky<o, Clo<1

Trans(<)

Cl—‘y <71
Cre' <o, Chr<?
Fune(<) g
Rec(<) Cho;j<1;, forl<j<k<n
< CH{miay;...;m0r;...;me:0,) < {MiiTy.. . smecw)
0bj(<) C; s <tk <ls/MyType] < 7'[t/MyType]

C + Object Type(MyType)t < Object Type(MyType)t'

In the Obj(<) rule, neither s nor ¢t may occur free in C, 7, or 7.

Fig. 4. Subtype axioms and rules for SOOPL

Definition 4.1

Relations of the form ¢ < t and ¢ <pe 7, Where o and t are type expressions, are
said to be type constraints. If, moreover, t is a type variable then we say ¢ < 7 and
t <meth T are simple type constraints. If, for some 7, t < 1 or t <py T are included
in a sequence C of simple type constraints, then we say t is declared in C. A type
constraint system is defined as follows:

1. The empty sequence, €, is a type constraint system.

2. If C is a type constraint system and ¢ < 7 is a simple type constraint such that
t does not appear in C or 7, then C; t < 7 is a type constraint system.

3. If C is a type constraint system, t is of the form ObjectType(MyType)o, and
t <mern T is @ simple type constraint such that ¢ does not appear in C or 1,
then C; t <,en 7 is a type constraint system.

For example, if ¢ is a type variable, then

C=e¢; t< {x:Num;add: Num — Num};
MyType <pen Object Type(MyType){mv: MyType — t;z: Num}

is a type constraint system. (We will usually delete the leading €.)

Notice that in the above example, the MyType which occurs to the left of the last
< is different from the two occurrences to the right of the <. They differ because
the second occurrence of MyType represents a new bound variable which includes
the last MyType within its scope. We will take advantage of these distinctions to
simplify some of the statements of type-checking rules later in this section.

We define subtyping or type constraint derivations of the form CFag < 1, for C a
type constraint system, and g,7 type expressions, via the axioms and rules given in
Fig. 4.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

154 Kim B. Bruce

Var(smelh) C, b <perh T; Cht <meth T

Refl(Smern) C + Object Type(MyType)t <pen Object Type(MyType)t

C 9 <mewn ObjectType(MyType)t, Ctt1 <7
C 9 <pew Object Type(MyType)t

Trans(<mem)
In the Trans(<) rule, MyType may not occur free in C.

Fig. 5. Inheritance relation axioms and rules for SOOPL

As stated earlier, in record, ObjectType, and ClassType types, the ordering of the
component (or method) names, the m;’s, are not important. For instance, v’ < 7, for
record types t© and 7/, if all of the labels of 7’ are included in those in those of t,
and the types of corresponding labels are in the subtype relation.

The subtyping rules presented here reflect our discussion in Section 4.1.1. In
particular, subtyping for function spaces, Func('<), is covariant in the range and
contravariant in the domain. Rule Rec(<) states that subtypes of records can be
formed either by adding extra fields to the record or replacing types of fields by
subtypes. As discussed in section 4.1.1, the obvious rule for subtyping objects fails,
and we are forced to use the more complex rule Obj(<), though the more intuitive
rule turns out to be valid for <., below.

Only two axioms and one rule are applicable for the case of the ordering <pep.
They are given in Fig. 5. The two axioms are rather trivial. The Trans(<men) rule,
which provides a weak form of transitivity, provides the connection between the
subtyping and inheritance relations. The following rule, which can be derived from
Trans(<memn) and Refl(<pew), illustrates this connection:

Crig?
C + ObjectType(MyType)t <mewn ObjectType(MyType)t'

Essentially it says that if one (record) type is a subtype of another (where
either or both may involve a type variable ‘MyType’) then a class whose record of
method types matches that of the subtype could have inherited from a class whose
method types matches that of the supertype. Again, this is the naive rule that we
rejected for proving objects are subtypes. Instead, this rule reflects the restrictions on
constructing subclasses by extension or modification of methods of the superclass.
An easy induction on the length of proofs shows that if C F ¢ <., ¢ then ¢’ is of
the form Object Type(MyType)t for some 1.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 155

C; MyType <mem ObjectType(MyType)t,E U {self : MyType} - R:t

Cl
ass C,E I class(self : MyType)R: ClassType(MyType)t
. C,E \ c:ClassType(MyType)t
Object -
C,E | new c: ObjectType(MyType)t
C & 9 <meww ObjectType(MyType){m:1}, C,Eto:y
Message
C,EtF o <= m:1[y/MyTypel
C,E t c:ClassType(MyType){m;:t1;...;my:1,), Cl 1) <1y,
C; MyType <mem ObjectType(MyType){my:t);my:T2;... s My T4},
Update E U {self :MyType, super:{mi:t1;...;ms: T, }} F M}: 7}
p C,E \ update c by (self : MyType; super){m; = M}}:
ClassType(MyType){m; : 1\ ;ma:12;5... ; My T4}
C,E c: ClassType(MyType){my:11;...;my T4},
C; MyType <pen ObjectType(MyType){m:ti;...;MniTns Musi i Tnr1}s
Extend E U {self :MyType, super:{m;:t1;...;my Ta}} b Mup1:Tata
C,E extend c with (self :MyType;super:{mi:1,;... My 1,})
{mn+l = n+1}1
ClassType(MyType){my:t1;...;My:Ty; Muy1 Tay1}
Crtt<o, CCEFM:t
Subsump

C,EF-M:o

Fig. 6. Type assignment axioms and rules for SOOPL

4.2.2 Type-checking rules for SOOPL

There are only two new pre-terms introduced when expanding from ROOPL to
SOOPL. They are given by the following grammar:

M ::= update c by (self : MyType ; super){m, = Mi} |
extend c with (self : MyType ; super }{mpy1 = Mps1}

As before, ¢ and M, represent pre-terms in the grammar.

Also as before, terms of the language are those which can be assigned types. The
type assignment derivations in SOOPL depend on both a syntactic type assignment
E, and a type constraint system C. We only include the type-checking rules for
object-oriented terms here. The other rules and axioms differ only in the inclusion
of C to the left of the . The type assignment axioms and rules are presented in Fig,
6.

As indicated earlier, the variables self, MyTypeand super are considered bound
in the class and update expressions. Terms which agree up to bound variables are
considered to be identical. The terms representing subclass formation are simplified
to allow only the addition or replacement of one method at a time. In fact, it is
straightforward to write more general rules allowing the change of any number of

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

156 Kim B. Bruce

methods at a time (and in any order). We have not done that here to keep the rules
as simple as possible.

Aside from the rule Object, the type-checking rules for object-oriented terms are
now somewhat more complicated than they were for ROOPL.

As indicated in section 4.1.3, to ensure that methods continue to type check in
subclasses, we type check methods in rule Class only with the assumption that
MyType <pen ObjectType(MyType)r.

The primary reason that the rule for message sending, Message, is more complex
than before is to handle the important special case of sending a message to self in
the body of a method. If the method appears in the body of a class ¢ with type
ObjectType(MyType){m;:11;... ;my,:1,}, then, as can be seen by examining the rule
Class, the only thing that we may assume about the type of self, MyType, is that
MyType <mem ObjectType(MyType){m;:ty; ... ;my:1,}. Because we do not know
the exact object type MyType represents (since the method may be inherited in any
subclass), our typing rule must rely only on knowledge of an upper bound in the
<men Ordering. It is easy to see using rules Trans(<men) and Rec(<) that it is
sufficient to use as upper bound an object type with only one method.

While the rules for subclasses look complex, they are rather easily justified. We
discuss the rule Extend before Update since it is slightly less complicated. To type
check an extension of a class, ¢, with type ClassType(MyType){m;:t1;...;m,:1,}, it
is sufficient to type check the body of the new method under the assumption that
MyType will be <, the expected type of the extended class. Because super may
occur in the type of the body of the new method, one may also assume that super
has the type of the record of methods of the superclass c. It is not necessary to type
check the inherited methods, since they were originally checked under assumptions
which are weaker than are used here.

The rule Update is only slightly more complex. Since we are replacing the body
of a method in the update, we need, for reasons discussed in section 4.1.3, to have
the type of the new method be a subtype of the type of the method body being
replaced. Aside from that it is very similar to Extend.

Finally, the subsumption rule is a formal statement of the intuition behind our
definition of subtype, i.e. if T < ¢ and M has type 1, then it can be used as if it had
type o.

4.3 Formal semantics for SOOPL

In this section, we modify the semantics given for ROOPL to handle the added
complexity of subtyping and inheritance. So as to give a more compact presentation
of the semantics, we do not repeat the semantic definitions for those constructs
which remain essentially unchanged from ROOPL. A complete semantics for the
language which includes instance variables can be found in section 5.3. Here we
provide a formal denotational semantics as well as an intuitive explanation of the
meanings of the terms in the presence of subtyping and inheritance.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 157

4.3.1 Semantics of types

The semantics of type expressions remain the same as given for ROOPL, with the
exception of class types. Before providing the revised definition of class types, we
take a brief detour to gain an understanding of the semantics of < and <,up.

As in section 3.3, the semantics of SOOPL is given with respect to a model, &, of
the F-bounded second-order polymorphic lambda calculus with recursive types and
elements. While we did not bother to remark upon this in section 3.3, this model
provides an interpretation, <., for < which satisfies all of the axioms and rules for
subtypes given in the previous section.

Moreover, in each such model there exists a well-behaved coercion function,
convert, such that, if & <, &' are interpretations of types, then convert[¢'][£]: &€ —
&’. This coercion function was described informally in section 4.1.1, and may be
understood as a sort of homomorphism that preserves behaviour. A set of axioms
and rules governing the behaviour of convert can be found in Bruce and Longo
(1990).

The subsumption rule in the previous section stated that if C,E+ M:t and C
T < ¢, then C,E + M:g. It will be possible to show that under these circumstances,
for all consistent environments, p,

[C,E + M:a]lp = convert[[c]p] [[<D pI([C, E + M:1]p)

The meaning of the <. relation on types requires more care. Recall from
the end of section 4.2.1 that if C F ¢ <pen o/, then ¢’ must be of the form
Object Type(MyType)t. From the definitions given below, it will follow that ¢ <.
ObjectType(MyType)r is true in o if and only if [o]lp <. [tlplleclp/MyType].

The intuition behind this is as follows. If C F ObjectType(MyType)t! <mewn
ObjectType(MyType)z, then the corresponding records of methods are subtypes,
ie. C F 7 < 1. Tt follows that if &' = [ObjectType(MyType)c']p, then & =
[7'1pl¢' /MyType] <y [t]p[&'/MyType]. Hence &' <4 [lp[¢'/MyType], as sug-
gested above.

We begin with the formal definition of when a type environment is consistent
with a type constraint system. Notice that the clause for <, corresponds to the

intuition given above.

Definition 4.2
The following inductive definition determines when a type environment p is consistent
with a type constraint system C:

1. If C is empty then p is consistent with C.

2. Suppose C; t < o is a type constraint system. If p is consistent with C and
p(t) <4 [ollp then p is consistent with C; t < 0.

3. Suppose C; t <pen ObjectType(MyType)t is a type constraint system. If p is
consistent with C and p(t) <o [tlplp(t)/MyType}) then p is consistent with
C; t <men ObjectType(MyType)r.

The lemma below states that the intuitive understanding of < and < is
preserved by the axioms and rules for < and <pep.

6 FPR 4

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

158 Kim B. Bruce

Lemma 4.3
Let the type environment p be consistent with C.

1. If CF o < 7 then [[o]lp < [zlp-
2. If C+ y <pen ObjectType(MyType)t then [ylp <« [zlpllyp/MyTypel.

Proof

The proof proceeds by an induction on the length of derivations. For part 1, the
base clauses of the induction follow from the reflexivity of <y and the definition of
consistency of an environment given above. The only difficult part of the induction is
that corresponding to the subtyping rule for object types. Since object types denote
fixed points, the desired result follows from a theorem of Amadio and Cardelli
(1990), which states that our subtyping rule for recursive types is sound.

For part 2, the soundness of the (Var(<)) axiom follows from the definition of
consistency of an environment given above. The (Refl(<)) axiom follows from the
fact that if £ = [ObjectType(MyType)t]p then & = [[7]lp[£/MyType]. We provide
details only for the (Trans(<)) rule here.

Suppose C F y <pew, ObjectType(MyType)t and C F © < 7. It follows that

C k9 <men ObjectType(MyType)t' by the (Trans(<)) rule. We must show that
[¥lp <« [“Ip[lyp/MyType]. But

[ylp <o LzlpllyDp/MyTypel
by induction, and, by part 1,

[lpllylp/MyType]l <o M71pllylp/MyType]

Therefore,

[v1p <« [zlplly1p/MyTypel <. [Z'1pllylp/MyType]

and we are done. [

We are now finally ready to return to the definition of class types. The types
of classes are more complex than those of objects, because a class must encode
sufficient information to provide the meaning of methods in objects generated from
any subclass as well as the original class itself.

The meaning of a class term must include interpretations for both self and
MyType. In particular, the type MyType may appear in the type of a method of a
class. When a method is inherited in a subclass, the meaning of MyType will be the
type of objects generated by that subclass. Because the meaning of MyType may
change, the meaning of a class will take as a parameter an argument which indicates
the meaning of MyType. The only object types which will be allowed for the actual
parameter are those that might be generated from subclasses of the original class.
If the type of the original class is ClassType(MyType)z, then the possible types
for objects generated by the class or any of its subclasses are those y such that
¥ <men ObjectType(MyType)r. By the Lemma above, this is the same as the set of

those y such that [ylp < [lplly]p/MyTypel.
Now, to interpret the body of methods, we will also need to provide the meaning

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 159

of the other bound variable in class definitions, self. The meaning of self must be an
element of the meaning of MyType. Thus to interpret the method bodies of classes,
we must provide an interpretation for MyType, and an interpretation for self which
is an element of the interpretation of MyType. Thus the meaning of class types is as
follows:

[ClassType(MyType)t]p = H (& — [1pl&/MyType])

E< o [F1p[E/MyType]
That is, the meaning of a class is a function that takes a type & such that & <.
[l p[¢/MyType] (ie. a type that may be generated by a subclass of a class of type
ClassType(MyType)r) as the interpretation of MyType, and an element of ¢ as the
interpretation of self, and returns a value of type t (in which MyType is interpreted
as £). The value of type t returned is the meaning of the record of methods of the
class.

The product over ¢ such that ¢ <, [t]lp[é/MyType] is an example of a type
defined by ‘F-bounded quantification’, since the upper bound of ¢ is a term involving
£. This technique is used in Cook et al. (1990) and Bruce (1992), and was originally
proposed by Canning et al. (1989).

An alternative, due to Cardelli and Mitchell, and used for example in Mitchell
(1990a) and Pierce and Turner (1993), is to replace the parameter &, ranging over
types, by a parameter whose possible values are functions from types to types, and
whose fixed points represent the types of objects generated from subclasses (i.e.
these fixed points replace the £ which appear in our definition). An earlier version of
this paper used that approach, but it has been our experience that this approach is
harder to understand than F-bounded quantification. Interestingly, Abadi (1992) has
presented a semantic argument which shows that anything which can be expressed
with one formalism can also be expressed (with the help of set-theoretic operations)
in the other.

4.3.2 Semantics of terms

As with ROOPL, ordinary terms of SOOPL will be interpreted in the context of an
environment p, which specifies the meaning of type and element variables. As in the
previous section on type-checking SOOPL, we only include here the semantics for
object-oriented terms. The semantics of the other terms remain the same as before.
We also provide the intuition behind each of the new definitions.

In defining the meaning of terms, we assume that the semantic environment
is consistent with the sets of assumptions, C and E. (Recall the definition of an
environment being consistent with E given in Definition 3.4.) The semantics of terms
is given in Fig. 7. Note that each clause of the semantic definition corresponds to
a type assignment axiom or rule from section 4.2.2. The function convert which
appears in the definitions is the one described in section 4.3.1. A discussion of why
the semantics is well-defined can be found in section 4.4.

We now briefly give an informal explanation of the formal semantics presented in
6-2

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

160 Kim B. Bruce

[C,E \ class(self : MyType)R: ClassType(MyType)t]p =
A& <y [l plE/MyTypel.do € #°.[C; MyType <men ObjectType(MyType)s,
E U {self : MyType} + R:1]lp[¢{/MyType,o/self].
{[C, E new c: Object Type(MyType)zllp =
Fix(([C,E \ c: ClassType (MyType)tlp)([ObjectType(MyType)tlp)).

[C,E o <= m:t[y/MyTypelllp = o'(m),
where o = (convert[[{m: t}llp[[y] p/MyType]] [[yD p](IC, E - 0:7] p).

[[C,E | update c by (self : MyType; super)}{m; = M}
ClassType(MyTypeX{m: 1) ;my:12;...;my Ta}llp =
28 <o [{my:) ;myity;. . smy i1, M plE/MyTypel.do € 24 1,

where sup = ([C,E + c: ClassType(MyType){my:t1;...;m,: 1.} 1p)(&)o0),
dom(f) = {my,...,m,},
f(m) = [C; MyType <pen ObjectType(MyType){m,:1};...; My Ta},
E U {self : MyType,super: {mi:t1;...;m, Ta}}
- M7, }1p[¢/MyType,o/self , sup/super],
and for2 < j<n,

f(m;) = sup (m;).
[C,E \ extend ¢ with (self : MyType; super}{mpny 1 = Myy1}:
ClassType(MyType){my:T1;... ;Mn Ty Mg Tug1 J0P =

A <o [{my:tys.. . smpgy T M€ /My Type] . do € 4 f,
where sup = ([C,E + c: ClassType(MyType){m: ;... ;my: 1.} 1p)(£)(0),

dom(f) = {m[a e 9mn+l}a

f(muy1) = [C;MyType <me ObjectType(MyType){mi:ti;...;Mnsi i Tnta),

E U {self : MyType,super:{m:Ti;...; My Tn}}

F M1 :ta41}p[E/MyType, o/ self , sup/super],
andforl1<j<n

f(my) = sup (m;).
[C.E + M:ollp = convert[[o]p} ({1 p)([C,E+ M :t]lp),if CF1 <0 and C,E+ M:1.

Fig. 7. Semantics of terms in SOOPL

Fig. 7. In the following, we simplify our notation and write [M]p rather than the
more complete and correct [[C,E + M:1]p.

Class terms: Recall that

[ClassType(MyType)<lp = I - [xlple/MyTypel)
¢y [tTiolE/MyTypel

Thus the meaning of class(self : MyType)R will be a function which takes two
parameters. The first is a type & such that ¢ <, [z]p[¢/MyType}, which will be
the interpretation of MyType. (Recall that such a & is an object type which might
be generated by a subclass of class(self : MyType)R.) The second parameter is an

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 161

element o from «7¢ which will be the interpretation of self in R. Given ¢ and o
from the appropriate domains,

([class(self : MyType)R]p) (£)(0) = [RIp[¢/MyType,o/self]

the meaning of the record of methods, R, with the appropriate interpretations for
MyType and self.

Object constructors: In ROOPL, the meaning of new ¢ was simply the fixed point
of the meaning of ¢. However, in SOOPL, a class also takes a type parameter
which corresponds to the meaning of MyType. If C,E + c:ClassType(MyType)r,
then C,E + new c:ObjectType(MyType)r. We obtain the meaning of new c as

follows. First compute ([[c] p)([ObjectType(MyType)t]p), which is a function from
ﬂ[Ob.ieCtT)’Pe(MyType)T]]P to d|[r]]p[IIObjectType(MyType)t]]p/MyType]. However’ because

[Object Type(MyType)tlp = [z]p[[Object Type(MyType)cllp/MyType]

this is just a function from .7 [0bectType(MyTypeyle to jtself. Taking a fixed point of this
function results in an element of o7 [0bectType(MyType)lp,

While the meaning of new c is an element of the right type, it may not be
at all clear that the resulting value has the desired behaviour. The following ex-
ample illustrates that our definition assigns the correct meaning to objects. Let
¢ = class(MyType)R: ClassType(MyType)t, where R is the record of methods of c. We
show that [new c]|p has the desired behaviour. Recall that for & <. [t]p[¢/MyType]
and o an element of &,

([cllp) (£)(0) = [RDp[&/MyType,o/self]

Since [new cJp = Fix{(([c]p) ([Object Type(MyType)z]p)), it follows that for o =gy
[[new clp,

o' = ([clp) ([ObjectType(MyType)tlp) (o)
[R1p[[Object Type(MyType)tlp/MyType, o' /self]
Thus the meaning of new c is the meaning of the record of methods R, in which

MyType is interpreted as [ObjectType(MyType):]lp, and self is interpreted as the
object as a whole. This is exactly the desired meaning of new c.

Message sending: The meaning of a term o < m; in SOOPL is more complex in
SOOPL than in ROOPL, because the type-checking rule for methods, (Message),
does not necessarily provide us with a type of the form ObjectType(MyType)t for
the object receiving the message. If it does happen that the receiving object has
a statically-determined type of that form, then the term has the same semantics
as in ROOPL. However, as discussed in section 4.2.2, we may only know that the
receiving object’s type is <men 10 @ given object type.

Recall that y <pern ObjectType(MyType){m;:1;} is true in the model if and only if

[v1p <o [{mi:ti}lplly]p/MyType]
The type-checking rules state that 0 <= m; can be assigned the type 1;[y/MyType]

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

162 Kim B. Bruce

in this circumstance. To accomplish this semantically, we interpret 0 < m; by first
coercing the meaning of o from an element of type [[ylp to an element of type
[{m;:t:}1p(lylp/MyType] (using convert), and then applying that element to m;.

Subclass constructions: The only terms left to discuss are those which involve the
construction of subclasses. Because the meanings of the update and extend constructs
are similar, we discuss only the update construct in this section. The meaning of
extend is similar, but slightly simpler.

Recall that the meaning of ¢ with type ClassType(MyType){my:ty;...;m, T}
is a function which takes two parameters, the first ranging over ¢ such that
¢ <o [{miitis...;my:ta}p[é/MyTypel, and the second ranging over elements
of £, returning a value from type [{m;:71;...;mp :1,}]1p[¢/MyType]. Therefore, for
¢ and o chosen properly, ([cllp)(¢)(o) is a function which takes an m; in {my,...,m,}
and returns an element of [t;]p[&/MyType].

The meaning of a term ¢’ of the form update ¢ by (self : MyType ; super){m; = M},
with type ClassType(MyType){m;:t);mz:72;...;my 1.}, is given in terms of the
meaning of c. Since 7] < 1y, the type of my in c, it follows that for all £,

[{mi:tsmaita;.. smyt, 1 plE /My Type] <o
[{mi:t1;ma:125... ;myi 1, 1p[E/MyType)

As with our earlier definition of the meaning of classes, [¢']p will be a function
which takes two parameters. The first parameter ranges over types £ such that & <,
[{mi:t];my:t2;5... ;mp: 1.} p[€/MyTypel, while the second ranges over elements o
of &. Since f = ([¢'Tp)(&)(0) is a record, it can be applied to a method name m,,
returning the value of that method.

If the method m; is one of those unchanged by the update term, then it should
return the same value as ¢ did, i.e. for i > 2, define

f(mi) = ([l p)(&)(0)mi)

(This is well-defined, since if & <y [{mi:7];m2:12;...;my:1a}]p[E/MyTypel, then,
by transitivity, & <. [{mi:t1;...;ms: T, }1p[¢/MyTypel.) On the other hand,

fmy) = [M1]1p[¢/MyType, o/ self]

Thus we see how the meaning of a subclass depends upon the meaning of the
superclass. A similarly derived semantics can be given in the case of subclasses
formed by adding new methods.

There is still one detail that we have not yet taken care of, and that is the use of
the bound variable super, which provides access to the methods of the immediate
superclass. In the case of the subclasses defined above by updating methods, this
would make it possible to refer to methods from the superclass in the new definition
of a method. In the example where method m; was updated, it would allow the new
body of m; to refer to the old value of m; (or any other method, for that matter).

Not unexpectedly, we proceed exactly as we did earlier to get access to the
unmodified methods of the superclass, i.e. we simply assign super the meaning
(Iclp)(€) o). This results in a record containing all of the methods of ¢. Note that

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 163

the meaning of self in the methods of super is o, the same as in the regular methods
of the updated class.

Let ' be the meaning of update ¢ by (self : MyType; super){m; = M;}. Then the
final definition of f = E'(&)(0) satisfies:

f(m) = ([clp) (EXo)(mi), for i = 2,and
f(my) = IM{1p[¢/MyType,o/self ,([cIp)(¢)(0)/super]

Since the ordering of methods does not matter, it is not necessary to provide
separate semantics for updating other methods.

4.3.3 Warning on inheritance as textual substitution

This is a good place for us to comment on a problem with one of the intuitive ways
of understanding inheritance. Inheritance is sometimes explained as being equivalent
to textually substituting a method body from the superclass to the subclass. This
intuition is helpful for many purposes, but breaks down decisively when the keyword
super is used. A concrete example should make this clear.

In section 4.1.4, the class, BetterColorPointClass, was defined as a subclass of
ColorPointClass while changing the meaning of the method eq. The definition of
eq given was:

eq = fun(p: MyType) super.eq(p) & (p <= color) = (self <= color)

If a new subclass of BetterColorPointClass is formed by, say, adding a new
method, then the definition of eq in BetterColorPointClass will be inherited by the
subclass. Of course, this inherited method should do the same thing that it did in the
superclass, i.c. compare x, y and color values. However, if we textually substitute the
body of eq given in Better Color PointClass into the subclass, then we see that it first
does the eg operation found in the superclass, which is now BetterColorPointClass,
making the comparison of x, y, and color fields. It then once more compares color
fields. In this instance, checking the color field twice makes no difference, but one
can easily imagine other situations, in which totals are being computed, for instance,
in which this strategy would return a different value than what is expected. Thus, in
the presence of super, one should not expect inheritance to work as simple textual
substitution of method bodies into subclasses.

Of course, the so-called ‘call-by-textual-substitution’ has a host of other problems
in regular programming languages, because of problems with inserting text into
scopes in which variables might be captured. This is a common problem with
macro-expansion languages.

4.4 Soundness of typing

Our goal in this section is to show that our semantic definitions are consistent with
our typing rules. The recursive definition of the meaning of terms given in Fig. 7
only makes sense if we can be assured that the meaning of each term is an element
of the meaning of its type. The following lemma shows that this is indeed true:

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

164 Kim B. Bruce

Theorem 4.4

(Soundness of semantics with respect to the typing rules) Let ./ be a model for
the F-bounded second-order lambda calculus with fixed points at both the type and
term levels. For all typing derivations, C, E - Mo, if p is consistent with C, E, then
[C,E+ M:c]lp € &lolr,

Proof
The proof is by induction on the length of derivations. The only interesting cases
are those involving the object-oriented terms.

Suppose

C,E t class(self : MyType)R: ClassType(MyType)t

follows from
C; MyType <men Object Type(MyType)t,E U {self : MyType} - R:1
Then

[C,E F class(self : MyType)R: ClassType(MyType)t]p =
A& <o [tllplE/MyTypel.ro € °.[C; MyType <men ObjectType(MyType)r,
E U {self : MyType} \- e:]p[¢/MyType, o/self]

By induction, p[¢/MyType, o/self] is consistent with
C; MyType <men ObjectType(MyType)t, E U {self : MyType}
Then, again by induction,

[C; MyType <men Object Type(MyType)r,
E U {self : MyType} - R:t]lpl[¢/MyType,o/self] € a7 IBple/MyTypel

It follows easily that
[C, E \ class(self : MyType)R: ClassType(MyType)t]lp € s [ClassTyve(MyTypeylp,

The case for M = new c follows from the fact that the meaning of an object type
is a fixed point. Recall that

[C,E t new c:ObjectType(MyType)tllp =
Fix(([C,E F c: ClassType (MyType)tlp)([Object Type(MyType)z]lp))

By induction, ([C,E F c:ClassType (MyType):]p)([ObjectType(MyType)tllp) €
<L l/MyType] for ¢ = [Object Type(MyType)t]lp. However, by the definition of
[Object Type(MyType)zlp as a fixed point, & = [z]p[é/MyType]. Thus,

([C,E ¥ c: ClassType (MyType)t]l p)[[Object Type(MyType)t]p) € #°¢
As a result,
Fix(([C,E \ c:ClassType (MyType)tl p)([[Object Type(MyType)tlp)) € ot
and hence

[C,E + new c:Object Type(MyType)tllp € o [0bectType(MyType)clp

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 165

The cases for terms of the form update ¢ by (self :MyType;super){m; = M}
and extend c with (self :MyType;super){m,;1 = Mp41} depend on Lemma 4.3
(using the fact that if & <y, [{my:t1;...;mup1:Tor 1€/ MyTypel, then ¢ <y
[{my:t1;... ;ma:Ta}l0[E/MyType)).

The only other case of interest is that for message-passing. Suppose C,E | 0 <=
m:t[y/MyType] follows from C b y <pen Object Type(MyType){m:1} and C,E - o:7y.
Then

[C,E F o <= m:z[y/MyTypelllp = o'(m)
where

o’ = (convert{[{m:t}]p[lylp/MyTypel(lylpl) (IC,E \ o:71p).
By Lemma 4.3, [ylp <o [{m:t}1p[lylp/MyType], so the coercion is well-defined.

By induction, o’ € Wm0olllo/MyTypel - A a result, o'(m) € gUDellylp/MyType] —
Ul /MyTypelle. [

The above theorem guarantees, for example, that if a term of the form 0 <= m type
checks, and [[o]p converges (ie., # L), then it will contain a field corresponding
to m. Thus if 0 has a non-trivial value at run-time, it will be able to respond to the
message m.

Another way of producing such a type-soundness theorem is to provide an
operational semantics for the language, and show that types are preserved under
computation. That is if a term M ‘reduces to’ (i.e. computes) an irreducible value
v, then v can be assigned the same type as M. This is sometimes known as a
subject-reduction theorem.

Elsewhere (Bruce et al., 1993) we provide an operational semantics for SOOPL,
show that this operational semantics is consistent with the denotational semantics
given here, and prove such a subject-reduction theorem. This provides an alternative
proof to Theorem 4.4 for the safety of the typing system.

We remind the reader that the definition of the semantics of a term is given
by induction on the type derivation of a term. This is necessary, since by the rule
(Subsump) a term can have many types. Nevertheless, this opens up the possibility
that a given term can have two different derivations of the same type. How do we
know then that the resulting meanings are the same?

One can deal with this problem either semantically or syntactically. In PER
models of the bounded second-order lambda calculus (see Bruce and Longo, 1990),
the meanings of terms may be obtained from the meanings of an underlying untyped
model. In this way, one may show that the meanings of terms depend on only the
‘erasure’ of the term (the term obtained by erasing all type information) and its
type. The model given in Bruce and Mitchell (1992), which has been cited earlier
as a model containing all necessary fixed points for our semantics, is a PER model.
Thus, once a term and one of its types has been given, we can determine its meaning
independently of the type derivation.

Alternatively, one may show the uniqueness of the meanings of types by showing
that, given a fixed C, E, every typable term has a minimum type 1o, and that the
meaning of a term at any type, 7 > 7o, may be obtained by coercing the meaning

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

166 Kim B. Bruce

at 7o up to 7. Such a proof for the bounded second-order lambda calculus was
given by Curien and Ghelli (1992) and is used by Bruce and Longo (1990). (An
earlier, somewhat different syntactic proof appeared in Breazu-Tannen et al., 1991.)
Elsewhere (Bruce et al., 1993), we show that in a slight variant of SOOPL, every
typable term has a minimum type. This can then be used to show the meanings
of types given above depend only upon the term and its intended type, not on the
particular derivation.

4.5 Why is SOOPL more complex?

The type-checking rules and semantics of our language have certainly greatly in-
creased in complexity with the addition of subtypes and subclasses. How does this
complexity arise?

The addition of inheritance forced us to both type check and specify the meaning
of classes so that methods are well-typed and defined for all possible subclasses.
This required us to type check methods in classes under weaker assumptions on the
type of self. While the the type-checking rules and semantics for update and extend
terms look complex, they follow rather naturally from those of the class they are
modifying. It is important to note that to type check subclasses of a class ¢, it is
only necessary to know the type of c. It is not necessary to repeatedly type check
inherited methods in subclasses.

The semantics of message passing is more complex than it was for ROOPL, since
we need not know the type (at least as a concrete object type) of the object to which
the message is being sent. Since this case occurs when messages are sent to self as
part of the body of a method, a common occurrence in object-oriented programs,
we clearly must be able to handle this situation. Thus, what might seem to be a
rather useless generalization of message-passing — allowing a message to be sent to
an object whose type is only known to be in the <., relation to a known object
type — is in fact critical to type checking methods which involve the use of self.

In the next section we generalize our language to include the use of updatable
instance variables.

5 TOOPL: Adding instance variables

In this section, we describe the full language, TOOPL, which includes instance
variables and the operation gets which can be used to update instance variables.
The primary difference between instance variables and methods is that methods can
only be changed in classes, either by defining a new class or by updating a method
in a subclass. Once an object is created, its methods are frozen. On the other hand,
instance variables can be updated at any point during the lifetime of an object.

The language SOOPL that we have been discussing to this point has been quite
restricted because of the absence of instance variables. For instance, we could create
a point by applying new to a point class, but the only way we could move a point
is by creating a brand new point by applying new to a class with different initial
values for its instance variables.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 167

In imperative object-oriented languages, sending a message to an object can result
in updating the instance variables in place. Because our language is functional, we
will update instance variables with a copy semantics. That is, we will create an object
which looks the same as the original except that one of its instance variables now
has a different value.

We illustrate the use of instance variables with an example. Let

SlidingPtClass(a,b) = class(self : MyType)({x = a, y = b},
{slidex = fun(dx: Num) self gets {x = self.x + dx}})

This class has instance variables x and y which are initialized (on object creation) as
a and b, respectively. The method slidex takes a parameter dx, returning an object
which is identical to the receiving object except that the value of the x instance
variable is incremented by dx. If a and b are of type Num, SlidingPtClass(a,b) has

type:
ClassType(MyType)({x: Num;y: Num}, {slidex: Num — MyType})
Now suppose we define

ColorSlidingPtClass(a,b) = extend SlidingPtClass(a, b)
with (self : MyType ; super)({color = red},{getcolor = self .color})

Thus ColorSlidingPtClass(a,b) also has an instance variable, color, and a method,
getcolor, which returns the current value of color.

What happens when we send a slidex message to an object, cp, which is a color
sliding point? Cléarly, the result should be another color sliding point.

If we tried to simulate this in SOOPL, however, we would not be able to achieve
this functionality with inheritance. The only way of creating a new object with
updated instance variables would be to apply new to SlidingPtClass(da’,b’) for some
d, b, thus returning a sliding point. If we now create a subclass for color sliding
point, though, the inherited slidex routine will still return a sliding point rather than
a color sliding point. While it is possible to attempt to achieve the same effect with a
MyClass construct similar to our MyType (see section 7 for a discussion), providing
updatable instance variables is a simpler solution to this problem.

5.1 Complications due to instance variables

The fact that instance variables are updatable (i.e. are acceptors as well as evaluators
— see Reynolds, 1980) will lead to restrictions on changing the types of instance
variables in subclasses. Suppose the expression self gets {x = a}, where a: 1, appears
in the body of a method m of class ¢. If the instance variable x declared in ¢ has
type o, then we must have 7 < ¢ for the update to be legal, since the value denoted
by a must be interpretable as a value of type ¢ for the assignment to be legal. Now
suppose we attempt to define a subclass ¢’ of ¢ where the type of instance variable
x is ¢’ for some ¢’ < 7 (i.e. ¢’ <t and ¢’ # 7). Then the update to x in the inherited
method m will no longer be legal as a cannot be given type ¢’.

The formal rule is that expressions which are evaluators (i.e. they return values)

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

168 Kim B. Bruce

can only be replaced with expressions whose types are subtypes of the type of the
original, while expressions which are acceptors (i.e. they receive values) can only be
replaced by expressions whose types are supertypes of the type of the original. Since
instance variables can appear in different contexts as evaluators and as acceptors,
we may not change the type of instance variables when forming subclasses.

If instance variables were visible in objects, we would have the same restrictions on
changing the types of instance variables for subtypes of object types as well. However,
for a variety of reasons (including this restriction on subtyping), we choose to make
the instance variables of objects invisible from outside of the object. Some reasons
for this have to do with the advantages of information hiding. The user should not
be provided with any unnecessary information on the implementation of objects of
the language. This is standard practice in languages supporting abstract data types
(ADTs), and should be standard practice in languages supporting objects and classes
for similar reasons. (We note that Smalltalk and Eiffel adopt similar restrictions.)

However, there will be extra bepefits to this decision in TOOPL. Because the
interfaces (types) of objects do not mention instance variables, two objects can have
the same type if their methods have the same types, even if they have different
sets of instance variables. For example, two objects can be of the same point type,
even if one is represented using Cartesian coordinates (e.g. has x and y as instance
variables) and the other is represented with polar coordinates (e.g. has r and 0 as
instance variables). While the bodies of all of the methods will be implemented
differently, the two kinds of objects can be used interchangeably. Of course, in
practice we would only want to use these objects interchangeably if the semantics
of their methods were the same (with respect to a suitably abstract representation
of points).

Similarly, the determination as to whether two object types are subtypes is inde-
pendent of their instance variables. Thus the type of a color point object which is
represented in Cartesian coordinates may be a subtype of the type of a point object
which is represented in polar coordinates.

For those who wish to expose the instance variables, we note that it is easy to
make an instance variable visible as either an evaluator or acceptor by providing
appropriate methods. If x: ¢ is an instance variable, we may provide methods, getx : ¢
and setx:0 — MyType, which function respectively as evaluators and acceptors for
x. If only the first is provided, then ¢ can be replaced by a subtype in forming an
object type which is a subtype of the original object type, while if only the second is
provided, then o can be replaced by a supertype. As expected, if both are provided,
then ¢ cannot be uniformly repiaced by either a subtype or supertype.

The addition of instance variables also adds some complications to the semantics
of TOOPL as well as to the type-checking rules. We put off the discussion of these
complexities until after the discussion of syntax and type checking below.

5.2 Syntax and type-checking rules for TOOPL

In this section we present the syntax, subtyping, inheritance and type-checking
rules for TOOPL with instance variables. The following section presents the revised

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 169

semantics. In this extension to our language, the types of classes will depend upon
the types of both instance variables and methods, but the types of objects will
suppress all mention of instance variables. As discussed above, this gives us the
added advantage that an object whose type is a subtype of another may have a
completely different set of hidden instance variables.

The types for our new language follow:

Definition 5.1

Let ¥ 77 be an infinite collection of type variables, % be an infinite collection of
labels, and €77 be a collection of type constants which includes at least the type
constants Bool and Num. The type expressions with respect to ¥ T? and €77 are
defined by the following production:

tii=cltltot | {mt;...;myit,) |Object Type(MyType)t |
(0,7) | ClassType(MyType)(o,7)

In the above grammar, ¢ € ¥7? and t € ¥"TP. Moreover, the ¢’s and ©’s appearing
in the last three terms of the production must be record types (i.e. of the form
{my:t1;.. mita)}).

The new types all arise in the last two clauses above. In those clauses the type
expression o is intended to stand for a record of instance variables, while 7 is the
type of the record of methods. We explain the intended meaning of these new types
below.

Because the interfaces (types) of objects do not mention their instance variables,
objects will actually have two different types: an internal type which includes the
types of instance variables, and an external type which does not. Types of the form
(o, 7) will describe internal types of objects, and are used in type-checking methods
to ensure that all accesses to instance variables are type-safe. Types of this form
will normally not appear in programs written in the language, but are a useful
abstraction making it easier to express type-checking rules and the semantics of
the language. Types of the form Object Type(MyType)r, which do not mention the
types of instance variables, will continue to describe the external types of objects.
ClassType(MyType)(o,1) will denote the type of classes with records of instance
variables of type ¢ and of methods of type .

There is very little difference between the old and new subtype and <., axioms
and rules in this extended language. However, we must introduce a new relation,
ext (read extends), between records of instance variables. The intended meaning of
o’ ext ¢ is that ¢’ contains all of the fields of ¢, and perhaps more. Moreover, all
fields of ¢ have exactly the same types in ¢'. This relation is more restrictive than
subtyping since it does not allow fields of a record to be replaced by subtypes.
Summarizing, for all 1 < k < n and all sets, {0;}i<s, Of types,

{v1:61;...;0k:0k;...;Un:0n} Xt {v1:67;... ;0 0k}

Notice that this rule is independent of any type constraint system, C.
The complete collection of subtyping rules for TOOPL is given in Fig. 8. Notice
that the only change is the addition of the rule (Pair(<)) for our new pair types. In

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

170 Kim B. Bruce

Refl(<) Crhi<t
Var(<) C;t<;C'Ht<1
Fy< Fo<
Trans(<) ¢ VE:’yira_t
Chdo <o, CrtrT
Func(<) Cko—o1<d -7
Rec(<) Cro,<1, forl<j<k<n
- Ch{myioy;...imiok;...;myi0n} S {Mpity;. . ;me i)
. cgexto’, CFt<7
Pair(<) Ck(o,1)<(d,7)
. < !
0bj(<) C; s <tk t[s/MyType] < 7'[t/MyType]

C F Object Type(MyType)t < Object Type(MyType)t

where neither s nor ¢ may occur free in C, 1, or 7.

Fig. 8. Subtype axioms and rules for TOOPL

Var(<mem) C t Zpen T;C' Ft Spen T
Refl(<men) C I ObjectType(MyType)t <men Object Type(MyType)t

C 9 <mewn Object Type(MyType)r,CF1 <7
C F y <pen ObjectType(MyType)t

Trans(smerh)

where MyType does not occur free in C.

Fig. 9. Inheritance relation axioms and rules for TOOPL

particular, the rule for object types is unchanged, because instance variables do not
appear in the types of objects.

The two axioms and rule for the ordering <. are unchanged. For completeness,
however, we repeat them in Fig. 9.

The type of an object will look different from the outside and the inside because
TOOPL supports hidden instance variables. We indicated earlier that internal types
are of the form (c,7). In the body of methods, self will need access to its own
instance variables. Thus we will need a mechanism to assign an internal type to
self. However, as with MyType, if a method is inherited in a subclass, the internal
type of self will change. As a result, we will need to assign self an internal type
whose value may change in subclasses. To accomplish this we will provide seff” with

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 171

bound variables to represent both an internal type, usually written SelfType, and an
external type, usually written MyType, as before. To convert between these two we
will also need to introduce a new bound term variable, close: SelfType — MyType,
representing a function which converts an object from its private type SelfType to its
public type MyType. It is not possible to go the other direction, since close represents
information hiding.

Because SelfType is a private or secret type, it is not allowed to appear in the type
of any method. As a result, we did not need to list it in the syntax of object types.
We will list it in the typings of self and close in the header of class definitions.

Definition 5.2
The pre-terms of TOOPL are given by the following context-free grammar:

M ::= x|if B then M else N | fun(v:e)M | M N| M =N |
{ml = M1,...,m,. = Mn} I e.m; I
class(self : SelfType ; close: SelfType — MyType)(IV,MR) |
new c|ovi|ogets{v,=a}|o<=m|
update c by (self : SelfType ; close: SelfType — MyType ; super)
({or =11}, {m = M1}) |
extend ¢ with (self : SelfType;close: SelfType — MyType; super)
({vm+1 = Im+1}s {mn+1 = Mn+l})

The new terms o.v, and o gets {v, = I;} provide access and updates to instance
variables. The class, update and extend rules have minor changes to reflect the
addition of instance variables. Note that self now has type SelfType rather than
MyType, and application of the function close is required to convert an object
of type SelfType to type MyType. An important restriction not expressible in the
context-free grammar is that self, SelfType and close may not occur in the expressions
providing initial values for instance variables in class, update and extend terms. This
restriction allows us to simplify the semantics of instance variables.

Of course, the restriction that each subclass extension or update must add or
modify exactly one method and one instance variable is wholly unreasonable. We
adopt that restriction here simply to make it easier to write down the type-checking
rules and semantics. The actual language allows arbitrary numbers of methods and
instance variables to be mentioned in extend or update terms.

The axioms and rules for deriving type assignments are given in Figs. 10 and 11.
As usual, we say that a pre-term M is a term of TOOPL with respect to a given
type constraint system C and syntactic type assignment E, if there exists a type t
such that CEF M:1.

The main changes in type checking in this section are reflected in the type-checking
rules for the new terms o.v; and o gets {v, = a;}, which provide access to and updates
for instance variables. Instance variables are only accessible for elements whose
types are subtypes of types of the form (o, t). These rules will tend to be used most
often where o is self. The class formation rules have minor changes to reflect the
addition of the type variable SelfType and the term close, which is used to convert
terms to the form in which instance variables are hidden. The update and extend
rules have minor changes to reflect the possibility of changing the value of or adding

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

172 Kim B. Bruce

Var EU{x:t}Fx:t
Cond EF-B:Bool, E-M:t, EFN:t
EVif Bthen M else N:t
Abs EU{vio}FM:1
Et fun(vie)M:0 —> 1
Appl EFM:6 -1, Nio
kP EFMN:t
E C,EF-M:Num, C,Et+N:Num
1 C,EF M = N:Bool
Record ErF M1 foralll1<i<n
Et{m =My,...,my=M,}:{m:t;...;my:1,}
Proi EFR:{mi:ty;...myit,}
J EFRm:t, foralll<i<n
C; MyType <pen ObjectType(MyType)t,E+-1:a
C; MyType <memn Object Type(MyType)t; SelfType < (0,7),
Class E U {self : SelfType, close: SelfType — MyType} - M:t
C,E V- class(self : SelfType ; close : SelfType — MyType)(I,M):
ClassType(MyType)(o,t)
where self does not occur free in I, and SelfType does not occur free in ¢ or 7.
Obiect C,E + c: ClassType(MyType)(o, t)
J C,E I new c:ObjectType(MyType)t
SetInst Cty<({w:o1;...;00:0u},7), C,EFo:y, C,EF a0,

C,Etogets{v,=a}:y
Fig. 10. Type assignment axioms and rules for TOOPL

new instance variables. Again, recall that the type of an instance variable may not
be changed in a subclass. However, one object type may be a subtype of another
object type regardless of the instance variables that may be hidden within the objects
themselves.

5.3 Semantics for TOOPL

In this section, we provide new semantic definitions which reflect the modification
of our language to support hidden instance variables. The changes to the semantics
are relatively extensive since we must ensure both that the initial values of instance
variables are not captured when objects are created, and that instance variables are
not accessible outside of the object. We will introduce mechanisms to solve each of

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 173

Cty<({vi:o1;...;0n:0,},7), C,LEl oy

Getlnst C.EFou.a
Zime j MyT iT), ,EFo:
Message C b ¥ <men ObjectType(MyType){m:1}, C,E oy
C,EF 0 <= m:t[y/MyType]
C,E F c:ClassType(MyType)({v1:61;... ;Un: G}y {M1 17150 M1 T4 }),
ChH 1.’,1 <71,
C;MyType <uen Object Type(MyType){m;:t);my:12;...; My Ts},
, E-Ii:oy,
C; MyType <uen ObjectType(MyType){my:t);my:12;...; My Ta};
SelfType < ({v1:61;...;0m: O}, (M1 T smai 125 s my i Ta}),
E U {self : SelfType, close : SelfType — MyType,
Update super:{my:ty;...;m, T} b M) iT)

C,E |- update c by (self : SelfType;close: Self Type — MyType;super)
({or =11}, {m = M}}):
ClassType(MyType)({v1:61;... ;Un:Gm}, {M1:T) ;M2 7250 My Ta})

where self does not occur free in I, and SelfType does not occur free in g or 7.

C,E | c:ClassType(MyType)({vi:61;... ;Um: Om}, {M1 1 T15. .52 T4 }),
C; MyType <pmen Object Type(MyType){m;:ty;...; Mny1:Tne1},

EFlpii:0mer,
C; MyType <pen Object Type(MyType){my:t1;...; My Tn; Mpp1 Tupr }3
SelfType < ({v1:01;...;Ume1: Omar), (M1 71500 s Mng1 1 Tur }),s
E U {self : SelfType, close : SelfType — MyType,
Extend super:{my:ty;...;MeiTa}} F Moy 2 Ta

C,E | extend c with (self : SelfType;close: SelfType — MyType; super)
({vm-H = Im+l}: {mn+l = Mn+l}):
ClassType(MyType)
{vi:o1s . 5 Ompr i Ompr (M Ty M T Mg T}

where self does not occur free in I, and SelfType does not occur free in ¢ or 7.

Cto<t, CCE-FM:o
C,Er-M:t

Subsump

Fig. 11. Type assignment axioms and rules for TOOPL (continued)

these problems separately and then combine them to provide the formal semantics
for our language.

5.3.1 The semantics of methods in objects with instance variables

The addition of instance variables adds considerable complexity to the semantics of
terms of TOOPL. The problem is the occurrence of references to instance variables
in methods. If self.x occurs in the body of a method m in a class ¢, then self.x
should only be evaluated when the message m is actually sent to an object generated
from c, not when the object is created by applying new to c.

Recall that the meanings of methods are provided when an object is constructed
from a class by taking a fixed point (which ensures that the meaning of self is the

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

174 Kim B. Bruce

entire object). When we apply the gets operation to an object, an instance variable,
and a value, we do not wish to take a new fixed point. Rather we just create another
object with the same methods and the same values for its instance variables as
before, except that the value of the appropriate instance variable is changed.

For this to work, we must ensure that the values of the instance variables are not
captured in the fixed point when objects are constructed from classes. If they are
captured, then they will essentially be compiled into the semantics of the methods,
and changes to the values of instance variables through gets expressions will not be
reflected in the methods of the resulting objects.

This is one place where it would be somewhat easier to work with an imperative
language, since we could simply capture the locations of the instance variables in
the fixed point, rather than their values. However, we can simulate this procedure
as follows.

We will interpret objects as pairs, one piece of which is the record of current values
of instance variables, while the other represents the methods. A gets expression
creates a new pair which is identical to the original, except that the appropriate
component of the record of values of instance variables is updated. The value of an
instance variable is obtained simply by extracting that component from the record
of values of instance variables.

Sending messages, however, will be somewhat more complex. The second compo-
nent of the object will not just be a record of values of methods. It will be a function
which takes as an argument a record of values of instance variables, returning the
record of methods in which the instance variables of self are interpreted by the
values given in the parameter. Thus, if the record of instance variables has value 3
for component x, then the value of self.x in the body of the methods will be 3. If
the record of instance variables has type ¢ and the record of methods has type T,
the corresponding object will be a pair with type

o %x(c—1)

When we send a message to an object, we apply the second component of the
object to its first component, resulting in a record of methods of type 7 in which the
appropriate values for the instance variables have been inserted. The appropriate
method is then extracted from this record. For example, if (v, f) is the meaning of
object expression o, and m is the name of a method of o, the meaning of 0 <= m
is obtained by extracting the m component of f(v). This process of applying the
second component to the record of current values of instance variables is similar to
looking up the current values of instance variables in specified locations.

5.3.2 Representing hidden instance variables

We wish our semantics to reflect the fact that the values of instance variables of
an object are not accessible outside of the methods of that object. In particular, we
wish to treat objects with the same method interface as elements of the same type,
regardless of the structure of their instance variables. In terms of the representation
introduced above for objects, we wish to find a way to treat types of the form

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 175

6 X (6 = 1) and ¢’ X (¢’ — 7) as being the same. In other words, we only care that
their types are of the form ¢ x (t — 1) for some ¢.

The existential types introduced by Mitchell and Plotkin (1988) provide exactly the
mechanism necessary to accomplish this. Existential types were originally introduced
to hide the representation of a data type. Mitchell and Plotkin (1988) describe a
very general mechanism for existential types which allows one to hide both the data
type and the implementation of operations on that data type. As we have no need
for hiding operations here, we describe a simpler version.

If = is a type expression, then any element with type of the form t[o/t] can be
‘packed’ into an element of type Jt.t. Once packed, the element can no longer be
used in a way which uses the fact that ¢ is actually . One may ‘open’ an element of
an existential type to use it, but one is not able to obtain access to the representation
of t through this operation, i.c. one is able to apply only operations that do not
depend on knowing the representation of t.

The following is a description of existential types as used in the higher-order
lambda calculus. If ¢ is a type variable and 7 is a type then 3t.7 is a type. Associated
with existential types are two new term constructors, pack and open, with the
following typing rules. We presume that E is a syntactic type assignment for the
higher-order lambda calculus. (Note that the typing rules given here are for the higher
order lambda calculus, not the object-oriented programming language introduced in
this paper.)

Ebtpack t =0 int:tlo/t] — Atz

E+M:3tr, EU{x:t}F N:p
EFopen M asxin N:p

if t is not free in p or E

These rules correspond exactly to the intuitive description of pack and open given
above. In particular, the last rule states that if N is a term involving the free variable
x of type 7, and M is a term of type 3t.7, then it is possible to ‘open’ M as a term
of type 7 and use it in place of x in evaluating N. Note that the restrictions on the
construction of open and pack terms ensure that the representation of the packed
term is not exposed when it is opened.

We apply this technique to the representation of objects suggested in the previous
subsection. Suppose M is of type ¢ x (¢ — 1), where t is not free in 7. Then

o=(pack t=o0c intx(t > 1))M

has type 3t.t x (t — 7). In order to actually use o in a computation, we will need
to ‘open’ it first. Once opened, we can apply the second component to the first
component, since this operation does not depend on the knowledge of what ¢ really
is. The result of sending the message m to o is given by

(open o as ob in (ob),(ob),)(m)

where the operations (---); and (---); extract the first and second components,
respectively, from an ordered pair. That is, first we ‘open’ o, giving it the name
ob with type t x (t — t). We can now apply (0b), to (ob),, giving a result of type

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

176 Kim B. Bruce

[clp = . for c € €77.

[1p = p(t) for t € ¥ 77,

o — lp = [ollp — [zlp-

Kmy:tr,..om: ta}lo = [L cpmy,.my [0 P

(e, 7)lp = [o]p x ([ollp — [<Ip).

[ClassType(MyType)(o,)P = I 1, taarin ILs ext o (L010(1) X (£3(v, 1) = [l (W)))
where £5{v, 1) = v x (v — p), £F () = 3v.(v X (v — p)), and p'(u) = p[EF (1)/MyType).
[Object Type(MyType)tlp = FIX (AP 3v.[(t,1)]p[&" /MyType,v/1)).

Fig. 12. Semantics of type expressions in TOOPL

7, which is the record of methods in which self denotes the current values of o’s
instance variables. Finally, the method m is extracted from that record.

In the following sections, we will use existential types to represent the meanings of
object types of our language. As suggested earlier, SelfType will denote the internal
type of an object, while MyType will denote the type once it has been ‘closed’ or
‘packed’.

5.3.3 Meaning of types in TOOPL

As usual, our semantics are given with respect to a model &/ of the F-bounded
second-order polymorphic lambda calculus with recursive types and elements. The
meaning of < continues to be given by the ordering <, of the model. We do have
to provide the semantics for the relation ext introduced in section 5.2.

Since ext simply represents extending a record with extra fields, it can be
interpreted very simply by the relation, ext , defined as follows.

Definition 5.3

Let n and =’ be record types. Then = ext =’ if and only if = | Dom(n') = =, where
Dom(r) is the set of labels of the record type =, and n | Dom(r’) is the restriction of
7 to those labels which occur in =’.

Thus = ext =’ if and only if all of the labels of #’ are included in =, while those
that they share have exactly the same type. This is the semantic equivalent to our
syntactic restriction on subtypes with instance variables.

The definition of the semantics of types is given in Fig. 12. For completeness we
include the definitions of non-object-oriented types given earlier.

Recall that the type (o, 1) represents the internal type of an object with record of
instance variables with type ¢ and record of methods of type 1. As discussed above,
the meaning of these types are given as a pair, where the first element of the pair is
the record of values of instance variables and the second element is a function from
a record of values of instance variables to the record of methods.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 177

The object type ObjectType(MyType)t represents the external type of objects
whose internal types are of the form (o,). Since the type of the record of instance
variables is hidden outside of the object, the type ¢ is ‘quantified out’ via an
existential type. Since we must also ensure that MyType stands for the object’s type,
we must also take a fixed point. Unwinding the fixed point, the semantics of object
types can be rewritten as:

[Object Type(MyType)z]p
= I.([(t, 7))} o [[Object Type(MyType)t]p/MyType,v/t])
= .(v X (v — []p[[ObjectType(MyType)tlp/MyTypel]))

Thus an object type is represented by an existential type in which the type of the
record of instance variables has been quantified out and MyType is interpreted as
the entire type. When we define the meaning of objects, we will see that they are
formed by ‘packing’ elements of types of the form (o, 1).

The meaning of [ClassType(MyType)(a,t)]p is a direct generalization of that
given in section 4.3.1 for SOOPL. The types u < [z]p'(1) and v ext [a]lp'(1)
determine the types of the records of methods and instance variables in an object
type obtainable as a subclass of a class of type ClassType(MyType)(s,7). In such a
subclass, the meaning of MyType will be £f (1) = v.(v X (v — p)), while the meaning
of SelfType will be v x (v — u). The class will have two components: a record of
type [6]p’ (1) containing initial values of instance variables, and a function which
will take an element of type SelfType and return the record of methods with that
element of SelfType plugged in as the meaning of self. Notice that both ¢ and 7
(the types of the records of instance variables and methods) are interpreted in an
environment, p'(), in which in which MyType is interpreted as & (p).

We next define the notion of consistency of a pair C, E with an environment, p.
To do this, we must provide a meaning for <, when relating the interpretations of
internal and external object types, (o, t) and Object Type(MyType)z. Neither pairs nor
existential types appeared in standard models of the second-order lambda calculus.
Nonetheless, we wish to have models which interpret these constructs and such that
the interpretation, <., of < satisfies our axioms and rules.

We do not have space here to describe in detail the construction of such models,
but we can indicate the behaviour of the coercion function convert on elements of
the appropriate types. Since convert[t'][z] is defined only for 1 <y, ' we shall be
satisfied here with defining the appropriate convert function for these types.

A complicating factor in satisfying the new subtyping rule for terms of the form
(o,7) is that [¢]lp occurs in both covariant and contravariant positions in the above
expansion of [[(¢,7)]p. This is unfortunate since, in general, one cannot find a
coercion function if a variable which occurs in a contravariant position is replaced
by a subtype. In this case, however, since both occurrences of ¢ must change in
tandem, and only by extensions rather than general subtypes, it is possible to define
such a function.

Suppose ¢ ext ¢’ and C + 7 < 7. Then for all d € #I°)? and g € o1 — o
(ie., for all {d,g) € wleI1) define convert[[(d’,7)]p]lll(c,)]p){d,g) = (d.g'),
where d' = d | Dom(/1°17) and g’ is defined as follows. For all e € «/1°7, define

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

178 Kim B. Bruce

g'(e) = convert[[t']p][LcIpl(g(e')) where ¢ € /107 is defined so that for all labels
1 € Dom(171°), /(1) = e(l), and (1) = d(l), otherwise. In other words, g’ ‘compiles
in’ the components of d which were discarded when d' was extracted from d. Thus
if Cko exto’ and CF 1 < v then [(o,7)]p <« [(¢',7)]p.

The coercion function for existential types is much simpler. Suppose C F 7 < 7’
and C,E + M:3t.t. Then

convert[3t.7'][It.7](M) =
open M as M,pe, in ((pack t = t in v')(convert[t'][t](Mpen)))

i.e., we open up M as an element of type t, convert it to type 7/, and then pack it
up again. Thus if C + 7 < 7’ then [Ft.]lp < [B3t.71p

With < defined on the interpretations of internal and external views of object
types, we are ready to proceed with our new definition of an environment being
consistent with a type constraint system.

Definition 5.4
The following inductive definition determines when a type environment p is consistent
with a type constraint system C:

1. If C is empty then p is consistent with C.

2. Suppose C; t < ¢ is a type constraint system. If p is consistent with C and
p(t) < [6]p then p is consistent with C; t < o.

3. Suppose C; t <men ObjectType(MyType)t is a type constraint system. If p is
consistent with C and p(t) <y Fv.(v X (v = [z]plp(t)/MyType])) then p is
consistent with C; t <pe, ObjectType(MyType)r.

The definition of the consistency of an environment p, with E is as before. A
proof by induction on the length of derivations similar to that given for SOOPL
shows that the type constraint rules preserve the meanings of the orderings.

Lemma 5.5
Suppose the type environment p is consistent with C.

1. If Ct o < 7 then [[ollp < [7]p.
2. If CF y Zipern Object Type(MyType)t then
[Ylp <o 3vdv x (v — [Dp(lylp/MyType))).

Proof
For part I, we only need concern ourselves with the rules involving object types:
those of the form (o, t) for the internal view of the object, and those of the form
Object Type(MyType)t for the external view. But the coercion functions for each
of these kinds of types were presented before the definition of consistent type
environments. It is easy to see that for each of these rules, if the coercions promised
in the hypotheses hold, then the appropriate coercions exist for the conclusions.
The proof of part 2 proceeds essentially as for SOOPL. The added complications
due to the use of existential types for object types are taken care of since the operation
of appending existential quantifiers to types preserves the subtyping relation. [J

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 179

5.3.4 Meaning of terms in TOOPL

We specify the meaning of terms of TOOPL in Figs. 13 and 14. For completeness,
we include the semantics of regular as well as object-oriented terms. The definition
of the semantics with the addition of the instance variables is extremely complex. We
provide the intuition behind these definitions below. We urge the reader to review
the corresponding definitions for SOOPL in section 4.3.2 and compare them to the
definitions given here.

Remark 5.6

The reader may find it helpful to skip this and the following section on the first
reading of this paper. When reading this section we urge the reader to have pencil,
paper and a large quantity of caffeinated beverages at hand for help in working
through this very complex material.

Class terms: As usual, the meaning of a class,

¢ = class(self : SelfType ; close: SelfType — MyType)(I, M):
ClassType(MyType)(o,7)

must provide the meaning of methods for all possible subclasses. Let
S0 =des [ObjectType(MyType)tlp = Fv.(v x (v — [r]p[So/MyType)))

For ClassType(MyType)(6',7') to be the type of a subclass, ¢/, of ¢, we must have
a’ ext ¢ and C F 7' < 1 In particular, we must have

C Object Type(MyType)t <men Object Type(MyType)t (1)
Let
¢" =4er [ObjectType(MyType)tp = Jv.(v x (v — [1p[E" /MyType)))) (2)
By Lemma 5.5, the inequality (1) implies that

P <o 0.0 x (v - [tlp[E" /MyTypel)) (3)
Expanding ¢P using (2), we see that the only way inequality (3) can hold is if
K =des [7'1pE" /MyType] <y [lplE" /MyType] (4)

It follows that if ¢ is the meaning of an object type generated by a subclass of
ClassType(MyType)(o,1), then inequality (4) must hold. Thus if we write p’(u) for
plEF /MyType), then we must have u <, [t]o'(1)

What about the meaning of the type of the record of instance variables, ¢/, of
the subclass? Since ¢’ may involve the variable, MyType, we interpret ¢’ in an
environment, p'(u), in which MyType is interpreted as £F. Since we can only extend
the record of instance variables, it follows that ¢’ ext 6. If v is the meaning of the
type of the record of instance variables of ¢’ then

v =des [0'1p'(n) ext [o]p'(n) &)

Thus if &P is the meaning of an object type arising from a subclass of a class of

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

180 Kim B. Bruce

[C.E F x:t]lp = p(x).

[C,E+ M:lp, if [C,E}F B:Boollp,
[C,E VW if B then M else N:1llp = ¢ [C,EF N:t]lp, if not [C,E } B: Bool]p,
1, otherwise.

[C,Et fun(v:io) M:6 — 1]lp = Ad € UV [C,E + M:t]p(d/v].
[C,E+ MN:llp = ([C,E + M:o — tlpX[C,E F N:clp).

4, if [C,EFM:lp=_Llor[C,E-N:tlp=1,
[C,E &+ M = N:Boolllp = < true, if [C,E-M:ip=[C,EFN:tllp+# 1,
false, otherwise.

[C.EF{m=My,...,m,=M,}:{m:1y;...;m:t}lp=f,
where dom(f) = {mi,...,m,} and for 1 <i< n,f(m)=[C,E*+ M,:t]p.
[C.EFRm:t]lp = (IC,E & R:{my:t1;...;ma:ta}1p) (my).

[C, E + class(self : SelfType ; close : SelfType — MyType)(I, M): ClassType(MyType)(o,T)llp =
At < 710" ()-Av ext [olp'(w). R
(IC,EVF1:6]p' (1), 40 € & CHC",E" - M:1]p"(11,v,0)),

where C’' = C; MyType < ObjectType(MyType)r,

C" = C'; SelfType < (g,7),

E” = E U {self : SelfType, close : SelfType — MyType},

EP(p) = u.(v x (v >),

Ewp=vx@-oup,

cl(v,p) = A0 € AP packfv = v in v x (v =)] o,

p'(1) = pl&P (u)/MyType],
p"(,v,0) = p'(W)[E5 (v, n)/SelfType, o/ self, cl(v, u)/ close].

[[C,E + new c:Object Type(MyType)tllp = pack[v = v in v x (v — u)] (inst, methfun),

where &P = [Object Type(MyType)tlp,
o' = pl&® /MyType),
v =[ollp,
u=[p',
(inst, methappro) = ([C, E F c: ClassType(MyType)(a, 7)1 p) (1) (),
methfun = Fix(1f € o£"~F.Aw € s”.methyppo((W, f))).
[C,Et o < m:t[y/MyTypelllp = open o' as ob in (ob),(ob), (m),
where o’ = convert[Iv.(v x (v — [{m:7}p[[y1o/MyType])I[[y1pl[C. E F 0:7]p.
[C.E F o gets {v, = L,}:y]lp = ((obW[[C.E \ I,:ai]p/v],(0b)s),
where ob = [[C,E F 0:7]p.

[C.EF* owi:allp = ([C,E Fo:y]lp) (v)-

Fig. 13. Semantics of terms in TOOPL

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 181

[C, E \ update ¢ by (self : SelfType; close: SelfType — MyType; super)({v; = I}, {m; = M{}):
ClassType(MyType)({vi:01;... ;Um: Om}, {m1: 7 ;ma 705 sme i T })lp =

A <o [{mitismeia;. . smata}l0' ().
v ext [{v1:01;...;0m:0n}Tp (0).(inst, do € L5 meth),

where C' = C; MyType <men Object Type(MyType){m,:tj;my:12;...;my T},
C"=C'; SelfType < ({v1:61;... ;0m: Gm}, (M T M2 T25 . s M2 Ta)),
E" = E U {self :SelfType, close: SelfType — MyType, super :{mi:t1;... ;Mn:Tn}},
EP(w) = Fv.(v x (v = p)),
B,y =vx(v—p),
P'(u) = p[&P (1)/MyType],
cl(v,) = Ao € AXCM pack[p = v in v x (v — p)] o,
sup = ([C, E \ ¢: ClassType(MyType)
{vizo15..somiomb, {mites . me ta o) p) (v),
supmeth = (sup); (0),
supvar = (sup);,
inst = supvar[[C",E F I{:01]lp'(1)/v1],
dom(meth) = {my,...,m,},
meth(m;) = [C",E" + M}:7{1p' (1) (&3 (v, p)/SelfType, o/ self,
cl(v, u)/close, supmeth/super],
and for2 < j<n,

meth(m,) = supmeth(m,).

[C, E - extend ¢ with (self : SelfType; close : SelfType — MyType; super)
({vm+1 = Im-H}’ {mn+l = Mn+1}):
ClassType(MyType)({v1:61;. .. ; Vmt1: Omat }, (M1 1 T15. . 3 Mgt 1 Tapa P)]p =
A <or [{my e smagi tan 10/ (0).
v ext [{vy:01;. . ;Umi1:Omer)10 (1).{inst, Ao € 550 meth),

where C’' = C; MyType <men Object Type(MyType){my:ty;... i Myt Tnst}s

C" = C'; SelfType < ({v1:61;... ; Ume1: Ot} (M1 T15 0 3 Mg 2 Tua),

E” = E U {self : SelfType, close : SelfType — MyType,super :{m;:t1;...;my:Ta})},

&P (W) = 3w.o x (v — p)),

E,u)=v x(v—op),

P'(1) = pl&F (u)/MyType],

cl(v, p) = Ao € AXOW pack[v = v inv x (v —)] o,

sup = ([C, E F c: ClassType(MyType)

({vi:01;5..50mi 0}, {miits. . sma T D)) (v),

supmeth = (sup), (o),

supvar = (sup)y,

inst = supvar[[C', E & Iny110"(1)/ V1),

dom(meth) = {my,...,mu1},

meth(my;1) = [C",E" b Mys1: 1o 10" (W) [E5 (v, 4)/Self Type, o/ self ,

cl(v, u)/close, supmeth/super],

and for1 < j<n,

meth(m;) = supmeth(m;).

[C,E + M:ollp = convert[[[o] p] [[z]p}([C.E+ M:<]lp),if CFt1 <o and C,EF M:1.

Fig. 14. Semantics of terms in TOOPL (continued)

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

182 Kim B. Bruce

type ClassType(MyType)(o, 1), the inequalities (4) and (5) must hold. If u and v are
defined as above, then the meaning of MyType is ¥ = qv.(v x (v — p)), while the
meaning of SelfType is &5 = [[(¢’,7)]p[E¥ /MyType] = v x (v — p). The meaning of
a class term is a function which takes a u representing the possible meaning of the
type of the record of methods in a subclass, a v representing the possible meaning
of the type of the record of instance variables, and an o which is the interpretation
of self. Then

([[class(self : SelfType; close : SelfType — MyType)I, M)]p) (1) (v) =
(116’ (4), 4 0 € % .IMTp" (1, v,0))

where p”(u,v,0) = p'(1)[E° /SelfType,o/self, cl(v, u)/close]. The term cl(v,u) is the
obvious function which takes an element of the internal type, SelfType, and packs it
into an element of the external type, My Type.

Object constructors: To interpret new ¢, we must supply the interpretation of ¢
with the appropriate p and v representing the interpretations of the types for
methods and instance variables, take a fixed point to get self to refer to the
object as a whole, and then ‘pack’ it to hide the record of instance variables.
As mentioned earlier, though, we must be sure not to ‘compile in’ the initial
values of the instance variables in the methods when we take the fixed point.
Let &P =4 [ObjectType(MyType)ilp = Jv.(v x (v — [z]p[¢” /MyType])). The
meaning of new ¢ will be an element of this type. To compute the meaning of
new c, let u = [t]p[EF /MyType] and v = [[a]lp[EF /MyType], where the type of ¢
is ClassType(MyType)(o,1). Note that [c]p can be legally applied to u and v since
they satisfy the appropriate constraints.

Let (inst,methgpprox) = [cllp (1) (v). That is, inst is the meaning of the record of
initial values of instance variables from c, while methgpprox is a function which takes
an object o/, whose type is the internal type of the objects generated by the class,
and returns the meaning of the record of methods, in which self is interpreted as o'.
If o is the meaning of new c, then it is clear that its first component should just be
the record of values of instance variables, inst.

Now, the second component of the object is, in fact, supposed to be a function
which takes a record of values of instance variables of type v, and returns the
meaning of the record of methods where self is interpreted by the object as a whole.
Unfortunately, however, methgp,.x takes an argument of type E=vx (v >),
rather than just v. Thus we define,

methfun = Fix(Af € &"7#.dw € &° methapprox((W, f)))
Rewriting by unwinding the fixed point, we get
methfun = Aw € " .methgpp,o.((w, methfun)))

which is an element of type v — u Thus, if i is a record of values of instance
variables, then

methfun (i) = methgpprox((i, methfun))

But this latter term is simply the meaning of the record of methods of the class

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 183

where self is interpreted as (i, methfun), i.e. an object with instance variable values
given by i, and methods interpreted the same way as objects generated directly from
the class. This, of course, is exactly what we wanted! Finally, we must ‘pack’ the
pair (inst,methfun) to hide the instance variables.

Summarizing, the meaning of new c is a pair in which:

1. The first element is the record of values of instance variables given in c.

2. The second is a function, which, when applied to a record of values for the
instance variables, gives the meaning of the record of methods in which self is
interpreted to have the instance variables provided, and has the same methods
as before.

3. This pair is ‘packed’ to hide the first component, the record of instance
variables and its type.

Message sending: Given the definition of new ¢, message sending is now relatively
straightforward. If o has type Object Type(MyType){m:t} and o’ = [[o]p then

o <= m]p = open o' as ob in (0b),(ob),(m)

As we saw above, the second component of the object must be applied to the current
values of the instance variables to obtain the record of values of methods. Since o
has the instance variables hidden, it must first be opened as ob before the second
component can be applied to the first. Note that this application will always be
well-defined no matter what the type of the instance variables.

We may not know the exact type of the receiving object (particularly if this
object is self), only that the type y of o satisfies y <men Object Type(MyType){m:t}.
Thus, as with SOOPL, we may need to coerce the meaning of the object to type
ObjectType(MyType){m:1} before opening and applying the second component to
the first.

Updating instance variables: The semantics of terms of the form o gets {v; = I;}
and o.y, are relatively straightforward in either updating or extracting values from
the first component of the object (which represents the record of values of instance
variables). Note that o must have a type which corresponds to the internal type
of an object for these operations to be applicable, i.e. an object can only access or
manipulate its own instance variables.

Summing up, the key difference in the semantics of terms in TOOPL with instance
variables is that objects have two types, an internal type (labelled SelfType) which
is of the form ¢ X (¢ — 1), and an external type of the form It.t x (t — 1), in
which the types of instance variables have been hidden. Thus the interpretation of
new c is given as a recursively-defined pair in which the values of instance variables
have been ‘packed’ in an existential type. Operations on instance variables of an
object can only be done when the object’s type is an internal object type. When a
message is sent to an object, the object is ‘opened’ so that the second component
can be applied to the first to provide the current values of instance variables to the
methods.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

184 Kim B. Bruce

5.4 Soundness of typing

We again wish to show that our semantic definitions are consistent with our typing
rules to show that the definitions of the meaning of terms given in Figs. 13 and 14
make sense. The proof of this theorem is very similar to that for SOOPL in section
44.

Theorem 5.7

(Soundness of semantics with respect to the typing rules for TOOPL with hidden
instance variables) Let o/ be a model for the F-bounded second-order lambda
calculus with fixed points at both the type and term levels. For all typing derivations,
C,E F M:o, if p is consistent with C, E, then [C,E F M:a]p € «lelr,

Proof

The proof is by induction on the length of derivations. The only interesting cases
are those involving the object-oriented terms.

class(self : SelfType ; close: SelfType — MyType)(I,M): Suppose

C,E \ class(self : SelfType; close:SelfType — MyType)(a,e):
ClassType(MyType)(a,7)

follows from C',E +1:6 and C",E"F M:1, for C', C”, and E” as defined in the
semantics of class terms in Figure 13. Then

[C, E \ class(self : SelfType;close: SelfType — MyType)(I, M):
ClassType(MyType)(a,7)lp =
Ap <z [P’ (p)-Av ext [ollp’(w).
(IC,E - I:61p (1), Ao € &EH [C",E" + M:1]lp" (4, v, 0))

for ES(v, u), EP (n), p' (1), and p”(y) also as defined as in Fig. 13.

We claim p'(u) =5 p[£F (1)/MyType] is consistent with C’ for all u <y [tp'(p).
By assumption, p is consistent with C, so we need only show that &F(u) <.
Jv.(v X (v = [t]p'(1))). But this follows from the fact that £ (u) = Jv.(v x (v — u))
where p <o [t]p'(1).

We also claim that p"(u,v,0) =4 p'(1)[ES(v,)/ SelfType,o/self ,cl(v, u)/close]
is consistent with C”, E”. It suffices to show that &5(v,u) <4 [(o,7)]p" (1, v,0) =
(e,)1p'(1) (since SelfType does not occur in (o,7)). But E5(v,u) = v x (v — p),
and [(o,7)]p' () = [ollp' (1) x ([e]p’ (W) — (1o’ (1), for v ext [o]p' (1) and p <o
[zD0'(1). As discussed in section 5.3.3, this implies that £5(v, u) < [(o,7)]p". It is
easy to show that p”(u,v,0) is consistent with E”. The rest of the verification that
the meaning of a class term is in the appropriate class type follows easily from the
definitions of semantics of class terms and types.

new ¢: Suppose C,E F new c:ObjectType(MyType)t follows from the hypothesis
C,E F c:ClassType(MyType)(o, 7). Recall that

[C,E \ new c: ObjectType(MyType)t]]p =
pack[v = v in v x (v — p)) (inst, methfun)

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 185

for v, u, inst, methgpprox, methfun, and &5 defined in the semantics of new ¢ in Figure
13. It is easy to check that inst € LIV W meth,y,,. € 5 ~# and hence that
methfun € o/*~*. Thus,

pack[v = v in v x (v — p)] (inst, methfun) € >~
But, g7 300X~ = oy [0bjectTypeMyTypeyle, 5o we are done.

o < m: It is easy to see that [o']p € g2wxC—Um<ilellyle/MyTyrel) for o' as given in
Figure 13 for the definition of

[C.E \ 0 < m:t[y/MyType]llp = open o as ob in (ob)(ob); (m).

By the definition of the open construct, ob is in g *0—~Im:tiellvDe/MyTyrel) for some
(unknown) type v. Thus (ob)(ob), (m) € s I1ellylo/MyTyrel a5 desired.

The cases for extracting and updating instance variables are straightforward.
Those for updating and extending classes are tedious, but similar to that for classes,
and are omitted here. [

We now find ourselves with a much more expressive language. While we cannot
change the types of instance variables in subclasses, the subtype relation is totally
independent of instance variables. This is yet another reason to separate the subtype
and subclass hierarchies in object-oriented languages. In the next section we provide
several examples of classes and computations on objects to illustrate the power of
the language.

6 Sample programs in TOOPL

In this section, we illustrate the use of our language through several sample programs.
All sample programs will be written in TOOPL, the full language with hidden
instance variables.

The language as presented so far used an abstract syntax that was convenient
for writing type-checking rules and writing semantic definitions. Here we modify
the syntax somewhat to write programs in a style which is easier to read. It is
straightforward to rewrite these sample programs in the formal language presented
earlier.

We make the following simplifications to syntax:

1. We allow multiple simultaneous extensions or updates to classes. Since a given
construct may be a combination of updates and extensions, we shall use the
keyword modify in place of update and extend. We indicate those methods and
instance variables which are being changed by listing them in a ‘redefining’
clause as in Eiffel (Meyer, 1988).

2. We write f(x: Ty,y: T;) = e to abbreviate f = fun(x: Ty) fun(y: T,) e.

3. We omit the list of bound variables, self, super, close, SelfTypeand MyType in
term and type definitions. This will not cause problems because we will not
nest class definitions.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

186 Kim B. Bruce

4. To break up the different parts of the definitions, we will use the reserved
words var and methods as headers for the list instance variables and methods
of a class. We use labelled end’s to terminate compound definitions of terms
and types.

S. We allow identifiers to stand for terms and types in other expressions.

These changes should result in more readable programs and suggest the form of a
real language built from a core of TOOPL.

Our first example is of a point class. This example differs from that given in
section 4 in that it uses hidden instance variables.

PointClass =
class
var
x =0,
y=0
methods
mv(dx,dy:Num) = close(self gets
{x = self.x + dx, y = self.y + dy}),

getx = self.x,
gety = self.y
end class.

Note the use of close in the definition of the mv method of PointClass. This is
required so that the result type of mv involves only MyType and not SelfType.

PointClassType =
classType
var
x,y:Num
methods
mv:Num -> Num -> MyType;
getx,gety:Num
end classType.

PointType =
objectType
methods
mv:Num -> Num -> MyType;
getx,gety:Num
end objectType.

PointClass has the type PointClassType, and objects generated via new from
PointClass have the type PointType. The fact that instance variables are hid-
den is reflected in the fact that the types of instance variables do not appear in
PointType. We leave it as an exercise to the reader to design a class PolarPtClass
whose instance variables are polar coordinates, r, 8, yet objects generated from
PolarPtClass have type PointType above.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 187

Now we can generate some subclasses. We begin by adding an eq method to
PointClass:

EqPtClass =
modify PointClass by
methods
eq(p:MyType) = (self.x = (p <= getx)) & (self.y = (p <= gety))
end class.

EqPtClassType =
classType
var
X,y :Num
methods
mv:Num -> Num -> MyType;
getx,gety:Num;
eq:MyType -> Bool
end classType.

EqPtType =
objectType
methods
mv:Num -> Num -> MyType;
getx,gety:Num;
eq:MyType -> Bool
end objectType.

Alternatively we can extend PointClass by simply adding a new instance variable,
color.

ColorPtClass =
modify PointClass by
var
¢ = Red
methods
getcolor = self.c
end class.

ColorPtClassType =
classType

var
X,y:Num;
c:Color

methods
mv:Num -> Num -> MyType;
getcolor:Color;

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

188 Kim B. Bruce

getx,gety:Num
end classType.

ColorPtType =
objectType
methods
mv:Num -> Num -> MyType;
getcolor:Color;
getx,gety:Num
end objectType.

We could also obtain a ColorPolarPtClass by simply replacing PointClass by
PolarPtClass in the definition of ColorPtClass. The type of this new class would
also be ColorPtClassType.

Finally, we can combine these two extensions into a color point class which
contains an eq method. We could obtain this by modifying either ColorPtClass
or EqPtClass, since our language does not support multiple inheritance. Notice the
use of super in the definition of ColorEqPtClass.

ColorEqPtClass =
modify EqPtClass
redefining eq by

var
¢ = Red
methods

getcolor = self.c,
eq(p:MyType) = super.eq(p) & (self.c = (p <= getcolor))
end class.

ColorEqPtClassType =
classType
var
X,y:Num;
c:Color
methods
mv:Num -> Num -> MyType;
getcolor:Color;
getx,gety:Num;
eq:MyType -> Bool
end classType.

ColorEqPtType =
objectType
methods
mv:Num -> Num -> MyType;
getcolor:Color;
getx,gety:Num;

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 189
eq:MyType -> Bool
end objectType.
Now we can examine the relations between the object types defined above. Every-
thing works as expected with the <, relation, i.e.:
ColorEqPtType <men EqPtType,
ColorEqPtType <pen ColorPtType,
ColorEqPtType <per PointType,
EqPtType <pen PointType, and
ColorPtType <uer PointType.
However, the subtype relation is more restricted because of the contravariant

occurrence of MyType in the type of eq. Thus, types involving eq will not be
supertypes of other types:

ColorEqPtType < ColorPtType,

ColorEqPtType < PointType,

EqPtType < PointType, and

ColorPtType < PointType

The only loss is that ColorEqPtType is not a subtype of EqPtType.
Notice that we can also define parameterized classes. For example,

PointClassGenerator(a,b:Num) =

class

var
X = a,
y=b»b
methods

nmv(dx,dy:Num) = close(self gets
{x = self.x + dx, y = self.y + dy}),

getx = self.x,
gety = self.y
end class.

As another example, we could write a function AddColorToClass which takes a
class of type PointClassType and returns a class of type ColorPointClassType.
This function would have a body which is an easy variant of ColorPtClass given
earlier.

We now present a few examples of simple functions which use these classes. Our
first example is a function which takes two points and returns the midpoint of the

7 FPR 4

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

190 Kim B. Bruce

line between them. It always returns an object of type PointType. For readability
we introduce ‘let’ expressions into our language, i.e. we write ‘let x:T = a in €’
as an abbreviation for (fun (x:T) e) (a).

MidPt (p1,p2:PointType)=
let newx:Num = ((pl <= getx) + (p2 <= getx))/2,
newy:Num = ({pl <= gety) + (p2 <= gety))/2
in
new (PointClassGenerator(newx,newy))
end function.

Note that we can apply this function to elements whose types are subtypes of
PointType, though the answer will always be of type PointType.

If we wish to return an answer of the same type as, for example, the first parameter,
we will have to extend our language to support bounded polymorphism. To support
this, we will allow functions to take a type parameter, which may be bounded
above by another type. For example, suppose the type UpdatePtType is a subtype
of PointType with a method setxy:Num ~> Num -> MyType which updates the x
and y instance variables to the values of the two parameters. Then we can rewrite
the above example as:

PolyMidPt(T < UpdatePtType; pl:T; p2:PointType) =
let newx:Num = ((pl <= getx) + (p2 <= getx))/2,
newy:Num = ((pl <= gety) + (p2 <= gety))/2

in
(pl <= setxy) (newx) (newy)
end function.

We can write the type of PolyMidPt as Forall (T < UpdatePtType) (T ->
PointType -> T), where Forall (T < UpdatePtType) indicates that the first ar-
gument of the function is a subtype of UpdatePtType.

Of course, if PolyMidPt were written as a method of PointClass, we could have
written it without the polymorphism (and without the use of setxy). We illustrate
this with the definition of MidPointClass:

MidPointClass =
modify PointClass by
methods
MidPt(p:PointType) = close (self gets
{x =((self.x) + (p <= getx))/2,
y = ((self.y) + (p <= gety))/2})
end class.

MidPointClassType =
classType
var
X,y :Num

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 191

methods
mv:Num -> Num -> MyType;
getx,gety:Num;
MidPt:PointType -> MyType
end classType.

Of course, it would be easy to change this so that MidPt has type MyType ->
MyType; however, it would probably be more flexible to leave the formal parameter
as PointType, since this will allow the use of a parameter with any subtype of
PointType, even when MidPt is inherited in subclasses of MidPointClass.

7 Possible extensions

In this section we discuss a few possible extensions to our language. These include
recursion, (bounded) polymorphism, information hiding, a ‘MyClass’ construct, and
multiple inheritance. We also make a few brief remarks on ‘deferred classes’. Finally,
we discuss some essential additions necessary to obtain a language in which one can
actually write useful programs.

Several powerful features were omitted from the language described here, even
though they could be easily have been added. This was necessary to obtain a language
that was as simple as possible, yet included all of the key features normally found
in object-oriented languages.

The two most obvious features to add are recursion and polymorphism. The
reason for this is that the semantics of the language is given in terms of a model of
the F-bounded higher-order lambda calculus with contains elements corresponding
to recursive terms, types and type constructors. (We only used the second-order parts
of the model above, but the model in Bruce and Mitchell, 1992, includes higher-
order elements as well.) As a result, we can add both recursion and (higher-order)
F-bounded polymorphism with few semantic problems.

Interestingly, the language presented already supports an indirect form of recur-
sion in objects because of the (implicitly) recursive meaning of self. In essence, all
methods of a given class are defined by mutual recursion. The following simple
example should illustrate the point. Define:

FactClass = class(self : MyType ; close: SelfType — MyType)
({}, {fact = fun(n:int) if n =0 then 1 else n* ((self < fact)(n — 1))}

If factobj = new FactClass, then f(n) = (factobj < fact)(n) is the factorial function.
Mutually recursive functions can be defined as members of the same class. Thus,
while explicit recursive function definitions could be added to TOOPL, they are
already expressible via mutually recursive methods in classes and objects. Explicit
recursion can be added either through explicit fixed point operators or some other
syntax (for instance, a letrec operator). We prefer not to explicitly add recursively-
defined types because the subtyping rules are more complex. We note that object
types are effectively recursively defined because of the use of MyType.

The PolyMidPt procedure in the previous section provides a good example of the
7-2

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

192 Kim B. Bruce

syntax for an extension to the language involving bounded polymorphism. In the
more formal syntax given earlier in the paper we would write:

C;t<o,EF M:1, for t not freein C or E
C,E}F fun(t <¢) M:Forall (t<0o) 1

C,E-M:Fordl (t<o)1, Cko' <o
C.EF Mo 20'/d]

Interestingly, research in progress suggests that bounded polymorphism using <
rather than < may be even more valuable than ordinary bounded polymorphism.

We could also add unbounded polymorphism to the language with no prob-
lem. The semantics of this extension is analogous to that for ordinary function
abstraction and application, and contains no surprises (after all, our underly-
ing model supports exactly these features). More details can be found elsewhere
(Bruce and Longo, 1990).

In section 5 we discussed how to implement a language design that hid instance
variables outside of an object and, conversely, how one could make these hidden
instance variables accessible by adding methods to access and update their values.
One might also want to hide certain methods from external access. For instance,
it is quite common in abstract data types to have internal functions which depend
heavily upon the implementation, and are not accessible except to the routines of
the ADT. Selected methods can be hidden using the same techniques as used above
for hidden instance variables.

Long inheritance chains in object-oriented languages often result in methods being
inherited which are irrelevant or confusing to users of a class. Some object-oriented
languages provide two different interfaces to the outside world: one to the users of
the objects generated from the class, and another to inheriting classes. This could be
added to the language presented here in the same way that hidden instance variables
were provided. Methods could be hidden from users by ‘packing’ them during the
‘new’ operation. (See the semantics of ‘new’ in section 5.3.4.) Selected methods and
instance variables could also be hidden from subclasses by ‘packing’ them in the
semantics of the class definition.

We are less happy with our modelling of super than with other parts of our
language. The bound variable, super, denotes the record of methods from the
superclass. (We could also include a variable supervar which denotes the record of
initial values of instance variables from the superclass, but this seemed less useful
and so was omitted.) It would be more natural to represent this as an object which
included the values of the instance variables of the current object and the methods
of the superclass, but we found it difficult to formulate this properly. Moreover,
we have recently concluded that this may not be the best way to obtain access to
methods of the superclass.

A preferable solution might be to adopt the mechanism used in Eiffel, which is
to rename inherited methods which are overridden, and then add these renamed
methods to those of the subclass. Thus, for instance, if method m is defined in class
¢, then in defining a subclass ¢’ which overrides the inherited m, we can rename the

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 193

original m as oldm. The method oldm would then be available inside ¢. One could
then send message oldm to self or any other expression of type MyType.

The only drawback to this solution is that one would usually not like to export
the renamed method outside of the class. If we had added selective export to the
language presented here, we would have provided this mechanism to handle calls
to methods of the superclass. Because of the added complexity, we did not add
this feature here, leaving us with this less satisfactory way of handling references to
methods of the superclass. However, we expect eventually to implement this other
way of handling super.

Cook et al. (1990) introduced the idea of a “MyClass’ keyword which is analogous
to our ‘MyType’. ‘MyClass’ would be a bound variable which would stand for
the class which constructed the object. That paper gave several examples showing
the usefulness of this construct. Unfortunately, close examination of the construct
defined there shows that it has only part of the functionality that might be expected
for a class. While it could be used to generate new objects, it could not be used to
create subclasses from that class.

Unfortunately, it appears that such a flexible construct for constructing subclasses
would be extremely difficult to type. When ‘MyClass’ occurs in the body of a method,
the system may only assume that the objects generated from ‘MyClass’ contain at
least the methods of the original defining class, and that the types of these methods
are subtypes of those given in the class. In particular, it is not known whether a
method name not occurring in the original class occurs in the object which is then
executing the method. Thus one cannot tell in an update expression whether the new
method is already defined in the class. Even more serious, if the new method name
does occur in the current class, its type is not known, so it is impossible to tell if the
update is legal or not.

The more complex record calculus presented by Cardelli and Mitchell (1990) may
help solve this problem, as it provides both positive and negative information on the
presence of particular methods. It was decided not to move to such a system here
since the added complexities seem to outweigh the benefits. The use of ‘MyType’
to denote the type of the current object seems to provide more (though different)
benefits than ‘MyClass’.

There are several ways to enhance the language by allowing more flexibility in
using methods from either multiple parents or more remote ancestors. For example,
a language supporting multiple inheritance allows a subclass to be defined with
multiple parents.

The main difficulty with multiple inheritance seems to be determining which
method to inherit if a method name occurs in more than one parent class. We
see this as mainly a design question, rather than a technical one. For instance, it
would be relatively straightforward to write the semantics of subclasses with multiple
inheritance if the default were always to inherit from the first (or, alternatively, last)
class listed in which the method occurs. Our preference would be to require that if a
method name occurs in more than one parent then the user must specify explicitly
from which parent to inherit the method. Again, it is relatively straightforward to
write the semantics for such a form of multiple inheritance.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

194 Kim B. Bruce

One could also allow a method body to refer to a method in any given ancestor
by specifying the name of that ancestor. For example, if the class PointClass
occurred as an ancestor (even as one of several parents) of the current class, one
could write PointClass.m (or similar notation) to indicate that method m from class
PointClass is the one which should be invoked. We expect that such an addition
to the language would be relatively straightforward as well.

Many object-oriented programming languages support ‘deferred’ classes. These
are classes which include declarations for instance variables and names for methods,
but do not include the bodies for the methods. A programmer can define multiple
subclasses of the deferred class whose implementations of the methods are unrelated.
The advantages of deferred classes arise when the deferred class name is used to
specify the type of a parameter to a function. Any subclasses of the deferred class
may then be passed in as the actual parameters.

In our language we have separated the role of interface and implementation. Since
a deferred class really specifies only the interface of the class, its role is provided for
in our language by types. One may easily define an object type, yet not provide any
classes to generate objects of that type. If a parameter is declared to have that type,
objects of any subtype may be used as the actual parameters.

The language specified in this paper cannot handle easily what might be called
‘semi-deferred classes’. These are classes in which some method bodies are specified
while others are only given by their interfaces. It might be possible to model such
classes by defining parameterized classes, which take the implementations of the
‘missing’ methods as parameters. However, we have not investigated this in any
detail.

The language described here allows the user to have instance variables with type
MyType, but we have not provided any mechanism here for the user to define
values of this type for instance variables. (Recall we do not allow the use of self in
specifying the value of instance variables. At the cost of complicating the semantics
of classes and objects, we could have allowed self to occur in expressions defining
initial values of instance variables, but they were not particularly useful, and were
omitted.) An example of a class definition which needs these facilities would be a
binary tree class. The natural definition of this class would include instance variables
representing the left and right subtrees, and these would most naturally have type
MyType. To represent finite trees we need to be able to specify initial values for the
instance variables which indicate the absence of subtrees.

Of course, what is really desired is to initialize these instance variables with an
initial default value (corresponding to the use of nil in languages using pointers).
The two major alternatives are:

1. Introduce a new object type NIL whose only element is nil, such that NIL is
a subtype of every other object type.

2. Introduce a new type UNIT whose only element is unit and replace instance
variable types of the form MyType by the union of UNIT and MyType.

Each of these solutions has some problems. The first requires that NIL essentially
have an infinite type, since it must respond to any possible message. Moreover its

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 195

response to any message should be an error value. This is not desirable in a strongly
typed language.

The second solution has the advantage that a typecase statement could be provided
which would not allow type-unsafe access. The corresponding disadvantage is that
accesses to instance variables must be guarded by typecase statements and that
disjoint unions must be added to the language (though these would probably be
required in a real language anyway). Moreover, many operations that used to return
the original object type must now return the union type. It may be possible to
disguise some of this complexity with cleverly chosen notations, but it will still not
be completely straightforward.

Rather than choosing either of these alternatives here, we left this issue open for
further investigation. (The alternatives described here were adopted from sugges-
tions made by Black, 1992.) Any reasonable solution will also likely involve the
introduction of a mechanism such as exceptions to handle errors.

Our purpose in this paper was to set out a language which included the main
concepts of object-oriented languages as commonly understood in the programming
language community. While our language has several features not commonly found
in object-oriented languages (e.g. separate subtype and subclass hierarchies, the
bound variable ‘MyType’ for the type of an object, etc.), they were virtually required
by the demands of a type-safe language.

Essentially all non-object-oriented-specific features were dropped from the lan-
guage for simplicity. It should be clear to the reader that the common programming
language features which were omitted from this treatment (for example, numeric
operators) can be added easily to provide the features necessary for a truly usable
language. As noted above, more complex features such as recursion and bounded
polymorphism can also be added without great difficulty. Of course, the surface
syntax of the language needs to be reworked to make it easier for programmers
to read and write programs in the language. The examples in the previous section
come closer to that goal than the formal syntax given earlier in the paper. We have
implemented a variant of TOOPL with a more friendly syntax. Work is continuing
on simplifying the concrete syntax of the language.

8 Summary

This paper has described a paradigmatic, functional statically-typed object-oriented
language and its semantics. The language presented includes constructs for classes,
objects, methods, (hidden) instance variables, subtypes and inheritance. Moreover,
the language constructs for defining methods in classes include bound variables
representing ‘self”, ‘SelfType’ and ‘MyType’ (the internal and external types of ‘self”),
and ‘super’ (for references to methods of the superclass). The language with hidden
instance variables includes both internal and external names for the type of ‘self” as
well as an operator to ‘close’ an object by making the instance variables inaccessible.

The most innovative features of the language presented here are its (provable)
type-safety, the separation of subtype and inheritance hierarchies, the support for
multiple implementations for objects of the same type, the inclusion in the language

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

196 Kim B. Bruce

of names for the internal and external types of an object, the provision for type-safe
use of updatable instance variables, and mechanisms for supporting the hiding of
instance variables.

Static type-checking rules were given for the language, and the type-checking rules
were proved sound with respect to the semantics. The existence of models for the
F-bounded higher-order lambda calculus with fixed points for elements, types and
type constructors made it possible to provide such a proof. We feel strongly that
any language which is claimed to be type safe should include such a proof of the
soundness of its type-checking rules with respect to a model of its semantics.

The advantages of static type checking are well-known. These range from guar-
anteeing that the programmer will not see error messages of the form ‘message not
understood’ at run-time to providing the compiler with extra information which
can be used to optimize the compiled code. In particular, run-time type checking
can be eliminated, providing the possibility for significant savings during program
execution.

A major advantage of the type-checking rules presented here is that once the
methods of a class have been type checked, they do not need to be type checked
again when they are inherited in subclasses. This makes it possible to distribute a
library of classes as a collection of executable code and types, while keeping the
source code private.

The statically-typed language presented here supports the full variety of sub-
classes commonly found in object-oriented programs. While this freedom in forming
subclasses forced us to separate the subtype and subclass hierarchies, we find the
separation of the hierarchies more attractive than the other alternatives. Because
the notions of subtype and inheritance are distinct (relating to interface versus
implementation), it makes more sense to create separate language mechanisms to
support them, rather than to artificially identify them. Moreover, the type-checking
rules provided with this language (in particular, the use of the subtype and <.
relations) make clear where the subtyping and inheritance hierarchies are each being
used.

An important consequence of the separation of the subtyping and subclass hier-
archies is that there may be objects of the same type which have entirely different
implementations. For example, because of the hidden instance variables, a program
may contain some points which are represented in Cartesian coordinates, and oth-
ers which are represented in polar coordinates. As long as their interfaces are the
same, they will share the same type. Similarly, there need be no connection between
the implementations of objects whose types are in the subtype relation. In short,
subtypes need not come from subclasses, and subclasses need not result in subtypes.

The ability to refer to the type of an object within the bodies of its methods is
very important in a strongly-typed object-oriented language. For instance, in Eiffel
one can refer to the type of the current object with the phrase ‘like Current’. The
inclusion in our language of a bound variable (typically designated as ‘MyType’ in
our presentation) to stand for the type of the current object provides the opportunity
for relatively fine-grained type checking.

The addition of instance variables to the language required great care in defining

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 197

subtyping rules. Because of the existence of an operator to update instance variables
(actually the operator creates a new copy of the object with a different value for the
instance variable), we could not allow the types of instance variables to be changed
in subclasses. As noted in Bruce and Longo (1990) and Cardelli and Mitchell (1990),
an update operator is not definable in the standard presentation of bounded second-
order lambda calculus. Our restrictions on subclasses, while adding some complexity
to the type-checking rules, allow us to overcome this limitation.

The addition of hidden instance variables to the language required the provision
of two different types for objects: a type variable (typically written as ‘SelfType’ in
this paper) representing the type of the object as viewed from the inside (i.e. with
its instance variables), and another type variable (typically written as ‘MyType’) for
the type of the object from the outside (without its instance variables). An operator
‘close’ was provided which converts an object from type ‘SelfType’ to ‘MyType’ by
hiding the instance variables. Existential types, as presented by Mitchell and Plotkin
(1988), were used to provide the semantics of this mechanism.

While minor variations of the semantic definitions presented here are possible,
the semantics given here faithfully represent the intended meanings of the basic
constructs of object-oriented languages. It is hoped that the careful semantic defini-
tions given here will increase the reader’s understanding of these notions, especially
complex notions like inheritance.

While the language supports all of the fundamental object-oriented constructs, it
has been kept as simple as possible. For instance, the language does not support
recursion or polymorphism. However, the semantics of the language are given in
a model of the higher-order F-bounded polymorphic lambda calculus. As noted
in section 7, this makes it relatively easy to add such advanced constructs to the
language.

Despite the correctness of the definitions given here, the complexity of the se-
mantics is troubling. This complexity arises in several ways. First, the presence of
‘self’ requires that objects be defined recursively. Similarly, the presence of ‘MyType’
as the type of ‘self’ leads us to define object types as the solutions of recursive
equations. Thus fixed points are required in this presentation at both the element
and type level, even when no explicit recursion occurs in the method bodies of
the class generating the object (of course, any reference to ‘self” or ‘MyType’ in a
method body represents an implicit recursive reference). While fixed points certainly
raise the level of difficulty in understanding these constructs, simple fixed points are
probably well within the capability of most programmers to understand.

The construct which seems most complex, and hence most troubling, is that of
inheritance. In a language with inheritance, a class must specify (at least implicitly)
the meaning of all of its methods in all possible subclasses. From a theoretical point
of view, it is most useful to think of classes as parameterized generators for fixed
points. One consequence of this is that the meaning of an inherited method m in a
subclass may be quite different from that in the superclass when another method m’
upon which it depends is redefined. This happens because when the fixed point is
taken of the subclass, each occurrence of m' in the body of m is replaced by the new
definition of m’. This may have a major impact on the meaning of the inherited m.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

198 Kim B. Bruce

As a result, a programmer creating a subclass may not blindly override one
method and expect it to have no impact on the others. In particular, a programmer
expecting to modify classes contained in a library may require more information
about the implementation of the library class than might otherwise be expected.

As a result of this complexity, I believe that the use of inheritance should be
limited as much as possible. Inheritance has clear advantages in prototyping systems.
However, there appear to be real dangers of excessive complexity when long subclass
chains are left in large systems. Others (Liskov, 1988, Snyder, 1986), for example,
have cautioned about the dangers of loss of encapsulation in inheritance. A related
problem is that minor changes in a superclass can invalidate method definitions
lower in the subclass hierarchy.

In contrast, the addition of subtyping to the language represents an important
addition of capability with only a small increase in complexity. Moreover, while the
packing and unpacking operations which occur in the semantics of hidden instance
variables look a bit complex, they are relatively straightforward in their semantic
import.

9 Comparison with previous work

There has been a great deal of interest over the last few years in the design of
object-oriented programming languages. There are now several object-oriented lan-
guages which are being used to produce commercial software. These include Simula
(Birtwistle et al., 1973), Smalltalk (Goldberg and Robson, 1983), Eiffel (Meyer, 1988)
and Trellis/Owl (Schaffert et al., 1986), as well as extensions to older program-
ming languages such as C++ (Stroustrop, 1986), Oberon (Wirth, 1988), Modula 3
(Cardelli et al., 1988), Object Pascal (Tesler, 1985) and various extensions of LISP
(e.g., Moon 1986).

There has also been considerable interest in the theoretical community in designing
object-oriented languages with clean semantics. The major influences on the design
work described in this paper have come from Cook and his collaborators in the
(late and lamented) ABEL project at HP Labs (Canning et al., 1989, Cook, 1989b,
Canning et al., 1989, Cook et al., 1990) and the work of Luca Cardelli, John Mitchell
and their collaborators (Cardelli, 1988a, Cardelli and Wegner, 1985, Cardelli, 1988b,
Cardelli and Longo, 1991, Cardelli and Mitchell, 1990). Readers familiar with the
work of the ABEL project will recognize its influence on the language presented
here. The influence of Cardelli and Mitchell may not be as directly obvious, but
has played a strong role in the evolution of the language design. The work of Peter
Wegner (1990) was helpful in clarifying the differences between various approaches
to object-oriented programming languages. In spite of its known problems with
type safety, the language Eiffel, designed by Bertrand Meyer, has also had a great
influence on my thinking about object-oriented programming languages.

The definition of the semantics of inheritance in a typed language comes from
Cook et al. (1990), which in turn follows from the work on the semantics of
inheritance in untyped languages in Cook (1989a), Cook and Palsberg (1989),
Reddy (1988) and Kamin (1988). Mitchell (1990a) proposed an alternative, more

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 199

operational semantics for typed object-oriented languages, which was shown to
be equivalent to that of Cook et al. (1990) in Bruce (1992). Cardelli and Wegner
(1985), following earlier work in Mitchell (1988) (originally published as Mitchell,
1984), introduced the notion of bounded quantification in higher-order languages,
which was extended in Canning et al. (1990) to handle the more general ‘F-bounded’
quantification used here in the semantics of class definitions. Bruce and Longo (1990)
(an early version of which appeared as Bruce and Longo, 1988) provided the first
careful formal semantics of subtyping (using PER models) in this language. Later
work by Amadio (1991) and Cardone (1989) provided models supporting subtypes
and recursively defined elements and types. Abadi and Plotkin (1990) provided
a more category-theoretic construction, which also resulted in types which are
CPOs. Recently, Bruce and Mitchell (1990) strengthened these constructions to ones
which provide the existence of higher-order recursive type constructors as well as
supporting higher-order F-bounded quantification. These last models are rich enough
to support all constructs described in this paper. Other important early contributions
to the semantics of object-oriented languages (especially with regard to the notion
of ‘coherence’ of interpretations) appeared elsewhere (Breazu-Tannen et al., 1989,
Breazu-Tannen et al., 1991, Curien and Ghelli, 1992).

America et al. (1986; 1989) present a language design and both operational and
denotational semantics for a parallel untyped object-oriented language. America
(1989) and America and van der Linden (1990) respectively discuss and present
an extension to a typed language which includes both subtyping and inheritance.
This work, like that described in this paper, separates the subclass and subtype
hierarchies, and also introduces keywords ‘self” and ‘MyType’, like those described
here. No denotational semantics or soundness results are given there.

The language Emerald (Black et al., 1986) is an object-oriented language designed
for distributed systems which has types and subtypes, but no classes or inheritance.
It includes type parameters and introduces a notion similar to F-bounded quantifi-
cation to check the applicability of operations to types. Black and Hutchinson (1991)
include a careful discussion of its type system, including proofs that the dynamic
type of an object always ‘conforms to’ its static type, thereby ensuring the absence
of ‘message not understood’ error messages.

Hense (1990; 1991) presents both a language design and semantics for an untyped
object-oriented language. The semantics of inheritance in this language is based
on Cook (1989a). Hense provides language constructs and semantics for explicit
wrappers (Hense, 1991) and instance variables (Hense, 1990).

The paper by Palsberg and Schwartzback (1991) presents a theory of statically
typed object-oriented languages in which subclasses preserve subtypes. Their system
requires that types be finite sets of classes. While this seems to work satisfactorily
within an individual program, the authors note the problems which occur when
considering the problem of separate compilation. In that circumstance, one must
consider a class as having a potentially infinite number of subclasses (and thus the
type of the class must be composed of all of those subclasses). They point out that
their system can result in statically incorrect subclasses in this situation. There seems
to be no work-around to this problem with their system.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

200 Kim B. Bruce

Palsberg and Schwartzback (1990; 1991) introduce the notion of substitution as
a mechanism orthogonal to inheritance which, when combined with inheritance,
provides a more general notion of subclassing. I have not studied this notion in
detail, but suspect that the mechanism of class substitution can be viewed as an
implicit form of bounded quantification in the original class and as a corresponding
implicit type application in the actual class substitution. While probably definable
in terms of bounded quantification, class substitution has the advantage of not
requiring the author of a class to specify all locations in which one might later like
to make a substitution. This mechanism may have advantages similar to the implicit
polymorphism in languages like ML, Mirandat and Haskell.

The research closest in spirit to this paper is that of Cardelli (1992b). In fact,
much of the research contained in this paper took place during a visit to DEC’s
Systems Research Center in which Cardelli and I had many substantive discussions
on these topics. Cardelli’s goal was slightly different than that of this paper. He
wished to find a minimal language which was sufficient for expressing the key
concepts of object-oriented programming language. Thus he provides a translation
of a language similar to that given here into a simpler language with constructs for
subtyping, bounded quantification and powerful record operations. Nevertheless, his
work could be recast as an alternative solution to the one given in this paper (and
vice versa). While there are technical differences in the solutions given here and in
Cardelli’s work, the end results are similar: a semantics (or translation) of a typed
object-oriented language into a typed model (respectively, language) which provides
an explanation of the very complex notions of object-oriented languages.

A recent series of papers by Pierce and his coworkers (Pierce and Turner, 1993,
Pierce and Turner, 1992a, Pierce and Hoffman, 1992) represent an alternative ap-
proach to that of Cardelli and this paper. Their goal is to model object-oriented
languages using second-order bounded lambda calculus, but using existential types
to replace the use of F-bounded lambda calculus (as used in this paper and the
work of Cook et al) or higher-order fixed points (as used in the work of Cardelli
and Mitchell). While their language is somewhat less expressive (they have diffi-
culty modeling our Point with eq method), their approach allows them to avoid
some of the complexity which arises through the proliferation of fixed points in
determining the meaning of object-oriented constructs. Another, more recent paper
(Pierce and Turner, 1992b) provides a general technique for modelling binary oper-
ations. This can be applied either to the approach of Pierce and Turner (1993) or to
that given here.

Recent work by Martin Abadi (1994) has resulted in a somewhat different style
of semantics for the object-oriented features of Modula-3. As Modula-3 is based
on a delegation style of inheritance rather than the class-based approach of the
languages cited here, it is not clear whether this work can be extended to class-based
inheritance. However this simpler (though more restrictive) style of inheritance via
delegation allows for a much less complex semantic definition.

T Miranda is a trademark of Research Software Ltd.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 201

Ghelli (1991) and Castagna et al. (1991) present an alternative approach to obtain
many of the advantages of object-oriented languages with a different set of language
constructs. These constructs eliminate many of the fixed points which add to the
complexity here. Their approach is to organize the program around overloaded
functions. Thus rather than looking up a method inside a particular object, one may
imagine going directly to an overloaded function name and then determining which
version of the function is to be used based on the type of the first argument of the
function. The inclusion of subtyping in the language requires one to be quite careful
about the collection of functions which share the same name. Restrictions on such
collections ensure that no conflicts between definitions occur at run-time. These
functions which branch on the types of more than one argument are sometimes
terms multi-methods, and are used in some object-oriented extensions of LISP.

While this approach is quite different from that normally taken in object-oriented
languages, it may allow users to avoid some of the complexity of the semantics of
inheritance given here.

10 Future research and other work in TOOPL

We have not discussed an algorithm for type checking in this paper. A recent paper
(Pierce, 1992) showed that the type-checking problem for F. is undecidable. Since
the semantics of TOOPL is based on models of an extension of F., one might
suspect that the type-checking problem for this language might be undecidable as
well.

The undecidability of type checking F< results from the undecidability of deter-
mining if one type is a subtype of another. In contrast, Dimock and Muller (1992)
have recently shown that the subtype problem is decidable for TOOPL. Kozen et al.
(1993), have shown that subtyping for a similar language which also adds a rule to
‘unwind’ recursively defined types has an O(n?) algorithm. While their paper does
not discuss record types, an addition to handle this seems relatively straightforward.
Unfortunately, we do not see a way of adapting their algorithm to the subtyping
problem for TOOPL.

Building on the work of Dimock and Muller, Bruce, Crabtree, Murtagh and van
Gent have created a simple variant of TOOPL, called TOOPLE (for TOOPL with
Extra information). The only differences in syntax between TOOPL and TOOPLE
are that class, extend and update terms must be labelled with their intended types.
Then, applying techniques suggested in Curien and Ghelli (1992), it can be shown
(under very natural restrictions on C) that every term which is typable with respect
to C, E has a minimum type. From this an algorithm can be derived which solves
the type-checking problem for TOOPLE. Thus this language has useful practical
as well as theoretical properties. A description of the subtyping and type-checking
algorithms can be found elsewhere (Bruce et al., 1993).

A natural (operational) semantics for TOOPLE is given by Bruce et al. (1993).
This semantics is somewhat easier to understand since it does not rely on the
complex fixed points used here. That paper shows that the natural and denotational

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

202 Kim B. Bruce

semantics are consistent, and also provides a proof of the subject reduction theorem
for TOOPLE, providing another proof of the soundness of the type-checking system.

The operational semantics of TOOPL also implicitly suggests a relatively simple
extension of the type lambda calculus which may be useful in providing a theoretical
foundation for investigations of object-oriented languages.

One possible complaint about TOOPL is that it is a functional language, and
object-oriented languages are primarily imperative because of the instance vari-
ables. While we have modelled updatable instance variables here with a copy
semantics, it would clearly be interesting to extend our language design principles
to an imperative language. Recent work with Robert van Gent (van Gent, 1993,
Bruce and van Gent, 1993) has resulted in such a language, TOIL. As with TOOPL,
we can prove that TOIL is type-safe. A prototype implementation exists, and work
is progressing on adding polymorphism to the language.

Another important topic to examine with regard to the work presented in this
paper is the development of axioms and rules for proving the correctness of programs
in the language presented here. These axioms and rules should be shown to be sound
with respect to the denotational semantics given here. There is hope that these axioms
and rules may be substantially simpler than the denotational semantics. In particular,
restrictions on the redefinition of methods in subclasses similar to those specified in
Eiffel (Meyer, 1988) (i.e. preconditions must be weaker and postconditions stronger
in overridden methods in subclasses) may result in a language which is more
restrictive, but whose semantics can be more easily comprehended. A (relative)
completeness theorem for such a system would be desirable, though not essential for
practical applications. I am currently examining such a system with my students.

Acknowledgements

This research was partially supported by NSF grants CCR - 9105316 and CCR -
9121778, and, at Stanford, the Powell Foundation.

Special thanks go to the Computer Science Department at Stanford Univer-
sity, DEC’s System Research Center, and the Départment de Mathématiques et
d’Informatique at the Ecole Normale Supérieure in Paris for their generous support
and hospitality during my sabbatical leave in 1991, when much of this work was
being done. The work described in this paper benefited greatly from numerous dis-
cussions with Luca Cardelli. The work with John Mitchell on constructing models
for the higher-order bounded lambda calculus provided the semantical underpin-
nings of this work. Discussions with William Cook, other members of the former
ABEL team at HP Labs, Peter Wegner and Andrew Black helped clarify many
of the complexities of object-oriented languages. The Harvard University Object-
Oriented Languages Seminar from 1992-93, Benli Pierce and Jon Riecke provided
very useful comments on earlier drafts of this paper. Special thanks to the Williams
TOOPL research group (Tom Murtagh, Jon Crabtree, Gerald Kanapathy and Robert
van Gent) for helping work out extensions and refinements to the language design.
Finally, I would like to thank the editor, Phil Wadler, for numerous useful
suggestions for improving the content and appearance of this paper.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 203

My long-standing collaboration with Giuseppe Longo has provided many insights
into the nature of subtyping and the more general aspects of the semantics of pro-
gramming languages. His enthusiasm, insights and willingness to explore alternative
approaches have helped make research an enjoyable and rewarding activity.

References

Abadi, M. (1992) Doing without F-bounded quantification. Message to Types electronic mail
list, February.

Abadi, M. (1994) Baby modula-3 and a theory of objects. J. Functional Program. to appear.

Abadi, M. and Plotkin, G.D. (1990) A PER model of polymorphism and recursive types. In:
Proc. Symp. on Logic in Comput. Sci., pp. 355-365.

Amadio, R.M. (1991) Recursion over realizability structures. Infor. and Computation 91(1):
55-86.

Amadio, R. and Cardelli, L. (1993) Subtyping recursive types. ACM TOPLAS 15(4): 575-631.

America, P. (1987) Inheritance and subtyping in a parallel object-oriented language. In: J.
Bezivin et al., Eds., Proc. ECOOP '87 — Lecture Notes in Computer Science 276, pp. 234-242,
Springer.

America, P, de Bakker, J., Kok, J. and Rutten, J. (1986) Operational semantics of a parallel
object-oriented language. In: Proc. 13th ACM Symp. on Principles of Program. Lang., pp.
194-208.

America, P, de Bakker, J., Kok, J. and Rutten, J. (1989) Denotational semantics of a parallel
object-oriented language. Infor. and Computation 83(2): 152-205.

America, P. and van der Linden, F. (1990) A parallel object-oriented language with inheri-
tance and subtyping. In: OOPSLA-ECOOP 90 Proceedings, pp. 161-168, October. (ACM
SIGPLAN Not. 25(10).)

Birtwistle, G.M., Dahl, O.-J., Myhrhaug, B. and Nygaard, K. (1973) SIMULA Begin. Aurbach.

Black, A. (1992) Private communication.

Black, A. and Hutchinson, N. (1991) Typechecking polymorphism in Emerald. Technical
Report CRL 91/1 (Revised), DEC Cambridge Research Lab.

Black, A., Hutchinson, N., Jul, E. and Levy, H. (1986) Object structure in the Emerald
system. In: Proc. ACM Symp. on Object-Oriented Program.: Syst., Lang. and Applic., pp.
78-86, October.

Breazu-Tannen, U., Coquand, T., Gunter, C.A. and Scedrov, A. (1989) Inheritance and explicit
coercion. In: Proc. 4th IEEE Symp. Logic in Comput. Sci., pp. 112-129.

Breazu-Tannen, U., Coquand, T., Gunter, C.A. and Scedrov, A. (1991) Inheritance and implicit
coercion. Infor. and Computation 93(1): 172-221.

Bruce, K. (1992) The equivalence of two semantic definitions of inheritance in object-oriented
languages. In: S. Brookes, M. Main, A. Melton, M. Mislove and D. Schmidt, Eds., Proc. 7th
Int. Conf. on Mathematical Foundations of Program. Semantics — Lecture Notes in Computer
Science 598, pp. 102-124, Springer.

Bruce, K., Crabtree, J., Dimock, A., Muller, R., Murtagh, T. and van Gent, R. (1993) Safe
and decidable type checking in an object-oriented language. In: Proc. ACM Symp. on
Object-Oriented Program.: Syst., Lang. and Applic., pp. 29-46.

Bruce, K., Crabtree, J. and Kanapathy, G. (1993) An operational semantics for TOOPLE: A
statically-typed object-oriented programming language. In: Proc. MFPS IX, to appear.
Bruce, K. and Longo, G. (1988) A modest model of records, inheritance and bounded

quantification. In: Proc. 3rd IEEE Symp. Logic in Comput. Sci., pp. 38-51.

Bruce, K. and Longo, G. (1990) A modest model of records, inheritance and bounded
quantification. Infor. and Computation 87(1/2): 196-240.

Bruce, K.B., Meyer, A.R. and Mitchell, J.C. (1990) The semantics of second-order lambda
calculus. Infor. and Computation 85(1): 76-134. (Reprinted in G. Huet, Ed., Logical

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

204 Kim B. Bruce

Foundations of Functional Programming, Addison-Wesley, Reading, MA, 1990, pp. 213~
273.)

Bruce, K.B. and Mitchell, J.M. (1992) PER models of subtyping, recursive types and higher-
order polymorphism. In: Proc. ACM Symp. on Principles of Program. Lang., pp. 316-327.

Bruce, K.B. and van Gent, R. (1993) TOIL: A new type-safe object-oriented imperative
language. To appear.

Canning, P, Cook, W., Hill, W., Mitchell, J. and Olthoff, W. (1989) F-bounded quantification
for object-oriented programming. In: Functional Prog. and Computer Architecture, pp.
273-280.

Canning, P, Cook, W,, Hill, W. and Olthoff, W. (1989) Interfaces for strongly-typed object-
oriented programming. In: Proc. ACM Conf. on Object-Oriented Program.: Syst., Lang. and
Applic., pp. 457-467.

Cardelli, L. (1988a) A semantics of multiple inheritance. Infor. and Computation 76: 138-164.
(Special issue devoted to Symp. on Semantics of Data Types, Sophia-Antipolis (France),
1984.)

Cardelli, L. (1988b) Structural subtyping and the notion of powertype. In: Proc. 15th ACM
Symp. Principles of Program. Lang., pp. 70-79.

Cardelli, L. (1992a) Extensible records in a pure calculus of subtyping. Technical Report 81,
DEC Systems Research Center.

Cardelli, L. (1992b) Typed foundations of object-oriented programming, 1992. Tutorial given
at POPL ’92.

Cardelli, L., Donahue, J., Galssman, L., Jordan, M, Kalsow, B. and Nelson, G. (1988)
Modula-3 report. Technical Report SRC-31, DEC systems Research Center.

Cardelli, L. and Longo, G. (1991) A semantic basis for Quest. J. Functional Program. 1(4):
417-458.

Cardelli, L. and Mitchell, J. C. (1990) Operations on records. In: Math. Foundations of Prog.
Lang. Semantics — Lecture Notes in Computer Science 442, pp. 22-52. Springer.

Cardelli, L. and Wegner, P. (1985) On understanding types, data abstraction, and polymor-
phism. Comput. Surv. 17(4): 471-522.

Cardone, F. (1989) Relational semantics for recursive types and bounded quantification. In:
ICALP — Lecture Notes in Computer Science 372, pp. 164-178, Springer.

Castagna, G., Ghelli, G. and Longo, G. (1991} A calculus for overloaded functions with
subtyping. Technical report, Ecole Normale Superieure.

Castagna, G. and Pierce, B. (1994) Decidable bounded quantification. In: Proc. ACM Symp.
on Principles of Program. Lang.

Cook, W.R. (1989a) 4 Denotational Semantics of Inheritance. PhD thesis, Brown University.

Cook, W.R. (1989b) A proposal for making Eiffel type-safe. In: Euro. Conf. on Object-Oriented
Program., pp. 57-72.

Cook, W.R,, Hill, W.L. and Canning, P.S. (1990) Inheritance is not subtyping. In: Proc. 17th
ACM Symp. on Principles of Program. Lang., pp. 125-135, January.

Cook, W. and Palsberg, J. (1989) A denotational semantics of inheritance and its correctness.
In: Proc. ACM Conf. on Object-Oriented Program.: Syst., Lang. and Applic., pp. 433—444.
Cox, B. (1986) Object-Oriented Programming; An evolutionary appoach. Addison-Wesley,

Reading, MA.

Curien, PL. and Ghelli, G. (1992) Coherence of subsumption, minimum typing and type-
checking in F<. Mathematical Structures in Comput. Sci. 2: 55-91.

Danforth, S. and Tomlinson, C. (1988) Type theories and object-oriented programming. ACM
Comput. Surv. 20(1): 29-72.

Dimock, A. and Muller, R. (1992) Private communication.

Ghelli, G. (1991) A static type system for message passing. In: OOPSLA Proc., pp. 129-145.
(ACM SIGPLAN Not. 26(11), November.)

Goldberg, A. and Robson, D. (1983) Smalitalk—80: The language and its implementation.
Addison Wesley, Reading, MA.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

Paradigmatic object-oriented programming language 205

Gunter, C.A. (1992) Semantics of Programming Languages: Structures and Technigues. MIT
Press, Cambridge, MA.

Hense, A.V. (1990) Denotational semantics of an object oriented programming language with
explicit wrappers. Technical Report A 11/90, Universitat des Saarlandes.

Hense, AV. (1991) Wrapper semantics of an object oriented programming language with
state. In: TACS Proc., pp. 548-568, Springer.

Kamin, S. (1988) Inheritance in Smalltalk-80: a denotational definition. In: ACM Symp.
Principles of Program. Lang., pp. 80-87.

Kozen, D., Palsberg, J. and Schwartzbach, M.I. (1993) Efficient recursive subtyping. In: 20th
ACM Symp. Principles of Program. Lang.

Liskov, B. (1988) Data abstraction and hierarchy. In: OOPSLA Addendum to Proc., pp. 17-34.
(ACM SIGPLAN Not. 23(5), May.)

Madsen, O., Magnusson, B. and Moller-Pedersen, B. (1990) Strong typing of object-oriented
languages revisited. In: 0OPSLA-ECOOP Proc., pp. 140-150. (ACM SIGPLAN Not. 25(10),
October.

Meyer, B. (1988) Object-Oriented Software Construction. Prentice-Hall, Englewood Cliffs, NJ.

Meyer, B. (1992) Eiffel: The language. Prentice-Hall, Englewood Cliffs, NJ.

Mitchell, J.C. (1984) Type inference and type containment. In: Proc. Int. Symp. on Semantics
of Data Types — Lecture Notes in Computer Science 173, Sophia-Antipolis, France, pp.
257-278, June, Springer. ’

Mitchell, J.C. (1988) Polymorphic type inference and containment. Infor. and Computation
76(2/3): 211-249. (Reprinted in G. Huet, Ed., Logical Foundations of Functional Program-
ming, Addison-Wesley, Reading, MA, 1990, pp. 153-194.)

Mitchell, J.C. (1990a) Toward a typed foundation for method specialization and inheritance.
In: Proc. 17th ACM Symp. on Principles of Progra. Lang., pp. 109-124, January.

Mitchell, J.C. (1990b) Type systems for programming languages. In: J. van Lecuwen,
Ed., Handbook of Theoretical Computer Science, Volume B, pp. 365-458, North-Holland,
Amsterdam.

Mitchell, J.C. and Plotkin, G.D. (1988) Abstract types have existential types. ACM Trans.
Program. Lang. and Syst. 10(3): 470-502. (Preliminary version appeared in Proc. 12th ACM
Symp. on Principles of Program. Lang.)

Moon, D. (1986) Object-oriented programming with flavors. In: Proc. ACM Conf. on Object-
Oriented Program.: Syst., Lang. and Applic., pp. 1-9.

Omohundro, S.M. (1991) The Sather language. Technical report, International Computer
Science Institute.

Palsberg, J. and Schwartzback, M. (1990) Type substitution for object-oriented programming.
In: OOPSLA-ECOOP Proc., pp. 151-160. (ACM SIGPLAN Not. 25(10), October.)

Palsberg, J. and Schwartzback, M. (1991) Static typing for object-oriented programming.
Technical report, Aarhus University Computer Science Department.

Pierce, B.C. (1992) Bounded quantification is undecidable. In: Proc. 19th ACM Symp.
Principles of Program. Lang., pp. 305-315.

Pierce, B.C. and Hoffman, M. (1992) An abstract view of objects and subtyping (preliminary
report). Technical Report ECS-LFCS-92-226, University of Edinburgh.

Pierce, B.C. and Turner, D.N. (1992a) Simple type-theoretic foundations for object-oriented
programming. Technical report, University of Edinburgh.

Pierce, B.C. and Turner, D.N. (1992b) Statically typed multi-methods via partially abstract
types. Technical Report, University of Edinburgh.

Pierce, B.C. and Turner, D.N. (1993) Object-oriented programming without recursive types.
In: Proc 20th ACM Symp. Principles of Program. Lang., pp. 299-312.

Reddy, U.S. (1988) Objects as closures: Abstract semantics of object-oriented languages. In:
Proc. ACM Symp. Lisp and Functional Program. Lang., pp. 289-297, July.

Reynolds, J.C. (1980) Using category theory to design implicit conversions and generic
operators. In N.D. Jones, Ed., Semantics-Directed Compiler Generation — Lecture Notes in
Computer Science 94, pp. 211-2580, Springer.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

206 Kim B. Bruce

Schaffeit, C., Cooper, T., Bullis, B., Kilian, M. and Wilpolt, C. (1986) An introduction to
Trellis/Owl. In: OOPSLA Proc., pp. 9-16. (ACM SIGPLAN Not. 21(11), November.)

Snyder, A. (1986) Encapsulation and inheritance in object-oriented programming languages.
In: Proc. 1st ACM Symp. on Object-Oriented Program. Syst., Lang. and Applic., pp. 3846,
October.

Stroustrop, B. (1986) The C** Programming Language. Addison-Wesley, Reading, MA.

Tesler, L. (1985) Object Pascal report. Technical Report 1, Apple Computer.

van Gent, R. (1993) TOIL: An imperative type-safe object-oriented language. Williams College
Senior Honors Thesis.

Wegner, P. (1990) Concepts and paradigms of object-oriented programming. OOPS Messenger
1(1): 7-87, August.

Wirth, N. (1988) The programming language Oberon. Software - Practice and Experience 18:
671-690.

https://doi.org/10.1017/50956796800001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001039

