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In this study we propose a novel data-driven reduced-order model for complex dynamics,
including nonlinear, multi-attractor, multi-frequency and multiscale behaviours. The
starting point is a fully automatable cluster-based network model (CNM) (Li et al.,
J. Fluid Mech., vol. 906, 2021, A21) that kinematically coarse grains the state with
clusters and dynamically predicts the transitions in a network model. In the proposed
dynamics-augmented CNM (dCNM) the prediction error is reduced with trajectory-based
clustering using the same number of centroids. The dCNM is first exemplified for the
Lorenz system and then demonstrated for the three-dimensional sphere wake featuring
periodic, quasi-periodic and chaotic flow regimes. For both plants, the dCNM significantly
outperforms the CNM in resolving the multi-frequency and multiscale dynamics. This
increased prediction accuracy is obtained by stratification of the state space aligned with
the direction of the trajectories. Thus, the dCNM has numerous potential applications to a
large spectrum of shear flows, even for complex dynamics.
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1. Introduction

Advancements in computational capabilities and flow measurement technologies are
producing a rapidly increasing amount of high-fidelity flow data. The coherent
spatio-temporal structures of the flow data enable data-driven reduced-order models
(ROMs). In terms of kinematics, ROMs furnish simplified descriptions that enrich
our understanding of fundamental flow processes (Holmes, Lumley & Berkooz 1996),
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facilitated by increasingly powerful machine learning methods (Brunton, Noack &
Koumoutsakos 2020). The ROMs may also allow the prediction of future states with
acceptable accuracy. In the context of flow control, ROMs are serving as efficient tools
for designing and testing control strategies, replacing costly high-fidelity simulations with
an acceptable trade-off in accuracy (Bergmann & Cordier 2008).

First-principle-based ROMs have historically been the foundation of the ROM
community, as only a limited number of large data sets were available at that time. The
Galerkin framework is one of the most classic methods in this category. By projecting the
Navier–Stokes equations onto a low-dimensional subspace, the Galerkin model elegantly
describes the original dynamics, exhibiting self-amplified amplitude-limited dynamics
(Stuart 1971; Busse 1991; Noack & Eckelmann 1994). Landau (1944) and Stuart (1958)
pioneered the mean-field model, a major progress in first-principle-based ROMs that
provides insight into flow instabilities and bifurcation theory. For instance, in the case of a
supercritical Hopf bifurcation, mean-field models have been applied to the vortex shedding
behind a cylinder (Strykowski & Sreenivasan 1990; Schumm, Berger & Monkewitz 1994;
Noack et al. 2003) and high-Reynolds-number turbulent wake flow (Bourgeois, Noack &
Martinuzzi 2013). For more complex flows undergoing successive bifurcations, including
both Pitchfork and Hopf bifurcations, weakly nonlinear mean-field analysis is applied to
the wake of axisymmetric bodies (Fabre, Auguste & Magnaudet 2008), the wake of a disk
(Meliga, Chomaz & Sipp 2009) and the fluidic pinball (Deng et al. 2020). Furthermore,
in the field of resolvent analysis, the mean-field theory also contributes by decomposing
the system into time-resolved linear dynamics and a feedback term involving quadratic
nonlinearity (McKeon et al. 2004; Gómez et al. 2016; Rigas et al. 2017).

In contrast to a first-principle ROM, a data-driven version is based on a low-dimensional
representation of flow snapshots. Proper orthogonal decomposition (POD) is a commonly
used example. Proper orthogonal decomposition begins with the eigenvalue or singular
value decomposition of the correlation matrix, yielding a low-dimensional subspace
comprising leading orthogonal eigenvectors. This subspace provides an ‘optimal’ Galerkin
expansion with minimal average residual in the energy norm. Since Aubry et al. (1988)
introduced the groundbreaking POD–Galerkin model for unforced turbulent boundary
layers, numerous POD models have emerged for various configurations. Examples include
POD models for channel flow (Podvin & Lumley 1998; Podvin 2009), the wake of
a two-dimensional square cylinder (Bergmann, Bruneau & Iollo 2009), laminar and
turbulent vortex shedding (Iollo, Lanteri & Désidéri 2000) and flow past a circular
cylinder with a dynamic subgrid-scale model and variational multiscale model (Wang
et al. 2012). There are also various variations of the POD model, e.g. integrating the
actuation terms into the projection system for control design (Bergmann & Cordier 2008;
Luchtenburg et al. 2009) and balanced POD (Rowley 2005), which is derived from a
POD approximation to the product of controllability and observability Gramians to obtain
an approximately balanced truncation (Moore 1981). Increasingly powerful machine
learning methods can make data-driven ROMs more automated. Examples include the
sparse identification of nonlinear dynamics (SINDy) aim at human interpretable models
(Brunton, Proctor & Kutz 2016), ROMs with artificial neural networks (San & Maulik
2018; San, Maulik & Ahmed 2019; Zhu et al. 2019; Kou & Zhang 2021), turbulence
modelling and flow estimation with multi-input multi-output by deep neural networks
(Kutz 2017; Li, Li & Noack 2022) and manifold learning methods (Farzamnik et al. 2023).

In this work we focus on automated data-driven modelling. The starting point is
cluster-based ROMs (CROMs), pioneered by Burkardt, Gunzburger & Lee (2006).
Clustering is an unsupervised classification of patterns into groups commonly used in
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data science (Jain & Dubes 1988; Jain, Murty & Flynn 1999; Jain 2010), it is popular in
data mining, document retrieval, image segmentation and feature detection (Kim et al.
2022). The foundation of the CROM lies in the cluster-based Markov model (CMM)
proposed by Kaiser et al. (2014), which combines a cluster analysis of an ensemble of
snapshots and a Markov model for transitions between different flow states reduced by
clustering. The CMM has provided a valuable physical understanding of the mixing layer,
Ahmed body wakes (Kaiser et al. 2014), combustion-related mixing (Cao et al. 2014) and
the supersonic mixing layer (Li & Tan 2020). Nair et al. (2019) applied the cluster-based
model to feedback control for drag reduction and first introduced a directed network for
dynamical modelling. Building on this concept, Fernex, Noack & Semaan (2021) and Li
et al. (2021) further proposed the cluster-based network model (CNM) with improved
long-time-scale resolution. Instead of the ‘stroboscopic’ view of the CMM, the CNM
focuses on non-trivial transitions. The dynamics is restricted to a simple network model
between the cluster centroids, like a deterministic–stochastic flight schedule that allows
only a few possible flights with corresponding probabilities and flight times consistent with
the data set. Networks of complex dynamic systems have gained great interest, forming an
increasingly important interdisciplinary field known as network science (Watts & Strogatz
1998; Albert & Barabási 2002; Börner, Sanyal & Vespignani 2007; Barabási 2013).
Network-based approaches are often used in fluid flows (Nair & Taira 2015; Hadjighasem
et al. 2016; Taira, Nair & Brunton 2016; Yeh, Gopalakrishnan Meena & Taira 2021; Taira &
Nair 2022), in conjunction with clustering analysis (Bollt 2001; Schlueter-Kuck & Dabiri
2017; Murayama et al. 2018; Krueger et al. 2019). The critical structures that modify
the dynamical system can be identified by the intra- and inter-cluster interactions using
community detection (Gopalakrishnan Meena, Nair & Taira 2018; Gopalakrishnan Meena
& Taira 2021).

The CROMs are fully automated, robust and physically interpretable, while the model
accuracy is strongly related to the clustering process. The state space is equivalently
discretized in the above-mentioned CROMs, leading to a lack of dynamic coverage. For
example, the CNM struggles to capture multiscale behaviours such as the oscillations
near attractors and the amplitude variations between trajectories. To address this issue,
an effective solution is to employ dynamics-augmented clustering to determine the
centroid distribution. Inspired by the hierarchical clustering (Deng et al. 2022) and
the network sparsification (Nair & Taira 2015), we propose a dynamics-augmented
cluster-based network model (dCNM) with an improved resolution of complex dynamics.
In this case, the time-resolved dynamics is reflected by the evolution of trajectory
segments after the state space is clustered. These segments are automatically identified
from cluster transitions and are represented by centroids obtained through segment
averaging. A second-stage clustering further refines the centroids, eliminating the network
redundancy and also deepening the comprehension of underlying physical mechanisms.
The proposed dCNM can systematically identify complex dynamics involved in the case
of multi-attractor, multi-frequency and multiscale dynamic systems. Figure 1 provides
a comparative illustration of CNM and dCNM in terms of kinematics and dynamics,
exemplified by an inward spiral trajectory in a two-dimensional state space.

The dCNM is first applied to the Lorenz (1963) system as an illustrative example. The
Lorenz attractor is notable for the ‘butterfly effect’, showcasing the chaotic dynamics
governed by only three ordinary differential equations. Subsequently, we demonstrate
the dCNM on the sphere wake of the periodic, quasi-periodic and chaotic flow regimes.
The sphere wake is a well-investigated benchmark configuration, serving as a prototype
flow of bluff body wakes commonly encountered in many modern applications, for
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Kinematics

CNM

dCNM

Dynamics

Figure 1. Principle sketches: the CNM and the dCNM are illustrated using an inward spiral trajectory in a
two-dimensional state space with the same number of centroids. The thick solid lines denote cluster divisions
and the thin solid lines represent sub-cluster divisions. The centroids are represented by coloured dots and their
colours represent their cluster affiliations. The CNM centroids are derived from snapshot averages within each
cluster and show uniform geometric coverage, whereas the dCNM centroids incorporate dynamic features and
exhibit a weighted distribution. Consequently, dCNM accurately reconstructs the cycle-to-cycle variations and
also ensures precise transition sequencing.

instance, the design of drones and air taxis. Despite the simple geometry, the sphere
wake can experience a series of bifurcations with increasing Reynolds number. Along
the route to turbulence, the flow system exhibits steady, periodic, quasi-periodic and
chaotic flow regimes. The transient and post-transient flow dynamics, characterised by
multi-frequency and multiscale behaviours, provide a challenging testing ground for
reduced-order modelling.

This paper is organised as follows. In § 2 the clustering algorithm and the different
perspectives on the dCNM strategy are described. In § 3 the dCNM is illustrated on the
Lorenz system and in § 4 it is demonstrated on the sphere wake of three flow regimes: the
periodic flow, the quasi-periodic flow and the chaotic flow. In § 5 the main findings and
improvements are summarised and future directions are suggested.

2. Dynamics-augmented CNM

In this section we detail the process of the dCNM. In § 2.1 the k-means++ clustering
algorithm and its demonstration on the state space are introduced. The second-stage
clustering on the trajectory segments is further discussed in § 2.2. In § 2.3 the transition
characteristics are described and in § 2.4 different criteria are introduced to evaluate the
performance of the proposed model. The variables used in this section are listed in table 1.
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Variables Description

um Time-resolved snapshots
M Number of snapshots

Clustering the state space

K Number of clusters
Ck, Ci Clusters obtained by the state space clustering
χm

k Characteristic function of the state space clustering
Mk Number of snapshots in cluster Ck
χm

ik Characteristic function of transition from Ck to Ci
ck Centroids of clusters
nik Number of transitions from Ck to Ci
nk Total number of transitions from Ck
ntraj Total number of transitions of the data set
Qik Cluster transition probability from Ck to Ci
Tik Cluster transition time from Ck to Ci
Q Cluster transition probability matrix
T Cluster transition time matrix
Ru Cluster deviation on snapshots

Clustering the trajectory segments

T(kl) The lth trajectory segment in Ck
χm

(kl) Characteristic function of the second-stage clustering
M(kl) Number of snapshots in trajectory segment T(kl)
c(kl), c(ij) Centroids of trajectory segments
L = [L1, . . . , LK]ᵀ Number of sub-clusters for the second-stage clustering
n(ij)(kl) Number of transitions from c(kl) only to c(ij)
Q(ij)(kl) Centroid transition probability from c(kl) to c(ij)
Qik Centroid transition probability matrix
Qk Centroid transition probability tensor
RT Cluster deviation on trajectory segments

Table 1. Table of variables. Subscripts k and i are related to the level of clusters from the state space
clustering, and subscripts l and j are related to the level of trajectory segments.

2.1. Clustering the state space
The dynamics-augmented clustering procedure is divided into two steps. Initially, the
state space is clustered, yielding coarse-grained state transition dynamics with trajectory
segments composed of time-continuous snapshots within each cluster. Subsequently, we
cluster these trajectory segments, utilising centroids derived from the average of each
segment. This step optimises the centroid distribution and eliminates the redundancy of
the trajectory segments.

The first-stage clustering discretizes the high-dimensional state space by grouping the
snapshots. We first define a Hilbert space L 2(Ω), in which the inner product of vector
fields in the domain Ω is given by a square-integrable function:

(u, v)Ω =
∫

Ω

dx u · v. (2.1)

Here u and v represent snapshots of this vector field, also known as observations in the
machine learning context. The corresponding norm is defined as

‖u‖Ω :=
√

(u, u)Ω. (2.2)
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The distance D between two snapshots can be calculated as

D(u, v) = ‖u− v‖Ω. (2.3)

The unsupervised k-means++ algorithm (MacQueen 1967; Lloyd 1982; Arthur &
Vassilvitskii 2007) is used for clustering. It operates automatically, devoid of assumptions
or data categorisation. Serving as the foundation of cluster analysis, this algorithm
partitions a set of M time-resolved snapshots um, where m = 1 . . . M, into K clusters Ck,
where k = 1 . . . K. Each cluster corresponds to a centroidal Voronoi cell, with the centroid
defined as the average of the snapshots within the same cluster. The algorithm comprises
the following steps.

(i) Initialisation: K centroids ck, where k = 1 . . . K, are randomly selected. In contrast
to the k-means algorithm, k-means++ optimises the placement of these centroids to
prevent sensitivity to initial conditions.

(ii) Assignment: each snapshot um is allocated to the nearest centroid by
arg min

k
D(um, ck). The characteristic function is used to mark their affiliation, and

it is defined as follows:

χm
k :=

{
1, if um ∈ Ck,
0, otherwise. (2.4)

(iii) Update: each centroid is recalculated by averaging all the snapshots belonging to the
corresponding cluster as

ck = 1
Mk

∑
um∈Ck

um = 1
Mk

M∑
m=1

χm
k um, (2.5)

where

Mk =
M∑

m=1

χm
k . (2.6)

(iv) Iteration: the assignment and update steps are repeated until convergence is reached.
Convergence means that the centroids do not move or stabilise below a certain
threshold. The algorithm minimises the intra-cluster variance and maximises the
inter-cluster variance. The intra-cluster variance is computed as follows:

J (c1, . . . , cK) =
K∑

k=1

M∑
m=1

χm
k ‖um − ck‖2Ω. (2.7)

Each iteration reduces the value of the criterion J until convergence is reached.

The cluster probability distribution P = [P1, . . . , PK] is determined by Pk = Mk/M for
each cluster Ck, and satisfies the normalisation condition

∑K
k=1Pk = 1.

The geometric properties of the clusters are quantified for further analysis. The cluster
standard deviation on the snapshots Ru

k measures the cluster size, following Kaiser et al.
(2014), as

Ru
k =

√√√√ 1
Mk

M∑
m=1

χm
k ‖um − ck‖2Ω. (2.8)

The time-resolved snapshots should be equidistantly sampled and cover a statistically
representative time window of the coherent structure evolution. As a rule of thumb, at least
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ten periods of the dominant frequency are needed to obtain reasonably accurate statistical
moments and at least K snapshots per characteristic period to capture an accurate temporal
evolution.

2.2. Clustering the trajectory segments
After the state space is discretized, the trajectory is also divided into segments. We use
the cluster transition information to identify the trajectory segments that pass through a
cluster.

Based on the temporal information from the given data set, the nonlinear dynamics
between snapshots are modelled as linear transitions between clusters, known as the classic
CNM (Fernex et al. 2021; Li et al. 2021). We infer the probability of cluster transition from
the data as

Qik = nik

nk
, i, k = 1, . . . , K, (2.9)

where Qik is the direct cluster transition probability from cluster Ck to Ci and nik is the
number of transitions from Ck only to Ci:

nik =
M∑

m=1

χm
ik . (2.10)

Here

χm
ik =

{
1, if um ∈ Ck and um+1 ∈ Ci,
0, otherwise, (2.11)

nk is the total number of transitions from Ck regardless of the destination cluster:

nk =
K∑

i=1

nik, i, k = 1, . . . , K. (2.12)

If Qik /= 0, it can be inferred that in cluster Ck there exists at least one trajectory
segment that is bound for cluster Ci. We assign distinct labels to each trajectory segment
corresponding to all destination clusters, denoted as T(kl), where k and l represent the lth
segment in Ck. Therefore, the snapshots are marked according to their trajectory affiliations
by a characteristic function:

χm
(kl) =

{
1, if um ∈ T(kl),
0, otherwise. (2.13)

Here k represents the cluster affiliation and l represents the trajectory segment affiliation.
The total number of trajectory segments in Ck equals nk. Note that the final trajectory
segment of the data set will not be considered as it will not lead to any destination cluster
and is usually incomplete. The total number of trajectory segments in the data set can be
obtained by the sum of nk as follows:

ntraj =
K∑

k=1

nk. (2.14)

Analogous trajectory segments within the same cluster will be merged in the subsequent
clustering stage. Operations on the trajectories can often be costly. Efficiency in clustering
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can be achieved by mapping the operations performed on trajectory segments to their
corresponding averages, i.e. the trajectory segment centroids, given their topological
relationship. Additionally, the propagation of our model relies on centroids, rendering the
trajectory information essentially unnecessary. We define the centroids c(kl) as the average
of snapshots belonging to the same trajectory segment:

c(kl) = 1
M(kl)

∑
um∈T(kl)

um = 1
M(kl)

M∑
m=1

χm
(kl)u

m. (2.15)

Here

M(kl) =
M∑

m=1

χm
(kl). (2.16)

The subsequent question pertains to how to determine the number of sub-clusters. The
allocation of sub-clusters within each cluster can be automatically learnt from the data.
To maintain the spatial resolution, more sub-clusters should be assigned to clusters with
a larger transverse size. We first introduce a transverse cluster size vector RT , which
is defined by the standard deviation of the nk centroids c(kl) with respect to the cluster
centroid ck as follows:

RT
k =

√√√√ 1
nk

nk∑
l=1

‖c(kl) − ck‖2Ω. (2.17)

Next, we denote the number of sub-clusters as Lk for clustering the centroids in cluster Ck.
A K-dimensional vector L = [L1, . . . , LK]ᵀ records the numbers of sub-clusters in each
cluster, with Lk determined by

Lk = min(�R̂T
k ntraj(1− β)� + 1, nk). (2.18)

Here, the vector RT is normalised with the sum
∑K

k=1RT
k , denoted as R̂

T
, which ensures

a suitable distribution of sub-clusters for the ensemble of ntraj trajectories. To increase the
flexibility of the model, we introduce a sparsification controller β ∈ [0, 1] in this clustering
process. For the extreme value of β = 1, all the centroids are merged into one centroid, and
the dCNM is identical to a classic CNM, with the maximum sparsification. For the other
extreme β = 0, the dCNM is minimally sparsified according to the transverse cluster size.
For periodic or quasi-periodic systems, the dCNM with a large β can capture most of the
dynamics, while for complex systems such as chaotic systems, a small β may be needed.
In addition, the minimum function prevents the possibility that the left-hand side of the
equation exceeds the number of centroids nk when β is too small, causing the second-stage
clustering to not be performed. The choice of β is discussed in Appendix C.

The refined centroids are obtained by averaging a series of centroids related to
analogous trajectory segments. The redundancy of the ntraj centroids is mitigated, and
the corresponding transition network becomes sparse. The k-means++ algorithm is also
used in the second-stage clustering. It will iteratively update the centroids c(kl) and the
characteristic function χm

(kl) until convergence or the maximum number of iterations is
reached. The overall clustering process of the dCNM is summarised in Algorithm 1.
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Algorithm 1: Pseudocode for the dynamics-augmented clustering procedure
Input: um: Snapshots;
K: Number of clusters;
β: Sparsification index (0 ≤ β ≤ 1);
Output: c(kl): Refined centroids;
Ru

k , RT
k : Geometric properties;

χm
(kl): Characteristic function

1 Apply k-means++ algorithm with K clusters to um

2 Save the characteristic function as χm
k

3 for k← 1 to K do
4 for i← 1 to K do
5 Compute the transition probability Qik
6 if Qik /= 0 then
7 Locate the time-continuous snapshots in cluster Ck on each trajectory

segment to Ci
8 Save the characteristic function χm

(kl) accordingly
9 end

10 end
11 Compute and save the centroids c(kl) by χm

(kl), compute the geometric properties
Ru

k and RT
k

12 end
13 Compute L by RT

k and β

14 for k← 1 to K do
15 Locate the centroids c(kl) in cluster Ck
16 Apply k-means++ algorithm with Lk clusters directly to c(kl)
17 Update the characteristic function χm

(kl) and the centroids c(kl).
18 end

2.3. Characterising the transition dynamics
We use the centroids obtained from § 2.2 as the nodes of the network and the linear
transitions between these centroids as the edges of the network. First, we introduce two
transition properties: the centroid transition probability Q(ij)(kl) and the transition time Tik.

Figure 2 illustrates the definition of the subscripts in the centroid transition probability
Q(ij)(kl), which can contain all possible transitions between the refined centroids of clusters
Ck and Ci. Considering the transitions between these centroids, we define Q(ij)(kl) as

Q(ij)(kl) = n(ij)(kl)

nk
, i, k = 1, . . . , K, j = 1, . . . , Li, l = 1, . . . , Lk, (2.19)

where n(ij)(kl) is the number of transitions from c(kl) only to c(ij). This definition differs from
that of the CNM, which uses the cluster transition Qik in (2.9) to define the probability. In
fact, we can compute Qik by summing up Q(ij)(kl) as follows:

Qik =
Li∑

j=1

Lk∑
l=1

Q(ij)(kl). (2.20)
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Cluster k Cluster i

c(kl)

c(ij)

Figure 2. Illustration of the subscripts in the refined centroid transitions. After the state space is clustered, only
one subscript is needed to distinguish the different clusters, such as Ck and Ci. After the trajectory segments are
clustered, two subscripts are needed to represent the refined centroids, such as c(kl) in Ck and c(ij) in Ci.

Cluster k

tn tn+1 tn+2

Cluster iτn
ik

τn
k τn

i

Figure 3. Individual transition time τ n
ik for the transition from cluster Ck to Ci.

The definition of the transition time Tik is identical to the CNM, as shown in figure 3. This
property is not further investigated in the present work, as the transition time crossing the
same clusters varies little in most dynamic systems.

Let tn be the instant when the first snapshot enters, and tn+1 be the instant when the last
snapshot leaves on one trajectory segment passing through cluster Ck. The residence time
τ n

k is the duration of staying in cluster Ck on this segment, which is given by

τ n
k = tn+1 − tn. (2.21)

For an individual transition from Ck to Ci, the transition time is defined as τ n
ik, which can

be obtained by the average of the residence times from both clusters:

τ n
ik = (τ n

k + τ n
i )/2. (2.22)

By averaging τ n
ik for all the individual transitions from Ck to Ci, the transition time can be

expressed as

Tik =
∑nik

n=1 τ n
ik

nik
. (2.23)

The essential dynamics can also be summarised into single entities as in the CNM, since
the cluster-level information is still retained in the current model. For completeness, we
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Dynamics-augmented cluster-based network model

introduce the cluster transition probability matrix Q and the cluster transition time matrix
T as

Q = Qik ∈ R
K×K, i, k = 1, . . . , K

T = Tik ∈ R
K×K, i, k = 1, . . . , K.

}
(2.24)

The cluster indices are reordered in both matrices to enhance readability. Cluster C1 is the
cluster with the highest distribution probability, C2 is the cluster with the highest transition
probability leaving from C1 and C3 is the cluster with the highest transition probability
leaving from C2, so on and so forth. If the cluster with the highest probability is already
assigned, we choose the cluster with the second highest probability. If all the clusters with
non-zero transition probabilities are already assigned, we choose the next cluster with the
highest distribution probability among the rest.

By analogy with Q, the centroid transition probability Q(ij)(kl) for given affiliations of
the departure cluster k and destination cluster i can form a centroid transition matrix Qik
that captures all possible centroid dynamics between the two clusters:

Qik = Q(ij)(kl) ∈ R
Li×Lk , j = 1, . . . , Li, l = 1, . . . , Lk. (2.25)

Moreover, to summarise the centroid transition dynamics, the centroid transition
probability Q(ij)(kl) for a given affiliation k of only the departure cluster can form a centroid
transition tensor Qk that captures all the possible centroid dynamics from this cluster, as

Qk = Q(ij)(kl) ∈ R
K×Li×Lk , i = 1, . . . , K, j = 1, . . . , Li, l = 1, . . . , Lk. (2.26)

The dCNM propagates the state motion based on the centroids c(kl) for the reconstruction.
To determine the transition dynamics, we first use Qk to find the centroid transitions from
the initial centroid c(kl) to the destination centroid c(ij). As the destination centroids are
determined, the cluster-level dynamics is determined correspondingly. Then, T is used to
identify the related transition time.

We assume a linear state propagation between the two centroids c(kl) and c(ij) obtained
from the tensors, as follows:

um(t) = αik(t)c(ij) + [1− αik(t)] c(kl), αik = t − tk
Tik

. (2.27)

Here tk is the time when the centroid c(kl) is left. Note that we can use splines (Fernex et al.
2021) or add the trajectory supporting points (Hou, Deng & Noack 2022) to interpolate
the motion between the centroids for smoother trajectories.

Intriguingly, we observe that the trajectory-based clustering of the dCNM enhances
the resolution of the cluster transitions. Now each centroid only has a limited number
of destination centroids, often within the same cluster. This minimises the likelihood of
selecting the wrong destination cluster based solely on the cluster transition probability
matrix, as is the case in classic CNM. Consequently, it becomes feasible to accurately
resolve long-term cluster transitions without the need for historical information. It can be
argued that dCNM effectively constrains cluster transitions, leading to outcomes similar
to those obtained with the higher-order CNM (Fernex et al. 2021). This improvement
is attained by replacing higher-order indexing with higher-dimensionality dual indexing.
Specifically, the dual indexing also results in a substantial reduction in the model
complexity. While the complexity of the high-order CNM is defined as KL̃, where K is
the number of clusters and L̃ is the order, the model complexity of the dCNM is expressed
as

∑K
k=1Lk, which is a significantly lower value, particularly when L̃ is relatively large. In
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terms of computational efficiency, dCNM with β = 0.80 reduces the computational time
by 40 % as compared with CNM with the same number of centroids. This improvement is
primarily attributed to the hierarchical clustering. The computational load of the first-stage
clustering on the state space is reduced by a small number of clusters K. The second-stage
clustering on the trajectory segments accounts only for 20 % of the total computation time.

2.4. Validation
The auto-correlation function and the representation error are used for validation. We
examine the prediction errors for cluster-based models considering both spatial and
temporal perspectives. The spatial error arises from the inadequate representation by
cluster centroids, as evidenced by the representation error and the auto-correlation
function. The temporal error arises due to the imprecise reconstruction of intricate
snapshot transition dynamics. This can be observed directly through the temporal
evolution of snapshot affiliations and, to some extent, through the auto-correlation
function.

The auto-correlation function is a practical tool for evaluating ROMs, as it can
statistically reflect the prediction errors. Additionally, the auto-correlation function
circumvents the problem of directly comparing two trajectories with finite prediction
horizons, which may suffer from phase mismatch (Fernex et al. 2021). This is particularly
relevant for chaotic dynamics, whereby minor differences in initial conditions can lead
to divergent trajectories, making the direct comparison of time series meaningless. The
unbiased auto-correlation function of the state vector (Protas, Noack & Östh 2015) is given
by

R(τ ) = 1
T − τ

∫ T−τ

0
(u(x, t), u(x, t + τ))Ω dt, τ ∈ [0, T] . (2.28)

In this study, R(τ ) will be normalised by R(0) (Deng et al. 2022). This function can also
infer the spectral behaviour by computing the fluctuation energy at the vanishing delay.

The representation error can be numerically computed as

Er = 1
M

M∑
m=1

Dm
T , (2.29)

where Dm
T is the minimum distance from the snapshot um to the states on the reconstructed

trajectory T :

Dm
T = min

un∈T
‖um − un‖Ω. (2.30)

3. Lorenz system as an illustrative example

In this section we apply the dCNM to the Lorenz (1963) system to illustrate its superior
spatial resolution in handling multiscale dynamics. We also compare it with the CNM
(Fernex et al. 2021; Li et al. 2021) of the same rank as a reference.

The Lorenz system is a three-dimensional autonomous system with non-periodic,
deterministic and dissipative dynamics that exhibit exponential divergence and
convergence to strange fractal attractors. The system is governed by three coupled
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Figure 4. Phase portrait of the clustered Lorenz system from the CNM and dCNM. The small dots represent
the snapshots and the large dots represent the centroids. Snapshots and centroids with the same colour belong
to the same cluster. As a comparison, the CNM result in (a) is shown with the same number of centroids as the
corresponding dCNM result. The dCNM result in (b) is shown with K = 10 and β = 0.90.

nonlinear differential equations:

dx/dt = σ( y− x),

dy/dt = x(ρ − z)− y,

dz/dt = xy− βz.

⎫⎪⎬
⎪⎭ (3.1)

The system parameters are set as σ = 10, ρ = 28 and β = 8/3. These equations emulate
the Rayleigh–Bénard convection. The trajectory of the system revolves around two weakly
unstable oscillatory fixed points, forming two sets of attractors, that are loosely called
‘ears.’ These two ears have similar but not identical shapes, with the left ear being rounder
and thicker in the toroidal region. The region where the ears overlap is called the branching
region. The Lorenz system has two main types of dynamics. One is that the inner loop
in each ear varies and oscillates for several cycles. The other is that the inner loop may
randomly switch from one ear to another in the branching region and resume oscillatory
motion.

We numerically integrate the system using the fourth-order explicit Runge–Kutta
method. The time-resolved 10 000 snapshots data with um = [x, y, z]ᵀ are collected at a
sampling time step of 	t = 0.015 with an initial condition of [−3, 0, 31]ᵀ (Fernex et al.
2021). This time step corresponds to approximately one-fiftieth of a typical cycle period.
The first 5 % of the snapshots are neglected to reserve only the post-transient dynamics.

Figure 4 shows the phase portrait of the clustered Lorenz system from the CNM and
dCNM.

We set K = 10 for the state space clustering of the dCNM, which is consistent with
previous studies (Kaiser et al. 2014; Li et al. 2021). This number is large enough
for the further subdivision of transition dynamics and is also small enough to obtain
a simple structure for understanding. The sparsification index β is chosen with large
numbers as β = 0.90 to allow for a distinct visualisation of the centroids. In addition,
since the trajectory in each ‘ear’ is confined to a two-dimensional surface, a high value

of β is deemed suitable. The normalised transverse cluster size vector R̂
T = [0.1163,

0.1262, 0.1164, 0.0921, 0.0943, 0.0908, 0.1116, 0.0840, 0.0866, 0.0817]ᵀ corresponds to
the number of sub-clusters L = [13, 15, 13, 11, 11, 11, 13, 10, 10, 10]ᵀ.

The two models exhibit notable differences in centroid distribution. The CNM clustering
relies solely on the spatial topology in the phase space, evenly dividing the entire
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attractor and dispersing centroids uniformly throughout the phase portrait. It can be
inferred that increasing the number of centroids under this uniform distribution does
not lead to substantial changes, merely resulting in a denser centroid distribution. This
uniform distribution possesses certain disadvantages regarding the dynamics. First, it
unnecessarily complicates the transition rhythm as the deterministic large-scale transition
may be fragmented into several stochastic transitions. Second, even with many centroids,
it fails to capture the increasing oscillation amplitude between the loops in one ear,
as the uniform distribution provides only a limited number of centroid orbits. The
same result occurs for the branching region where these limited numbers of centroids
usually oversimplify the switch between ears. In contrast, the distribution of the dCNM
centroids resembles a weighted reallocation. For the Lorenz system, the state space is
stratified along the trajectory direction, leading to a concentrated distribution of the
dCNM centroids in the radial direction of the attractor and the branching region, which
correspond to the system’s primary dynamics. Additionally, varying quantities of the
centroids can be observed in the radial direction in the toroidal region, depending on its
thickness. In thinner toroidal regions with smaller variations between trajectory segments,
the second-stage clustering assigns fewer sub-clusters and, consequently, builds fewer
centroids.

The cluster transition matrices, which are a distinctive feature of cluster modelling,
are preserved because the dCNM maintains the coarse-grained transitions at the cluster
level. Figure 5 illustrates the cluster transition probability matrix Q and the corresponding
transition time matrix T to illustrate the significant dynamics of the Lorenz system.
It is worth noting that in the case of the CNM with an equivalent number of
centroids, the matrices become considerably larger, which diminishes their readability and
interpretability. The matrices reveal three distinct cluster groups. The first group comprises
clusters C1 and C2, which resolve the branching region and exhibit similar transition
probabilities to clusters C3 and C7. The branching region is further linked to different
ears and is crucial to the attractor oscillation. Clusters C1 and C2 can be referred to as
flipper clusters (Kaiser et al. 2014), representing a switch between the different groups.
The equivalent transition probability from C2 is consistent with the random jumping
behaviour of the two ears. The other two groups demonstrate an inner-group circulation
corresponding to the main components of the two ears, exemplified by the cluster chains
C3 → C4 → C5 → C6 and C7 → C8 → C9 → C10. These chains exhibit deterministic
transition probabilities that resolve the cyclic behaviour. In the second-stage clustering
these two groups are further categorised into numerous centroid orbits. Moreover, the
transition time matrix resolves the variance in the transition times, with significantly
shorter transition times observed in the cyclic groups compared with transitions involving
the flipper clusters.

The original and reconstructed trajectories in the phase space are directly compared.
We focus solely on the spatial resolution, disregarding phase mismatches during temporal
evolution. Figure 6 shows the original Lorenz system and the reconstruction by the
CNM and dCNM with the same parameters as in figure 4. To ensure clarity, we
select a time window from t = 0 to t = 30 for the trajectories and employ spline
interpolation for a smooth reconstruction. Inaccurate or non-physical centroid transitions,
along with incomplete dynamic coverage, can lead to substantial deformations in the
reconstructed trajectory. As expected, the dCNM provides a more accurate reconstruction
than the CNM. The CNM uses a finite number of centroid orbits to represent oscillating
attractors, converting slow and continuous amplitude growth into limited and abrupt
amplitude jumps. Furthermore, the CNM may group one continuous snapshot loop
into clusters belonging to different centroid orbits, often when these clusters are
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Figure 5. Transition matrices of the Lorenz system. The colour bar indicates the values of the terms.
(a) Transition probability matrix Q. (b) Transition time matrix T .
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Figure 6. Trajectory of the Lorenz system. The thin grey curve represents the original trajectory, the thick
red curve represents the reconstructed trajectory and the red dots represent the centroids. (a) The CNM
reconstruction and (b) the dCNM reconstruction are performed with the same parameters as in figure 4.

adjacent to each other. This can lead to unnecessary orbit-crossing centroid transitions
and result in non-physical radial jumps in the reconstructed trajectory. In contrast,
the dCNM provides more comprehensive dynamic coverage, resolving more cyclic
behaviour with additional centroid orbits. Dual indexing also guarantees accurate centroid
transitions. The radial jumps are eliminated, as departing centroids can only transition
to destination centroids within the same centroid orbits. Consequently, oscillations are
effectively resolved by the centroid orbits, and transitions between them are constrained
by densely distributed centroids in the branching region, ensuring a smoothly varied
oscillation.

The auto-correlation function is computed to reflect the model accuracy, as shown in
figure 7. In the original data set, the normalised auto-correlation function R(τ )/R(0)

vanishes smoothly as τ increases, and the variance between the periodic behaviour
can be clearly observed. However, the CNM reconstruction captures only the first four
periods of oscillation dynamics. As τ increases, there is a sudden amplitude decay
accompanied by a phase mismatch. This can be attributed to amplitude jumps between the
centroid loops and commonly occurring orbit-crossing transitions. In contrast, the dCNM
reconstruction accurately captures both the amplitude and frequency of the oscillation
dynamics, demonstrating robust and precise long-time-scale behaviours.
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Figure 7. Auto-correlation function for τ ∈ [0, 30) of the Lorenz system. The thin black curves represent the
original data set and the thick red curves represent the models: (a) CNM and (b) dCNM.

4. Dynamics-augmented modelling of the sphere wake

In this section we demonstrate the dCNM for the transient and post-transient flow
dynamics of the sphere wake. The numerical method for obtaining the flow field data
set and the flow characteristics is presented in § 4.1. The performance of the dCNM for
the periodic, quasi-periodic and chaotic flow regimes is evaluated in §§ 4.2, 4.3 and 4.4,
respectively. The physical interpretation of the modelling strategy is discussed in § 4.5.

4.1. Numerical methods and flow features
Numerical simulation is performed to obtain the data set, as shown in figure 8. A sphere
with a diameter D is placed in a uniform flow with a streamwise velocity U∞. The
computational domain takes the form of a cylindrical tube, with its origin at the centre of
the sphere and its axial direction along the streamwise direction (x axis). The dimensions
of the domain in the x, y and z directions are 80D, 10D and 10D, respectively. The inlet
is located 20D upstream from the sphere. These specific domain parameters are chosen to
minimise any potential distortion arising from the outer boundary conditions while also
mitigating computational costs (Pan, Zhang & Ni 2018; Lorite-Díez & Jiménez-González
2020). The fluid flow is governed by the incompressible Navier–Stokes equations:

∂u/∂t + u · ∇u+∇p−∇2u/Re = 0,

∇ · u = 0.

}
(4.1)

Here u denotes the velocity vector (ux, uy, uz), p is the static pressure and Re is the
Reynolds number, which is defined by

Re = U∞D/ν, (4.2)

where ν is the kinematic viscosity.
The net forces on the sphere have three components Fα , α = x, y, z, and the

corresponding force coefficients Cα are defined as

Cα = 2Fα

ρU2∞S
, (4.3)

where S = πD2/4 is the projected surface area of the sphere in the streamwise direction.
The total drag force coefficient is CD = Cx. Since the lift coefficient can have any direction
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Figure 8. Numerical sketch of the sphere wake.

in the yz plane on the axisymmetric sphere, the total lift force coefficient CL is given by

CL =
√

C2
y + C2

z . (4.4)

The flow parameters are non-dimensionalised based on the characteristic length D and the
free-stream velocity U∞. This implies that the time unit scales are D/U∞ and the pressure
scales are ρU2∞, where ρ is the density. The Strouhal number St is correspondingly
expressed as

St = f , (4.5)

where f is the characteristic frequency.
The ANSYS Fluent 15.0 software is used as the computational fluid dynamics (CFD)

solver for the governing equations with the cell-centred finite volume method. We impose
a uniform streamwise velocity u = [U∞, 0, 0] at the inlet boundary and an outflow
condition at the outlet boundary. The outflow condition is set as a Neumann condition
for the velocity, ∂xu = [0, 0, 0], and a Dirichlet condition for the pressure, pout = 0. We
apply a no-slip boundary condition on the sphere surface and a slip boundary condition
on the cylindrical tube walls to prevent wake-wall interpolations. The pressure-implicit
split-operator algorithm is chosen for pressure–velocity coupling. For the governing
equations, the second-order scheme is used for the spatial discretization, and the first-order
implicit scheme is used for the temporal term. To satisfy the Courant–Friedrichs–Levy
condition, a small integration time step is set as 	t = 0.01 non-dimensional time unit, such
that the Courant number is below 1 for all simulations. For the periodic flow at Re = 300,
the simulation starts in the vicinity of the steady solution and runs for t = 200 time units,
incorporating the transient and post-transient dynamics. For the quasi-periodic flow, the
simulations are performed for t = 500 time units and for the chaotic flow for t = 700 time
units. The snapshots are collected at a sampling time step of 	ts = 0.2 time units for all the
test cases. Moreover, we discard the first 200 time units to eliminate any transient phases
for the quasi-periodic and chaotic cases. The relevant numerical investigation approach
can be found in Johnson & Patel (1999) and Rajamuni, Thompson & Hourigan (2018). For
the convergence and validation studies, see Appendix A.
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The wake of a sphere exhibits different flow regimes as Re increases, ultimately
transitioning to a chaotic state. At Re = 20 ∼ 24, flow separation occurs, forming a steady
recirculating bubble, as observed in previous studies (Sheard, Thompson & Hourigan
2003; Eshbal et al. 2019). The length of this wake grows linearly with ln(Re). When
Re surpasses 130 (Taneda 1956), the wake bubble starts oscillating in a wave-like
manner, while the flow maintains axisymmetry. The first Hopf bifurcation takes place
at approximately Re ≈ 212 (Fabre et al. 2008), leading to a loss of axisymmetry and
the emergence of a planar-symmetric double-thread wake with two stable and symmetric
vortices. The orientation of the symmetry plane can vary (Johnson & Patel 1999). At a
subsequent Hopf bifurcation around Re = 270 ∼ 272 (Johnson & Patel 1999; Fabre et al.
2008), the flow becomes time dependent, initiating periodic vortex shedding with the same
symmetry plane as before. In the range 272 < Re < 420 (Eshbal et al. 2019), periodicity
and the symmetry plane diminish, with the vortex shedding becoming quasi-periodic and
then fully three dimensional. Beyond Re = 420, shedding becomes irregular and chaotic
(Ormières & Provansal 1999; Pan et al. 2018; Eshbal et al. 2019), due to the azimuthal
rotation of the separation point and lateral oscillations of the shedding.

In this study we examine three baseline flow regimes of the sphere wake: periodic flow
at Re = 300, quasi-periodic flow at Re = 330 and chaotic flow at Re = 450. Figure 9
illustrates the flow characteristics of these regimes. Figure 9(a,b) depicts the lift coefficient
CL of the periodic flow. The oscillation of CL starts after a few time units, with the
amplitude gradually increasing in the cycle-to-cycle evolution, eventually forming the limit
cycle. Figure 9(c) shows the instantaneous vortex structures of the quasi-periodic flow,
identified by the Q criterion and colour coded by the non-dimensional velocity U∞. The
vortex shedding forms hairpin vortices with slight variations between successive shedding
events, signifying the absence of short-term periodicity while retaining long-term
periodic behaviour. Figure 9(d,e) shows the temporal evolution of CL and its phase
portrait, respectively. The amplitude of CL is strongly associated with the quasi-periodic
dynamic, and the modulation also thickens the limit cycle of the oscillator on the phase
portrait. The power spectral density in figure 9( f ) indicates two dominant frequencies:
a higher frequency linked to natural shedding and a lower frequency associated with
amplitude modulation resulting from variations between shedding events. For chaotic flow,
periodicity entirely vanishes, and the flow regime displays the typical features of a chaotic
system. The hairpin vortexes in figure 9(g) shed irregularly, with varying separation
angles and even double spirals. The temporal evolution of CL in figure 9(h) exhibits more
complex dynamics, with the phase diagram in figure 9(i) depicting many random loops
that no longer exhibit circular patterns. Furthermore, the power spectral density of CL in
figure 9( j) shows a broad peak, also indicating chaotic features.

We performed a lossless POD preprocessing on the snapshots to reduce the
computational cost of clustering the three-dimensional flow field data set, as described
in Appendix B. This preprocessing is optional and does not affect the distance measure
in the clustering algorithm. For consistency, the notation snapshot is maintained in the
following for the preprocessed data.

4.2. The periodic flow regime at Re = 300
We compare the dCNM to the CNM for the periodic flow regime of the sphere wake at
Re = 300. The transient and post-transient dynamics are considered, providing insights
into the mechanisms for the instability and nonlinear saturation.

The comparison between the CNM and the dCNM clustering for the periodic flow is
presented in figure 10. In the dCNM we set K = 10 for state space clustering and β = 0.50
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Figure 9. Flow characteristics of the sphere wake. The periodic flow at Re = 300 including the transient and
post-transient dynamics is displayed by (a) the phase portrait of the lift coefficient CL and (b) the temporal
evolution of CL. The quasi-periodic flow at Re = 330 is displayed by (c) vortex structures, where the vortexes
are identified by the Q criteria and are colour coded by the non-dimensional velocity U∞, (d) temporal evolution
of CL, (e) phase portrait of CL and ( f ) power spectral density of CL on a time series of length Ttraj = 100 (red
curve) and Ttraj = 300 (black curve). The chaotic flow at Re = 450 is displayed by (g) vortex structures, (h)
temporal evolution of CL, (i) phase portrait of CL and ( j) power spectral density of CL on a time series of length
Ttraj = 500.
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Figure 10. Three-dimensional visualisation of the clustered periodic flow regime of the sphere wake at Re =
300. Classical multidimensional scaling is applied to the data set to visualise the high-dimensional snapshots
and centroids in the subspace. The small dots represent the snapshots and the large dots represent the centroids.
Snapshots and centroids with the same colour belong to the same cluster. For comparison, the CNM result in
(a) is shown with the same number of centroids as the corresponding dCNM result. The dCNM result in (b) is
shown with K = 10 and β = 0.50.

for the sub-clustering. The value of β characterises the trade-off between a small number
of sub-clusters and the model accuracy. The normalised transverse cluster size vector

R̂
T = [0.1510, 0.1101, 0.0855, 0.1120, 0.1069, 0.1031, 0.0650, 0.0934, 0.0883, 0.0847]ᵀ

corresponds to the number of sub-clusters L = [3, 3, 3, 4, 4, 4, 3, 3, 3, 3]ᵀ. Classical
multidimensional scaling is applied to project the high-dimensional snapshots and
centroids into a three-dimensional subspace [a1, a2, a3]ᵀ for visualisation. The snapshots
form a conical surface in the three-dimensional subspace, where the trajectory spirals up
from a fixed point to a periodic motion. This behaviour is indicative of a Hopf bifurcation,
which involves an unstable steady solution and nonlinear saturation to a periodic limit
cycle. Most of the CNM centroids are located on the limit cycle and only a few resolve the
transient phase. In contrast, the dCNM centroids offer a finer resolution of the amplitude
growth.

The original and reconstructed trajectories of the CNM and dCNM for the periodic
flow regime are shown in figure 11. The CNM fails to resolve the transient dynamics
and only captures the stable limit cycle. In contrast, the dCNM can effectively resolve
both the cyclic behaviour and the growing oscillation amplitude. Given the deterministic
nature of these transient and post-transient dynamics, the centroid transition should yield
a permutation matrix – each column and each row of the matrix should only have one
element being unity. However, in the CNM, under-resolved transient dynamics result in a
stochastic transition matrix. The transition uncertainty expressed within a column of the
matrix often leads to prediction errors. Examples are the unphysical jumps between erratic
cycles in the transient stage, as displayed in figure 10(a). The sub-clusters in dCNM are
designed to capture a one-way forward transition from the starting point to the limit cycle,
ensuring an accurate reconstruction of the deterministic dynamics.

The other extreme is the maximum transition uncertainty, which can be represented by
the least informative transition matrix – a perfectly mixing matrix with elements Qik ≡
1/K. The information entropy (Shannon 1948)

S(Q) = −
K∑

i=1

K∑
k=1

Qik ln Qik (4.6)
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Figure 11. Trajectory of the periodic flow at Re = 300. The thin grey curve represents the original trajectory,
the thick red curve represents the reconstructed trajectory and the red dots represent the centroids. (a) The
CNM reconstruction and (b) the dCNM reconstruction are obtained with the same parameters as in figure 10.

of the permutation matrix vanishes. In contrast, the maximum information entropy K ln K
is obtained from the perfectly mixing transition matrix with equal elements Qik ≡ 1/K.
Here, the knowledge of the current state has no predictive value for the future population.
For the current case, the reference model has an entropy SCNM = 7.0586, which is much
smaller than the upper bound 33 ln 33 ≈ 115.38. The proposed model minimises entropy,
SdCNM = 0. Thus, our novel clustering measurably increases the prediction accuracy.

4.3. The quasi-periodic flow regime at Re = 330
The clustered quasi-periodic flow of the CNM and dCNM are shown in figure 12. We
set K = 10 for the state space clustering and β = 0.80 for the subsequent clustering,
which proves adequate for capturing the quasi-periodic dynamics and ensuring clarity in
visualisation. The choice of β and other results with different values of β are discussed in

Appendix C. In this case, the normalised transverse cluster size vector R̂
T = [0.1043,

0.1046, 0.1056, 0.1068, 0.0889, 0.1073, 0.1061, 0.1050, 0.1047, 0.0668]ᵀ corresponds to
the number of sub-clusters L = [7, 7, 7, 7, 6, 7, 7, 7, 7, 5]ᵀ. In the three-dimensional
subspace, the snapshots collectively form a hollow cylinder. The system’s dynamics
is chiefly governed by two underlying physical phenomena: a cyclic behaviour that
synchronises with natural vortex shedding and a quasi-stochastic component responsible
for introducing variations between cycles, which is, in turn, synchronised with the
oscillator amplitude.

The centroid distribution of the CNM reveals that the clustering algorithm fails to
distinguish between the shedding dynamics and inter-cycle variations. It uniformly groups
them based solely on spatial topology. Nonetheless, the CNM centroids effectively capture
the cyclic behaviour, as there exist deterministic transitions between adjacent centroids
within an orbit, forming a limit cycle structure akin to the ‘ear’ of the Lorenz system.
However, this centroid distribution inadequately models the quasi-stochastic component,
as it overlooks the inter-cycle transitions. To comprehensively represent this dynamic, clear
transitions between the limit cycles are essential. The clustering process obscures these
transitions, causing the quasi-stochastic behaviour to resemble a random walk governed by
a fully stochastic process. In essence, the clustering process cannot differentiate between
the random jumps in the Lorenz system and the quasi-stochastic behaviour in this flow
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Figure 12. Same as figure 10 but for the quasi-periodic flow at Re = 330. (a) The CNM result with the same
number of centroids as the dCNM. (b) The dCNM result with K = 10 and β = 0.80.

regime. This explains why the CNM often struggles with multifrequency problems. In
contrast, the dCNM centroids automatically align along the axial direction of the cylinder
with equidistant circumferential spacing, resulting in a greater number of centroid orbits
compared with the CNM. This enhancement enables the accurate resolution of inter-cycle
variations. For the quasi-stochastic behaviour, the denser and occasionally overlapping
centroids in the axial direction ensure precise spatial representation of the transitions
between the limit cycles. Additionally, this behaviour can be further constrained by the
dual indexing approach for long-time-scale periodicity, eliminating random jumps and
ensuring accurate transitions between limit cycles.

The cluster transition matrices of the quasi-periodic flow regime are illustrated in
figure 13. The quasi-periodic dynamics is evident from Q, which displays dominant
transition probabilities corresponding to deterministic cyclic behaviour and minor
wandering transitions signifying inter-cycle variations. Cluster C4 serves as the transition
cluster with two destination clusters, C5 and C10. The two destination clusters have
similar transition probabilities since they are visited for comparable times during the
quasi-periodic transitions. The transition cluster bridges the deterministic cluster chains
C1 → C2 → C3 → C4 and C6 → C7 → C9 → C1 as two different limit cycles through
two short cluster chains: C4 → C5 → C6 and C4 → C10 → C6. These two limit cycles
alternate with a fixed order, ultimately forming an extended cluster chain that constitutes
the fundamental elements of the long-term periodicity. However, this characteristic is not
effectively portrayed in the transition matrix. The purely probabilistic transitions from this
matrix can result in arbitrary cluster transitions within the network model, introducing
additional transition errors. Since the CNM relies on this cluster-level matrix, these
transition errors present a notable challenge. While the transition tensors Q, which resolve
the refined centroid transitions, mitigate this issue, we further discuss the transition tensors
and the corresponding centroid transition matrices in Appendix D. The time matrix T
reveals that the transitions within a cyclic behaviour possess a generally similar time scale,
with residence times in adjacent clusters changing smoothly, indicating the presence of a
gradually evolving limit cycle.

The original and reconstructed trajectories using the CNM and dCNM for the
quasi-periodic flow regime are displayed in figure 14. The reconstruction is achieved with
the same parameters as in figure 12. As anticipated, the trajectory reconstructed by the
CNM undergoes substantial deformation, featuring discontinuous cyclic behaviours and a
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Figure 13. Same as figure 5 but for the quasi-periodic flow at Re = 330. (a) Transition probability matrix Q.
(b) Transition time matrix T .
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Figure 14. Same as figure 11 but for the quasi-periodic flow at Re = 330. (a) The CNM reconstruction and
(b) the dCNM reconstruction are obtained with the same parameters as in figure 12.

serrated trajectory. Conversely, the dCNM produces cleaner cyclic behaviours with more
noticeable variations. The reconstructed trajectory accurately replicates the intersecting
limit cycles and guides the inter-cycle transition with reduced spatial errors. These
observations highlight the ability of the dCNM centroids to capture significant dynamics
without assuming any prior knowledge of the data set. A kinematic comparison between
the POD reconstruction and the dCNM reconstruction is presented in Appendix E.

In the following sections we shift our focus to the temporal aspects. The CNM uses the
transition matrices to predict the next destination state for each step. The quasi-periodic
feature will be obscured by the stochastic transition probability matrix and the missing
historical information. In contrast, the dCNM preserves the transition sequence by
embedding the sub-clusters (see Appendix D). Initially, we explore the cluster and
trajectory segment affiliation for each snapshot in both the original data set and the dCNM
reconstruction to illustrate the accuracy of transition dynamics, as depicted in figure 15.
We maintain the same parameters as those used in figure 12 for the reconstruction.
The affiliation of the original data reveals that the dual clustering effectively represents
the quasi-periodic dynamics. The transition dynamics exhibit significant regularity, with
centroids being sequentially and periodically visited, confirming deterministic transitions.
Each period of centroid visits corresponds to an extended cluster chain, encompassing
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Figure 15. Transition illustrated with the temporal evolution of the cluster and trajectory segment affiliation
of the quasi-periodic flow at Re = 330. The vertical direction represents the cluster-level transition and the
horizontal direction indicates the trajectory segments inside this cluster. The transition with black markers
represents the CFD data and the transition with red markers represents the reconstructed dynamics by the
dCNM. The x axis is the non-dimensionalised time t, the y axis is the trajectory segment affiliation l and the z
axis is the cluster affiliation k. The reconstruction is achieved from the same parameters as in figure 12.

multiple centroid orbits and capturing cycle-to-cycle variations. The periodic visits
of these extended cluster chains are instrumental in determining the long-time-scale
periodicity. These transition characteristics are fully preserved by the dCNM due to the
dual indexing constraint. In this case, each departure centroid corresponds to only one
destination centroid, eliminating the stochastic transition in the model and mitigating the
transition errors.

Envelope demodulation can clearly reveal the long-time-scale behaviour and is
more efficient in reflecting the quasi-periodic dynamics. We analyse the envelope
spectrum of the streamwise fluctuation velocity u′x from the data set, CNM, high-order
CNM and dCNM, as depicted in figure 16. The spectrum of the data set exhibits a
dominant frequency f = 0.05, representing long-time-scale periodicity. However, the
CNM spectrum shows significant noise and lacks a clear dominant frequency due to
frequent transition errors. This observation supports the CNM’s limitation in capturing
multifrequency dynamics effectively. By incorporating the historical information, the
high-order CNM demonstrates superior performance by producing a cleaner spectrum
closely aligned with the CFD data’s dominant frequency. Remarkably, the dCNM
outperforms all other models by precisely reconstructing both the frequency and amplitude
while minimising noise.

4.4. The chaotic flow regime at Re = 450
The comparison between the CNM and dCNM clustering with K = 10 and β =
0.40 for the chaotic flow are illustrated in figure 17. This value of β is the sweet
point between model complexity and model accuracy for this test case. Discussions
with different values of β for this flow regime are presented in Appendix C. The

normalised transverse cluster size vector R̂
T = [0.1068, 0.1073, 0.1063, 0.1068, 0.1061,

0.0966, 0.1001, 0.0954, 0.0984, 0.0763]ᵀ corresponds to the number of sub-clusters L =
[22, 22, 22, 22, 22, 20, 21, 20, 20, 8]ᵀ. As the dynamics become more complex, the
snapshots form a chaotic cloud, which is driven by numerous cyclic behaviours of different
scales and indicates irregular three-dimensional vortex shedding. The CNM continues to
cluster the data set primarily based on spatial properties, essentially dividing the chaotic
cloud into different segments in an evenly distributed manner. Figure 17(a) illustrates
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Figure 16. The envelope spectrum of the streamwise fluctuation velocity u′x, obtained by the surface average
in x = 5D. The dCNM reconstruction is achieved with the same parameters as in figure 12 and the CNM
reconstruction is achieved with the same number of centroids as the dCNM.
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Figure 17. Same as figure 10 but for the chaotic flow at Re = 450. (a) The CNM result with the same number
of centroids as the dCNM. (b) The dCNM result with K = 10 and β = 0.40.

this process, with the uniformly spread centroids capturing only part of one whole cyclic
behaviour, limiting their ability to resolve the multiscale dynamics. The dCNM centroids
concentrate in regions of rich dynamics, enabling a more comprehensive resolution
of the cyclic behaviours. These centroids, in various combinations, form the basis of
multi-frequency and multiscale cyclic behaviour. Even after sparsification, the dCNM
centroids can encompass a significant amount of scale diversity by merging only those
that are spatially close to each other.

The cluster transition matrices of the chaotic flow are illustrated in figure 18. The
probability matrix Q in figure 18(a) shows that most of the clusters have three or
more destination clusters, indicating complex transition dynamics among them. Several
dominant transition loops are identifiable, such as the large-size cluster chain C1 → C2 →
C3 → C4 → C5 → C6 → C1, the mid-size cluster chains C1 → C2 → C3 → C4 → C5 →
C1 and C3 → C4 → C5 → C6 → C7 → C3, and the small-size cluster chain C6 → C7 →
C8 → C6. These cluster chains with different lengths represent cyclic loops at different
scales. The small number of chains facilitates human understanding of the transition
dynamics but is insufficient for accurately capturing the dynamics. The dominant loops
have their key transition clusters inside, from which they can randomly jump into
each other by choosing periodic or stochastic routes. This is where the transition error
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Figure 18. Same as figure 5 but for the chaotic flow at Re = 450. (a) Transition probability matrix Q.
(b) Transition time matrix T .

often occurs. The time matrix T in figure 18(b) shows the difference in the transition
times between different types of transitions. Regarding the main loops, the time scale
changes smoothly within its transitions. However, for the jumps between the loops,
the time scale fluctuates considerably, and some transitions can be very large, showing
the diversity of the dynamics. Moreover, this observation implies that the distribution
density of snapshots differs among clusters. In other words, the distribution of the
trajectory segments in different clusters also exhibits significant variations. This explains
the necessity for determining the number of sub-clusters in the second-stage clustering
based on the deviation RT . The refined transition matrices between the centroids are
shown in Appendix D.

The original and reconstructed trajectories by the CNM and dCNM for this flow regime
are shown in figure 19. The reconstruction is achieved with the same parameters as in
figure 17. For a clear visualisation, only the trajectories from the first half of the entire
time window are plotted. This selection suffices to analyse the precision of the current
trajectory, as it contains ample dynamics. We exclude trajectory discrepancies triggered
by phase mismatch and focus exclusively on the accuracy of the present trajectory. In
the case of the CNM, noticeable disparities exist between the original trajectory and
the reconstructed trajectory. These differences include variations in the shape, spatial
location and inclination angle of the cyclic loops. These disparities can be attributed to the
elimination of small-scale structures and the blending of certain large-scale structures due
to the uniform distribution of centroids. Regarding the dCNM, the reconstructed trajectory
nearly occupies the entire chaotic cloud, closely resembling the original trajectory. The
external and internal geometries are accurately reproduced, capturing both large-scale
and small-scale structures. However, despite the improved accuracy, some deformations
persist. These deformations arise from the interpolations between the limited centroids
during one single cyclic loop. Notably, due to its complexity, achieving a superior
reconstruction of a chaotic system often requires more refined centroids compared with
a quasi-periodic system. The kinematic comparison with the POD reconstruction is also
introduced in Appendix E.

Figure 20 shows the auto-correlation function of the CNM, high-order CNM and dCNM.
We still normalise this function by R(0), and the time window is chosen from t = 0 to t =
400, which is sufficient for comparison. For the chaotic flow regime, R(τ )/R(0) denotes
the kinetic energy level of the time window. Nonetheless, a notable discrepancy arises in
the CNM, where the amplitude experiences a distinct decay after the initial few periods. It
eventually stabilises with minimal variation, primarily due to the distorted reconstructed
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Figure 19. Same as figure 11 but for the chaotic flow at Re = 450. (a) The CNM reconstruction and (b) the
dCNM reconstruction are obtained from the same parameters as in figure 17.
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Figure 20. Auto-correlation function of the chaotic flow at Re = 450; here R is normalised by R(0). The thin
black curve represents the CFD data and the thick red curve represents the reconstruction from different models.
(a) The CNM reconstruction with the same number of centroids as the dCNM. (b) The high-order CNM
reconstruction with L = 10 and the same number of centroids as the dCNM. (c) The dCNM reconstruction
with the same parameters as in figure 17.

trajectory and transition errors. This limited variance is indicative of inaccuracies in
capturing short-term dynamics, consistent with the absence of historical information. The
high-order CNM, which incorporates this historical information, outperforms the CNM
in this regard. Its amplitude decays gradually and exhibits variance akin to that of the
data set. Additionally, it reveals some peaks with similar time delays, due to the potential
introduction of unnecessary long-time-scale periodicity into the reconstruction via the
high-order cluster chain. The dCNM also surpasses the CNM with regard to accuracy.
Both the amplitude and phase are faithfully retained, with a gradual amplitude decay and
more pronounced variation. Eventually, the amplitude diminishes, similar to the original
data set. As τ increases, all three models exhibit some degree of phase delay or lead. This
is a consequence of averaged transition times introducing some errors into the model (Li
et al. 2021).

4.5. Physical interpretation
One of the major advances of the cluster-based model is its strong physical interpretability.
The dCNM also maintains and even enhances this nature while improving the model
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accuracy. In this section we discuss the physical interpretation of the CROM exemplified
for the sphere wake, with particular emphasis on the dCNM.

The cluster-based model spatially coarse grains the snapshots into groups and
represents them by centroids to reduce dimensionality. In contrast to the projection-based
methodology, such as the POD–Galerkin model, the cluster-based model uses cluster
centroids that are linear combinations of several snapshots, and thus, reflects the
representative patterns. This feature contributes to its high interpretability. The snapshot
dynamics is mapped into the pattern dynamics, followed by the construction of a
probabilistic mechanism to reduce temporal dimensionality. The network model, with
centroids as nodes and centroid transitions as edges, converts the complex dynamics into
pure data analysis. The centroids act as a bridge between the data-driven model and its
underlying physical background. Furthermore, it is conceivable that the same model can be
easily transferred to analogous pattern dynamics, even with distinct backgrounds, through
adjustments to the centroids’ backstory.

The sphere wake offers a concise physical interpretation based on the centroids. The
coherent structure evolution governs the flow field and manifests as vortex-shedding
events with diverse dynamics. These shedding events can be captured well by a
limit cycle, with a set of centroids representing flow patterns at different shedding
phases as foundational elements. The cyclic transitions between these specific flow
patterns collectively characterise the entire shedding process. The deterministic–stochastic
transitions between different shedding events contribute to the overall periodic–chaotic
dynamics.

To explain the physical mechanisms of the flow regimes, we propose a chord transition
diagram for the cluster transitions and sub-cluster transitions along with centroid
visualisation, which provides a comprehensive view of the flow regime. We start with
the periodic flow, as shown in figure 21. The cluster probability distribution Pk and the
cluster size Ru used for visualising the blocks in figure 21(a) are shown in figure 22(a,b).
The blocks in figure 21(b) are split based on the sub-clusters, the transverse cluster size
is shown in figure 22(c) and the sub-cluster size is shown in figure 22(d). The cluster
transition diagram is capable of clearly distinguishing the dynamic behaviour categories.
The circumferential arrows along the boundary represent the cyclic behaviours, with
centroids transitioning to adjacent destination centroids. The radial arrows crossing the
graph signify cycle-to-cycle transitions, with the centroids transitioning to non-adjacent
destinations. These arrows usually originate from the transition clusters. The number of
radial arrows indicates the dynamic characteristics, with more arrows indicating more
chaotic features.

The cluster dynamics is illustrated in figure 21(a). The limit cycle is captured by the
clusters C4 to C10, shown as the deterministic transitions between adjacent clusters. The
transient phase is resolved by clusters from C1 to C3. However, the stochastic transitions
between the first three clusters are in contrast to the slowly varying amplitude in the
transient state and are insufficient to represent this deterministic process. The distinct
vortex structures of the three centroids also indicate a need for higher resolution. The
sub-cluster transitions leaving from C1 are shown in figure 21(b). The sub-cluster centroids
manifest as varying vortex structures, corresponding to the growing amplitudes. Each
sub-cluster has only one destination, resulting in deterministic transitions. The stochastic
cluster transitions from C1 to C2 and C3 are now terminated into a chain of deterministic
sub-cluster transitions, effectively reducing the prediction error.

The transition graph of the quasi-periodic flow regime is shown in figure 23, with the
corresponding cluster and centroid properties given in figure 24. In figure 23(a) the flow
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Figure 21. Transition diagram of the periodic flow at Re = 300. The centroids are depicted by the vortex
distribution. The vortices are identified by the isosurfaces of z vorticity, with −1 for the negative vortices
coloured in blue and 1 for the positive vortices coloured in red. The transition dynamics is depicted by the
directed arrows, the size of the arrow tail represents the transition probability and the colour is consistent with
the departure block. (a) Cluster transitions. Different blocks represent different clusters, the colour of the block
represents the corresponding cluster probability distribution Pk, and the size of the block represents the cluster
size Ru. (b) Sub-cluster transitions of β = 0.50, with transitions specifically departing from C1, corresponding
to the red-bordered cluster transition in (a). Blocks with the same colour belong to the same cluster, the colour
still represents the cluster probability distribution Pk, and the size of each block represents the sub-cluster size
Ru

sub.
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Figure 22. Cluster and centroid properties of the periodic flow at Re = 300. (a) Cluster probability
distribution. (b) Normalised cluster size. (c) Normalised transverse cluster size. (d) Normalised sub-cluster
size, where the elements from the same cluster sum to unity.

regime is characterised by the cyclic cluster transitions, with only three non-adjacent
transitions, i.e. C4 to C10, C10 to C6 and C9 to C1. The clusters involved in the cyclic
transitions exhibit varying vortex structures within one shedding period. Their relatively
higher probability distribution, as shown in figure 24(a), suggests dominant flow patterns.
For the bifurcating cluster C4, its destination clusters C5 and C10 manifest visible
differences in the far wake. Further distinction of transitions from C4 is provided by the
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Figure 23. Same as figure 21 but for the quasi-periodic flow at Re = 330. (a) Cluster transitions. (b)
Sub-cluster transitions of β = 0.95, with transitions specifically departing from C4, corresponding to the
marked cluster transition in (a).
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Figure 24. Same as figure 22 but for the quasi-periodic flow at Re = 330. (a) Cluster probability distribution.
(b) Normalised cluster size. (c) Normalised transverse cluster size. (d) Normalised sub-cluster size, where the
elements from the same cluster sum to unity.

sub-clusters, as shown in figure 23(b). The centroids belonging to the same cluster are
roughly at the same shedding phase, but exhibit different vortex structures, exemplified
by C4 1 and C4 2. This difference leads to distinct sheddings, such as C10 1 and C5 1.
Consequently, finer dynamic resolution originating from C4 is captured, enabling the
deterministic transitions to C5 and C10, respectively.

The chaotic flow regime exhibits a more complex transition graph, as shown in figure 25.
The relative information is illustrated in figure 26. In figure 25(a), similar to other flow
regimes, adjacent cluster transitions continue to dominate the flow field, reflecting cyclic
behaviours. However, the increasing number of radial arrows with varying transition
probabilities indicates chaotic features. Each centroid represents a distinct flow field
with different scales of vortex structures, even within the same cyclic cluster transition.
This discrepancy indicates that the current flow patterns are inadequate for capturing
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Figure 25. Same as figure 21 but for the chaotic flow at Re = 450. (a) Cluster transitions. (b) Sub-cluster
transitions of β = 0.95, with transitions specifically departing from C1.
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Figure 26. Same as figure 22 but for the chaotic flow at Re = 450. (a) Cluster probability distribution. (b)
Normalised cluster size. (c) Normalised transverse cluster size. (d) Normalised sub-cluster size, where the
elements from the same cluster sum to unity.

the entire shedding dynamic. Concerning the sub-cluster transitions in figure 25(b), the
increased arrows maintain the transition rhythm but offer more specificity. The flow
states can be inferred from the vortex structures surrounding the cyclic diagram. The
centroids within the same cluster also represent vortex structures sharing the same
shedding phase but exhibiting different scales. Only centroids with similar scales of vortex
structures are connected by sub-cluster transitions. The departing sub-clusters are thus
restricted, for instance, C(2 3) and C(10 1) each have only one departing sub-cluster. The
diversity of the centroid transitions guarantees diverse flow scales, while simultaneously
maintaining a consistent scale within the same cluster loop. Therefore, the dCNM
facilitates multiscale fidelity and smoother cyclic behaviours, significantly enhancing the
representation capacity of the model.
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When comparing the cluster transition and the sub-cluster transition in dCNM, it
is evident that the state space clustering can be seen to automatically introduce prior
knowledge into the model. This prior knowledge includes the inner-state kinematic
information, as resolved by the trajectory segments, and the inter-state dynamic
information, as resolved by the transitions between the trajectory segments. The
incorporation aids in the automatic assignment of refined centroids within each cluster and
constrains the probabilistic transition dynamics. In essence, the dCNM can be regarded as
having a built-in unsupervised physics-informing process, which results in superior model
accuracy.

5. Conclusions and outlook

We propose an automatable data-driven ROM for nonlinear dynamics. This model can
resolve the periodic, quasi-periodic and chaotic dynamics of the sphere wake featuring
multi-frequency and multiscale behaviours. The starting point is the CNM (Fernex et al.
2021; Li et al. 2021), which is an automated framework employing clustering and network
science. The dynamics within the CNM are described using a deterministic–stochastic
approach on a network, where centroids act as nodes, and transitions serve as edges.
However, the clustering process in the CNM relies on a uniform geometric coverage of the
snapshot data, agnostic of the temporal dynamic relevance. For multi-frequency dynamics,
this can result in large prediction errors. One example is the long transient to a limit cycle.
Here, the slow increase in the radius requires a finer resolution than the robust angular
dynamics. Hence, the CNM can be expected to be more accurate if the centroids are much
denser in the radial direction than in the angular motion. This idea is incorporated in the
proposed dynamics-augmented CNM (dCNM). The model can automatically stratify the
state space along the trajectory direction.

The dCNM was applied to the Lorenz system (in § 3) and the three-dimensional
sphere wake (in § 4), with K = 10 clusters for the coarse-graining of the state space.
The Lorenz system features oscillatory dynamics, presented as two ‘ears’ consisting of
many unstable orbits, and stochastic dynamics, presented as random switching between
the ‘ears.’ For the future state, the phase can be accurately predicted, but the amplitude
requires a higher resolution. The CNM is only capable of reconstructing limited loops
of the cyclic behaviours and their related transitions in the branching area. Non-physical
radial jumps also occur due to transition errors. On the other hand, the dCNM coarsely
resolves the deterministic phases but accurately resolves the slowly varying amplitude.
The attractor oscillations are distinctly defined, and the transitions in the branching
region are subsequently constrained. For the transient and post-transient dynamics of
the periodic sphere wake, the dCNM accurately resolves the slowly growing amplitude
between the cyclic behaviours. Regarding the quasi-periodic sphere wake, the dCNM
successfully captures both the periodic behaviour and cycle-to-cycle variations. Notably,
it discerns intrinsic deterministic transition behaviours, which are often misinterpreted
as stochastic transitions by the CNM. For the chaotic flow dominated by unstable
periodic orbits with varying scales, the dCNM accurately distinguishes between these
orbits and captures their transitions. Even after sparsification, chaotic features remain
preserved, with transition dynamics demonstrating stochastic characteristics. Overall,
these findings underscore the notable improvement of the dCNM in capturing and
accurately representing multi-frequency and multiscale dynamics.

The dCNM offers several advantages over other reduced-order modelling strategies. It
preserves the advantages of previous cluster-based approaches and adds the following new
noteworthy features.
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(i) The prediction error is minimised. The slow evolution of amplitude oscillations, the
deterministic quasi-periodic dynamics and the stochastic chaotic dynamics can be
automatically resolved without any prior knowledge.

(ii) The model complexity is significantly reduced as the number of non-trivial
transitions is mitigated by design. The CNM often requires more clusters and a
higher order to achieve similar accuracy, with more complex cluster transition
relationships.

(iii) The physical interpretability of the model is enhanced.

Our results suggest entropy as a guiding principle of future cluster-based models. We
characterise the prediction accuracy of the CNM with the Kullback–Leibler entropy
of the transition matrix, called transition entropy for brevity. This transition entropy is
significantly reduced for the dCNM as compared with the CNM for the same number of
centroids. Further improvements may be expected by optimizing the β parameter. Thus,
the dCNM development from snapshots can be fully automated. The results even inspire a
new clustering based on the prediction uncertainty expressed with the transition entropy.
An intrusive framework with the Navier–Stokes propagator may be a further avenue for
improvement.

The dCNM may be compared with the POD-based Galerkin method. By construction,
centroids are physically interpretable as coherent structures. In contrast, POD models
have no intrinsic meaning and typically mix different frequencies. However, in select
cases, the Galerkin method may yield deep insights into linear and nonlinear dynamics.
Examples are the Galerkin mean-field models for the effect of forcing on a vortex shedding
(Semaan et al. 2016), for a single oscillator (Noack et al. 2003) and for frequency cross-talk
(Luchtenburg et al. 2009). The authors work on combining the advantages of clustering
and POD in human-interpretable dynamic models.
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Appendix A. Convergence and validation studies on the simulation of the sphere
wake

To determine an optimal grid size for the numerical analysis, grid convergence studies
were conducted at a Re = 300. For a set of grids with different numbers of grid cells,
the values of the typical flow characteristics are compared with obtain grid-independent
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Cases ns nr Grid cells CD C′D CL C′L St

Grid (a) 32 61 1.93 million 0.6637 0.00183 0.0674 0.00960 0.1363
Grid (b) 49 61 4.61 million 0.6615 0.00194 0.0666 0.01062 0.1363
Grid (c) 49 70 5.07 million 0.6624 0.00185 0.0674 0.01031 0.1363
Grid (d) 49 100 6.58 million 0.6623 0.00175 0.0664 0.01051 0.1363
Grid (e) 64 61 8.12 million 0.6607 0.00193 0.0661 0.01084 0.1363

Table 2. Grid independence test at Re = 300.

results, including the time-averaged drag coefficient CD and its standard deviation C′D, the
time-averaged lift coefficient CL and its standard deviation C′L, and the Strouhal number
St.

The grid refinement is specifically applied to the surface of the sphere and the wake
region. Across all grid configurations, the boundary layer thickness is adjusted to ensure
that the y+ value on the sphere’s surface remains below 1. This adjustment implies that the
first layer of the near-wall grid has a thickness of 0.01D (Pan et al. 2018) with a spacing
ratio of 1.1.

The related flow characteristics of the simulations using different grids are listed in
table 2. Here, ns refers to the number of nodes along the circumference of the sphere
within one of the ‘O’ blocks. This parameter is interconnected with the grid elements
along the streamwise direction and the circumference of the cylinder. On the other hand,
nr signifies the number of elements along the radial direction originating from the surface
of the sphere. Consequently, ns governs the resolution of the wake region, whereas nr
dictates the resolution of the sphere surface region. Comparing grids (a), (b) and (e)
reveals a relatively smaller difference between grids (b) and (e), especially in terms of
standard deviations. As a result, we select ns = 49 for further analysis concerning the
sphere surface region. Examining grids (b), (c) and (d) leads to similar conclusions, given
that there is a more significant increase in the number of grid cells from (c) to (d) than
from (b) to (c), despite limited variations in the flow characteristics. Consequently, based
on these comparisons, it can be concluded that grid (c) is suitable for conducting efficient
simulations with sufficient accuracy in this study.

To validate the numerical method, we compare our results with available data from
related studies. Table 3 presents a comparison between the time-averaged drag coefficient
CD, the time-averaged lift coefficient CL and the Strouhal number St obtained in this study
and those reported in other work for Re = 300.

The results obtained from various studies exhibit a high degree of similarity. This
consistency indicates that our study aligns well with these flow characteristics, as the
values are all small and sensitive.

The convergence and validation studies presented here instill confidence that our
computational grid and selected numerical schemes are adequate for the wake simulations
and for testing the reduced-order modelling method.

Appendix B. Optional POD before clustering

The computational burden of clustering algorithms becomes a concern when dealing with
high-dimensional flow field data. Utilising a lossless POD can effectively compress the
data set. Implementing the clustering algorithm on the compressed data rather than the
high-dimensional velocity fields can significantly reduce the computational time.
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CD CL St

Present study 0.662 0.067 0.136
Johnson & Patel (1999) 0.656 0.069 0.137
Kim, Kim & Choi (2001) 0.657 0.067 0.137
Giacobello, Ooi & Balachandar (2009) 0.658 0.067 0.134
Rajamuni et al. (2018) 0.665 0.070 0.137

Table 3. Validation of the numerical method at Re = 300, compared with the listed literature.

Here we introduce the snapshot POD methodology for the completeness of our work.
The M snapshots of the flow field can be decomposed into spatial POD modes with
temporal amplitudes, where the mth snapshot can be expressed as

um(x) ≈ u0(x)+
M−1∑
i=1

am
i ui(x), (B1)

where u0 is the mean flow, ai is the mode amplitude and ui is the related mode. For the
three-dimensional sphere flow in this work, we maintain the leading 500 POD modes for
a loseless POD, which can resolve more than 99.9 % of the fluctuation energy from all the
flow regimes.

The distance between the snapshots translates into the distance between the
corresponding mode amplitudes as follows:

D(um, un) = D(am, an). (B2)

With this transformation, the reduction in the computational time can be one or two orders
of magnitude, and the statistical description has been formulated in Fernex et al. (2021)
and Li et al. (2021).

Appendix C. Modelling with different values of β

In the dCNM framework a sparsification controller β ∈ [0, 1] is set to determine the
number of sub-clusters in each cluster. As in (2.18), the number of sub-clusters is decided
by the transverse cluster size and the number of trajectory segments in each cluster. With a
given β, the number of sub-clusters in each cluster can be decided, then the second-stage
clustering algorithm will automatically search the centroids. Decreasing β will lead to
more sub-clusters, which means higher model complexity and also higher accuracy in the
dynamic reconstruction. The optimal choice of β can be determined by searching for a
sweet point that balances the model complexity and the model accuracy.

We demonstrate the impact of β on the modelling of the post-transient sphere wake.
Figure 27 displays the clustering results for the quasi-periodic flow, where β takes values
of 1, 0.95, 0.80 and 0. Figure 28 illustrates the results for the chaotic flow, with β values of
1, 0.95, 0.40 and 0. Here β = 1 means fully sparse, and the centroids are equivalent to the
cluster averages, yielding results identical to those of the CNM. Conversely, when β = 0,
the model is minimally sparse, resulting in the highest model accuracy, but also the highest
model complexity. As β decreases, the centroids try to cover more cyclic behaviours,
gradually outlining the entire structure. This expansion involves more trajectory segments
and, consequently, increases the model resolution. For the quasi-periodic flow regime,
there are limitations to this enhancement. Due to the finite axial length of the cylinder, the
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Figure 27. Clustering results with different β on the quasi-periodic flow at Re = 330. Results are shown for
(a) β = 1, (b) β = 0.95, (c) β = 0.80, (d) β = 0.

trajectory segments often overlap. Consequently, increasing the number of sub-clusters
to a certain extent results in extensive centroid overlap, offering minimal contributions
to the resolution improvement. This situation is evident when comparing figures 27(c)
and 27(d), where the centroid distributions are very similar and where centroid overlap
is prevalent. In contrast, centroid overlap is rare in chaotic flows, allowing for noticeable
accuracy improvements with smaller β values. However, using a small β will result in
lengthy and complex centroid transition information. Therefore, for chaotic dynamics, it is
advisable to strike a balance between the model accuracy and complexity by adjusting β

based on specific purposes.
From a spatial perspective, we evaluated the representation error using different β

for the two flow regimes, which is also relevant to determine the appropriate β, where
a sweet point of β can be found considering the model complexity and the model
accuracy, as shown in figure 29. The representation error exhibits different trends for
the two flow regimes as β increases. In the quasi-periodic flow the representation error
remains relatively constant over a wide range of β values and then sharply increases near
β = 1. This abrupt rise suggests that sparsification eliminates the cycle-to-cycle variations.
For the chaotic flow, the representation error changes smoothly from β = 0 to β = 1,
indicating the loss of diversity of the main loop. We can expect a Pareto optimality from
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Figure 28. Clustering results with different β on the chaotic flow at Re = 450. Results are shown for
(a) β = 1, (b) β = 0.95, (c) β = 0.40, (d) β = 0.

the spatial representation error for these two cases, i.e. β = 0.80 for the quasi-periodic
case and β = 0.40 for the chaotic case.

From a temporal perspective, the assignments of each snapshot to the clusters and
centroids of the chaotic flow are illustrated in figure 30. When β = 1, the centroid
affiliation is disregarded and only the cluster-level transitions can be observed, this is the
same with the CNM. The temporal evolution of centroids relies solely on the stochastic
cluster transition probabilities, with each centroid visited multiple times, as shown in
figure 30(a). Conversely, for β = 0, most centroids are visited only once, leading to
the minimum transition error, as seen in figure 30(d). From figure 30(b,c), we can
conclude that even with sparsification, varied cyclic behaviours can still be effectively
captured by the dCNM. This is because different centroid combinations in the dCNM
reconstruction constitute extended cluster chains mentioned in § 4.3, and the occurrence
of extended cluster chains affirms the capability of the dCNM to effectively resolve the
multiscale dynamics. The generally similar visiting sequences in the extended cluster
chains from the dCNM reconstruction and the data set ensure the model accuracy and
the difference highlights that the stochastic transition characteristics of chaotic dynamics
are also reserved.
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Figure 29. Representation error versus the sparsification controller β for the quasi-periodic flow at Re = 330
and the chaotic flow at Re = 450. The results of dCNM are marked with red, and the corresponding results of
high-order CNM with the same number of centroids are marked with black. All values have been normalised
using the representation error of classical CNM with 10 clusters. The marginally lower error of the high-order
CNM for the quasi-periodic case is due to the more numerous distribution of the centroids in one limit cycle,
which constitutes a smoother cyclic trajectory. The dCNM centroids also focus on the variation between loops,
thus with fewer centroids in each loop.
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Figure 30. Temporal evolution of cluster and trajectory segment affiliation with different β for the chaotic
flow at Re = 450. Results are shown for (a) β = 1, (b) β = 0.95, (c) β = 0.40 and (d) β = 0.

Appendix D. The centroid transition matrix

For the non-zero terms in the cluster transition probability matrix, we can embed a
corresponding centroid transition matrix based on the sub-clusters and then record all the
dual indexing centroid transitions by the transition tensors Q.

The centroid transition matrices of the quasi-periodic flow, as discussed in § 4.2,
departing from C4 are shown in figure 31. The matrices of the chaotic flow, as discussed
in § 4.3, departing from C1 are shown in figure 32. For the quasi-periodic flow regime,
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Figure 31. Centroid transition matrices departing from C4 with different β for the quasi-periodic flow at Re =
330: (a) β = 0.95, (b) 0.80 and (c) 0 for the cluster transition C4 → C5; and (d) β = 0.95, (e) 0.80 and ( f ) 0
for C4 → C10.
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Figure 32. Centroid transition matrices departing from C1 with different β for the chaotic flow at Re = 450: (a)
β = 0.95, (b) 0.40 and (c) 0 for the cluster transition C1 → C2; (d) β = 0.95, (e) 0.40 and ( f ) 0 for C1 → C7;
and (g) β = 0.95, (h) 0.40 and (i) 0 for C1 → C10.
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Figure 33. Comparison between the POD reconstruction and the dCNM reconstruction for the quasi-periodic
flow at Re = 330: (a) the POD reconstruction resolving 50 % of the fluctuation energy and (b) the dCNM
reconstruction with β = 0.5.

the matrices are sparse and clear, with centroids having only one destination, indicating
deterministic transitions. Moreover, these transitions impose specific constraints on the
quasi-stochastic dynamics. Once the departing centroid is determined, all destination
centroids belong to the same destination cluster, and the non-zero terms in this column
appear only in one matrix. The stochastic cluster transition can therefore become
deterministic. Compared with the quasi-periodic flow, the transition probabilities in
the matrices of the chaotic flow exhibit stochastic centroid transitions. Some departing
centroids have destination centroids within the same cluster, while others do not.
Consequently, some centroids participate solely in deterministic cluster loops, while others
also engage in random jumps between cluster loops. This distinction separates the cluster
transitions from periodic and stochastic routes and serves as a constraint that distinguishes
multiscale loops and their associated cycle-to-cycle transitions.

Appendix E. The POD reconstruction and the dCNM reconstruction

In this section we compared the flow kinematics reconstructed by POD and the dCNM.
The POD reconstruction uses the leading POD modes and their mode amplitudes to
reconstruct the flow. The number of POD modes is chosen so that the resolved fluctuation
energy is equal to the value of 1− β from the dCNM, i.e. 90 % of the fluctuation energy
resolved by the POD reconstruction is comparable to the dCNM reconstruction with
β = 0.1. For the quasi-periodic flow at Re = 330, the POD reconstruction with 50 % of
the fluctuation energy needs the 5 leading POD modes. For the chaotic flow at Re = 450,
the POD reconstruction with 60 % of the fluctuation energy takes the 19 leading modes.
The dCNM outperforms the POD in resolving the key features of the data under the
same standard. For the quasi-periodic flow in figure 33, the POD results better resolve
the tiny variation between trajectories while exhibiting a larger deformation of the overall
geometry. The dCNM results cover the whole geometry better, while the tiny variation
between trajectories is averaged by the centroids. This elaborates the dCNM with the
advantage of being more robust to noise. This trend is similarly observed in the chaotic
flow in figure 34, where the dCNM better outlines the geometry and resolves the prominent
features.
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Figure 34. Same as figure 33 but for the chaotic flow at Re = 450. (a) The POD reconstruction resolving
60 % of the fluctuation energy and (b) the dCNM reconstruction with β = 0.4.
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LI, H., FERNEX, D., SEMAAN, R., TAN, J., MORZYŃSKI, M. & NOACK, B.R. 2021 Cluster-based network

model. J. Fluid Mech. 906, A21.
LI, S., LI, W. & NOACK, B.R. 2022 Machine-learned control-oriented flow estimation for multi-actuator

multi-sensor systems exemplified for the fluidic pinball. J. Fluid Mech. 952, A36.
LI, H. & TAN, J. 2020 Cluster-based Markov model to understand the transition dynamics of a supersonic

mixing layer. Phys. Fluids 32 (5), 056104.
LLOYD, S. 1982 Least squares quantization in PCM. IEEE Trans. Inf. Theory 28 (2), 129–137.
LORENZ, E.N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20 (2), 130–141.
LORITE-DÍEZ, M. & JIMÉNEZ-GONZÁLEZ, J. 2020 Description of the transitional wake behind a strongly

streamwise rotating sphere. J. Fluid Mech. 896, A18.
LUCHTENBURG, D.M., GÜNTHER, B., NOACK, B.R., KING, R. & TADMOR, G. 2009 A generalized

mean-field model of the natural and high-frequency actuated flow around a high-lift configuration. J. Fluid
Mech. 623, 283–316.

MACQUEEN, J. 1967 Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp.
281–297. University of California.

MCKEON, B.J., LI, J., JIANG, W., MORRISON, J.F. & SMITS, A.J. 2004 Further observations on the mean
velocity distribution in fully developed pipe flow. J. Fluid Mech. 501, 135–147.

MELIGA, P., CHOMAZ, J.-M. & SIPP, D. 2009 Global mode interaction and pattern selection in the wake of
a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159–189.

MOORE, B. 1981 Principal component analysis in linear systems: controllability, observability, and model
reduction. IEEE Trans. Autom. Control 26 (1), 17–32.

988 A48-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

42
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.428


Dynamics-augmented cluster-based network model

MURAYAMA, S., KINUGAWA, H., TOKUDA, I.T. & GOTODA, H. 2018 Characterization and detection of
thermoacoustic combustion oscillations based on statistical complexity and complex-network theory. Phys.
Rev. E 97 (2), 022223.

NAIR, A.G. & TAIRA, K. 2015 Network-theoretic approach to sparsified discrete vortex dynamics. J. Fluid
Mech. 768, 549–571.

NAIR, A.G., YEH, C.-A., KAISER, E., NOACK, B.R., BRUNTON, S.L. & TAIRA, K. 2019 Cluster-based
feedback control of turbulent post-stall separated flows. J. Fluid Mech. 875, 345–375.
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