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NON-ABSOLUTELY CONVERGENT INTEGRALS 

H. W. ELLIS 

1. Introduction and summary of results. This paper consists of two parts. 
The first contains an outline of the theorems and principal results and the 
second (§§2-6) gives proofs of the theorems and additional details. The 
theorems concern properties of Darboux continuous functions and functions 
having generalized Darboux properties. The corresponding results are shown 
to have interesting applications to the theory of non-absolutely convergent 
integrals. 

1.1. Definitions and notation. We consider only finite single valued func
tions of a single real variable. We denote the set of points on the y-axis con
stituting the image of the set E or closed interval [a, b] defined by the function 
F(x) by F[E] or F[a, b] respectively. The inverse function F~1(y) denotes the 
set of points on the x axis for which F(x) = y. We denote the closed interval 
on the 3>-axis with end points F (a) and F(b) by [a, b]Fy, omitting the F when 
no confusion results. 

DEFINITION 1. A finite function F(x) fulfils Lusiris condition (N) on the set E 
if \F[S]\ = Ofor every subset S of E for which \S\ = 0 [13, p. 224]. 

DEFINITION 2. The fmiction F(x) has the Darboux properties D, Dk 

(0 < k ^ 1), D*, Dd on [a,b] if the following conditions are satisfied for every 
interval [/, m], a ^ I < m ^ b, where /x* denotes outer Lebesgue measure: 

(D) F[l, m] D [/, m]y (Darboux continuity), 

(Dk) n*{F[l, m] . [/, m\y) ^ k\[l, m]y\, 0 < k ^ 1, 
(D*) ^{F[IM . [/, m]y) > 0, when F(l) 9* F(m), 

(Dd) F[l, m] is everywhere dense on [I, m]y. 

THEOREM A. For measurable functions the condition (N) is necessary and 
sufficient in order that the function should transform every measurable set into a 
measurable set. 

If, therefore, in définition 2 F(x) is measurable and fulfils the condition (N) 
on [Z, m\ then F[l, m] is a measurable set. 

A set E is dense in the sense of order if there is a point of E between every two 
points of E. 
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DEFINITION 3. The function F(x) has the property D ' on [a, b] if F(x) is 
Darboux continuous on [a, b] and if the values y Ç F [a, b] for which F~1(y) is 
countably infinite and dense (in the ordered sense) form a null set. The function 
F(x) has the property D " on [a, b] if it has the property D ' on every interval 
[I, m], a ^ / < m ^ b. 

DEFINITION 4. Where Dx denotes an arbitrary Darboux property we say that 
Xo is a point of Dx-discontinuity of F(x) on the right (left) if there exists no interval 
[x0j xo + h] ([xo — h, Xo]) over which F(x) has the property Dx. 

DEFINITION 5. The function F(x) is CG on a set E if E can be expressed as 
the sum of a denumerable sequence of sets En over each of which F(x) is continuous. 
If each set E n is closed we say that F(x) is [CG] on E. With continuity replaced 
by absolute continuity we define ACG and [ACG] in the same way. 

Properties ACG and [ACG] imply the condition (N) [13, p. 225], CG and 
[CG] do not. 

1.2. Examples. The following examples, given in the appendix, are listed 
here for purposes of reference: 

Example 1. A function F(x) that has property D^ and is ACG on [0, 1] 
with DF = 0 almost everywhere on [0, 1] where F(x) is not constant and has 
none of the properties D*, Dk (k ^ 1), D. D' or D " on [0, 1]. 

Example 2. A function that is Darboux continuous and ACG on [0, 1] with 
DF > 0 almost everywhere on [0, 1] where F(x) does not have properties D ' or 
D " and is not non-decreasing on [0, 1]. 

Example 3. A function F(x) that has property Di and is ACG on [0, 1] 
with DF > 0 almost everywhere on [0, 1] where F(x) is neither Darboux 
continuous nor non-decreasing on [0, 1]. 

Example 4. A function G(x) that is Darboux continuous and ACG on [0, 1] 
and a function II(x) that is continuous and [ACG] on [0, 1] where G(x) + H(x) 
= F(x) is the function defined in Example 1. 

1.3. Theorems and results concerning Darboux properties. From Defini
tions 2 and 3 it follows that, in the sequence of Darboux properties D", D', D, 
Dfc2, Dyfc, (1 ^ k2 > k\)< each implies all those following it. Furthermore, 
property D& (k > 0) implies both D* and D^. That D* does not imply any 
of the others even for functions that are [ACG] is shown by the example: 
F(x) = x, x ^ a; F(x) = x + 1, x > a. Example 1 shows that D<* does not 
imply any of the others when F(x) is ACG, Example 2 that D does not imply 
D' or D " and Example 3 that Dx does not imply D for functions that are ACG. 

THEOREM I. Property D&, k < 1, implies property Di. 

The next theorem is of more general interest as it gives conditions that are 
sufficient to ensure that a function is Darboux continuous. 
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THEOREM II. For F{x) to be Darboux continuous on [a, b] it is sufficient that 
F(x) be [CG] on [a, b] and fulfil the condition 

lim inf F{x + h) ^ F{x) ^ lim sup F{x + h), a ^ x < b, 

lim inf F{x — h) ^ F(x) ^ lim sup F{x — h), a < x ^ b. 
h-^0+ * h-*0 + 

It is shown by an example that the condition [CG] is not necessary. The 
characteristic function of the set of rational points on [a, b] gives an example 
showing that, with [CG] replaced by ACG, the function F(x) need have none 
of the Darboux properties defined above. 

THEOREM II ' . / / F(x) fulfils the condition (I) of the preceding theorem on 
[a, b] and is such that, where E denotes the set of points of D-discontinuity {on 
either side) of F{x) on [a, b]y every closed subset of E contains a portion on which 
F(x) is continuous then E is empty and F{x) is Darboux continuous on [a, b]. 

THEOREM III. / / F{x) is Darboux continuous and [CG] on [a, b], then F(x) 
has property D ' on [a, b], i.e. the points y Ç F[a, b]for which F~l(y) is countably 
infinite and dense {in the ordered sense) form a null set. 

COROLLARY OF THEOREMS II AND III . For functions that are [CG], properties 
D", D',D, DA; {k ^ 1) and Da are equivalent. 

Banach has defined F{x) to have the property (JT2) on [a, b] if almost every 
value y Ç F[ay b] is taken not more than a countable number of times on [a, b] 
[13, p. 277]. 

THEOREM IV. i j F{x) is measurable and fulfils the condition (N) on the in
terval [a, b] then F{x) necessarily fulfils the condition (T2) on [a, b]. 

Theorem IV is well known for continuous functions [13, p. 284]. From 
Theorems III and IV it follows that if F{x) is a function that is Darboux 
continuous, [CG] on [a, b] and fulfils the condition (N) on [a, b], then the set 
Ey of points y G F[a, b] for which F~l {y) is dense is a null set. 

The sum of two functions that are [ACG] and Darboux continuous need 
retain none of the Darboux properties defined above as is shown by the 
example: F{x) = — G{x) = sin 1/x, x 5* 0; 7 (̂0) = 1, G{0) = 0. Lebesgue 
[10, p. 98] has given an example of a function F{x) that is measurable and 
Darboux continuous without F{x) + x being Darboux continuous. The next 
theorem shows that when one of the functions is continuous the sum must 
retain some traces of Darboux continuity. 

THEOREM V. / / F{x) is Darboux continuous {not necessarily measurable) 
and G{x) is continuous on [a, b] then H{x) = F{x) + G{x) has the property D<* 
on [a, b]. 

Example 4 shows that this is the only Darboux property that H{x) need 
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have even when both F(x) and G{x) are ACG. From Theorem V and the 
corollary after Theorem III we obtain 

THEOREM VI. If F(x) is Darboux continuous and [CG] on [a, b] and G{x) is 
continuous on [a, b] then H{x) — F(x) + G(x) is Darboux continuous on [a>b]. 

The next theorems establish some differential properties of functions that 
are Darboux continuous or have some other Darboux property. 

THEOREM VII. If F(x) fulfils Lusin's condition (N) and has property D* on 
[a, b] and if AD F = 0 almost everywhere on [a, b] then F(x) is constant on [a, b]. 

Example 1 shows that Theorem VII is not true with D* replaced by D<*. It 
might be presumed that the corresponding theorem that F(x) is non-decreasing 
when ADF ^ 0 almost everywhere on [a, b] would be true. Example 2 shows 
that this is not the case even when F{x) is Darboux continuous and ACG and 
DF > 0 almost everywhere on [a, b]. 

THEOREM VIII. If F(x) fulfils the condition (N) on [a, b] and if ADF > 0 
almost everywhere on [a, b] then a necessary and sufficient condition for F(x) to be 
AC and increasing is that F(x) have the property D ' on [a, b\. 

COROLLARY. If F{x) is ACG on [a, b] and has property D ' on [a, b] and if 
ADF ^ 0 almost everywhere on [a, b] then F(x) is AC and non-decreasing on [a,b]. 

THEOREM IX. If F(x) is [ACG] and has property D* on [a, b] and if ADF^O 
almost everywhere on [a, b] then F(x) is non-decreasing on [a, b]. With D* re
placed by D, F(x) is also AC. 

THEOREM X. If F(x) is [ACG] and Darboux continuous on [a, b] then a suf
ficient condition for F{x) to be (i) AC, (ii) continuous and [ACG] on [a, b] is the 
existence of a function G(x) that is (i) AC, (ii) continuous and [ACG] respectively 
on [a, b] and such that ADG{x) ^ ADF(x) almost everywhere on [a, b]. 

Functions that are Cr- continuous [3] and M r- continuous [5] and also [ACG] 
are Darboux continuous. Denjoy [4, p. 179] has proved the following theorem 
for which we give an alternative proof. 

THEOREM XI . A function that is approximately continuous is necessarily 
Darboux continuous. 

1.4. Non-absolutely convergent integrals. Definitions of non-absolutely 
convergent integrals have been given by many authors. Although continuity 
of the indefinite integral is required by the most familiar definitions, this is 
replaced in some definitions by weaker continuity properties such as approxi
mate continuity and Cesàro continuity as in the case of Burkill's approximate 
Perron [2] and Cesàro-Perron integrals [3]. The most general approach to 
integrals of this kind is due to Ridder [12']. His definitions require indefinite 
integrals to be [ACG] and to have an unspecified "additional property" that 
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ensures the uniqueness of the definite integral. We shall show that the class of 
indefinite integrals corresponding to any one of the definitions that have been 
given for which indefinite integrals are characterized by some continuity prop
erty such as ordinary, approximate, or mean continuity is a subclass of the 
class of all functions that are [ACG] and Darboux continuous. 

DEFINITION 6. We call a class of functions, that are defined on [a, b] and 
approximately derivable almost everywhere on [a, b], a class of generalized primi
tives or indefinite integrals (a P-class) if it has the following fundamental proper
ties : 

(1) Linearity. Any linear sum of any two functions belonging to the class 
also belongs to the class. 

(2) Uniqueness. Any two functions of the class having the same approximate 
derivative almost everywhere on [a, b] differ by a constant on [a, b]. This implies 
the uniqueness of definite integrals defined as increments of indefinite integrals 
over intervals. 

(3) Order. If F(x) and G(x) belong to the class and if AD F ^ ADG almost 
everywhere on [a, b] then F(b) — F(a) ^ G(b) — G(a). 

(4) Compatibility. Every P-class must be compatible with the class of all 
indefinite general Denjoy (D) integrals, i.e. if F(x) belongs to an arbitrary P-class 
and G(x) belongs to the class all indefinite D-integrals relative to an interval [a, b] 
and if AD F = ADG almost everywhere on [a, b] then F(x) and G{x) differ by a 
constant on [a, b] This implies that any function that is D-integrable and 
integrable in some generalized sense must be integrable to the same value in 
both senses. 

THEOREM XII . Any linear subclass of the class of all functions that are 
Darboux continuous and [ACG] on an arbitrary interval [a, b] is a P-class. 

A study of the properties of arbitrary linear subclasses of the class of Darboux 
continuous, [ACG] functions gives a general approach to the study of the 
properties of known general non-absolutely convergent integrals characterized 
by different continuity properties such as mean and approximate continuity 
[see §2.3]. In particular, properties (2) — (4) follow immediately from Theorem 
XII . Furthermore Theorem XII shows that any new definition of continuity 
that implies Darboux continuity and for which linear sums of continuous 
functions are continuous in the same sense will, along with [ACG], characterize 
a class of functions having the principal properties, including properties (1) — 
(4) of those classes characterized by mean and approximate continuity. 

From the results of §1.3 we can consider the properties (2) —(4) possessed 
by more general linear classes. In the following table the properties listed in 
the first two columns determine a class of functions relative to an arbitrary 
interval [a, b]. The third column lists the properties possessed by arbitrary 
linear subclasses of these respective classes. When a property is not listed 
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D», D* = D i o r D 
:i) 
:i). (2) 

D*, Di or D 
D', D " 

:D 
:i), (2) 
;i), (2) ,(3) 

= D " ( 
'1), (2), (3) 
[I), (2), (3), (4) 

there exist linear subclasses of the corresponding general class that do not 
have the property. 

Functions with the condition (N) 
that are approximately derivable 

ACG 

[ACG] 

Although arbitrary P-classes cannot by definition be incompatible with the 
class of indefinite D-integrals there are P-classes that are not compatible with 
each other. It has been shown [6] for instance, that certain classes of approxi
mately continuous integrals and mean continuous integrals are not compatible. 
This shows in particular that there can be no maximal P-class containing all 
other P-classes even if we consider only those P-classes that are sub-classes of 
all [ACG], Darboux continuous functions. 

We can make correspond to each P-class a descriptive definition of integ
ration whereby a function f(x) is integrable on [a, b] if there exists a function 
F{x) in the P-class with AD F = f almost everywhere on [a, b]. The function 
F is the indefinite integral of f and F(bf) — F(ar) is the definite integral of f over 
[a', &'], a ^ a' < V ^b. 

The paper concludes with a consideration of some further properties of 
general P-classes and the corresponding integrable functions. 

2. Proof of the theorems and additional details. 

2.1. Proof of Theorem A. Rademacher [11, p. 196] proves that the condition 
(N) is necessary and that, for continuous functions, it is also sufficient [11, 
p. 200]. To show that the condition is sufficient for measurable functions 
let F(x) be a measurable function and A be an arbitrary measurable set over 
which F is defined and finite. Applying Lusin's Theorem [13, p. 72] for a 

oo 

sequence of values en —» 0, A = £ En + Ny where each set En is closed, where 
n = 1 

F is continuous over each En and N is null. Since a continuous function maps 
closed sets into closed sets F[En] is measurable for each n and F[A] is mea
surable as the sum of a denumerable sequence of closed sets plus a null set. 

2.2. Proof of Theorem I. Suppose that F(x) has the property Dk on [a, b]. 
This implies that if y lies between F {I) and F(m), a <J / < m ^ b, there exists 
a sequence Xi of points of (/, m) with lim P(x») = y. 

Suppose that F (I) ^ a < /3 ^ F(m). The proof would be the same for 
F(l) > F(m). Let {x%) , {x'i} be sequences of points of [/, m] with lim F(xi) = a, 
lim F{x'i) =13. If there is a point x Ç [/, m] with F{x) = a we may take 
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Xj = x, (i = 1, 2, . . . ) and a similar consideration applies to /3.) For e > 0, 

.m] . [xi, x'i]y\ 

ft - a \[x%,x'i]y\ 

li*{F[xj,x'i] • [xi,x'j]y} __ 

' \[x%,x'i]y\ 
% k - e 

for i sufficiently large. Since e is arbitrary we conclude that 

H*{F[l,m].[a,p] % k(ft - a) 

for every a, ft, F(l) ^ a < ft ^ F(m). It follows from a theorem of Jacobsthal 
and Knopp [8] that 

V*{F[hm\.[a,0\} = {ft~a) 

for all a, ft, F(/) ^ a < 0 ^ F(m) and in particular that 

M*{ F[/, m] . [/, m]^} = |[/, m]y\. 

2.3. Proof of Theorem II. We shall use the following lemma. 

LEMMA 1. If F(x) satisfies the condition (I) of Theorem II on an interval 
[a} b] and if F(x) is Darboux continuous on every interval [a', b'], a ^ af < V ^ b, 
then F(x) is Darboux continuous on [a, b]. 

The lemma follows easily since (/) prevents F(x) from having a discontinuity 
of the first kind at a or b. 

Let S be the set of points of Darboux discontinuity of F(x) on [a, b]. The 
set 5 is easily seen to be closed. Let En be the closed sets over which F(x) is 
continuous and let [a, 0] be any interval contained in [a, b]. By Baire's 
Theorem [13, p. 54] there exists an integer k and an interval [a, $'] contained 
in [a, ft) such that Ek[a', ft'] = [a, ft']. It follows that F(x) is continuous and 
therefore Darboux continuous on [a', ft']. Hence 5 is non-dense on [a, b]. 

Lemma 1 shows that S cannot contain isolated points. By Baire's theorem 
there exists an interval [/, m] containing points of 5 and an integer p such that 
S[l, m] = Ep[l, m] and therefore F{x) is continuous on 5[/, m\. Diminishing 
[/, m] if necessary we may suppose without loss of generality that / and m are 
points of 5 with points of S on (/, m) and that there exists a value c between 
F(l) and F(m) that is not taken for x on [/, m]. Let (7;, w») be the open intervals 
complementary to 5 on [/, m\. By Lemma 1 F(x) has the property D on each 
of the closed intervals [U, mi]. 

Set G(x) = F(x) for x any point of S[l, m] and let G(x) be linear on each 
interval [/*, mz] contained in [/, m]. Then G(x) is continuous and therefore 
Darboux continuous on [/, m). It follows that any value c between F (I) =G(l) 
and F(m) — G(m) is taken by G{x) at some point of (/, m). Now each value 
taken by G(x) on an interval (lu mï) lies between F(li) = G(li) and F(m*-) 
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= G(nti) and is therefore taken by F(x) on (lit mi). For the remaining points 
of [/, m], F(x) = G(x). It follows that F(x) takes the value c on [/, m] giving 
a contradiction. Hence 5 is empty and it follows that F is Darboux continu
ous on [a, b]. 

Clearly Darboux continuity implies condition (I) of the theorem. On the 
other hand the function H{x) of Example 4 is Darboux continuous without 
being [CG] showing that the [CG] condition is not necessary. Theorem IF is 
a generalization of II obtained by retaining in the hypotheses only those 
properties of [CG] actually used in the proof of II. Since properties Dd, Dk 

(fe ^ 1) imply (I) of Theorem II we obtain the following corollary. 

COROLLARY. For functions that are [CG] properties Dd, Dk (k ^ 1) and D 
are equivalent. 

2.4. Proof of Theorem III . We shall prove first: 

THEOREM III ' . If F{x) is Darboux continuous and [CG] on [a, b]} then F(x) 
has the property D " on [a, b]. 

LEMMA 2. If F(x) is continuous on [a, b] then the set of values of y assumed 
a countably infinite number of times on [a, b] for which F~1(y) is dense in the 
sense of order is empty. In particular F{x) has property D " on [a, b]. 

Consider any interval [I, m], a ^ / < m ^ b and suppose that F(x) takes 
the value yo a countably infinite number of times on [/, m]. The set E of 
points of [/, m] at which F = y0 is closed and therefore contains its derived 
set Er. The set Er is then itself closed, non-empty, at most enumerable and 
must contain at least one isolated point xo for otherwise it would be perfect, 
contradicting the fact that E is countable. In the neighbourhood of x0 the 
set E contains only isolated points and E is therefore not dense in the sense 
of order [cf. 13, p. 281]. 

LEMMA 3. If F(x) has property D " on every interval [a'y b'], a < ar < b' < b 
and if F satisfies (I) of Theorem II then F(x) has property D " on [a, b]. 

The function F(x) is Darboux continuous on [a, b] by Lemma 1. Consider 
a sequence {[an, bn]} of intervals with a < an< bn < b, an —> a, bn—» b. The 
points y of the set Ey of values assumed a countably infinite number of times 
on [a, b] and for which F^iy) is dense, are each assumed a countable number of 
times on one at least of the intervals [an, bn], and F"1^) . [ant bn] is dense. 
The set Ey is therefore null since it is contained in the sum of a countable 
number of null sets. 

Proof of Theorem I II . With 5 denoting the set of points of D"-discontin-
uity of F on [a, b] we may repeat the steps of the proof of Theorem II and 
obtain an interval [/, m] with I and m points of 5, with F continuous on S[l, m] 
and where F has property D " on the closures of each of the intervals (/;, mi) 
complementary to 5 on [/, m]. Let Ui and Li be the upper and lower bounds 
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of F on [k, Mi]. Since F is Darboux continuous on [a, b] and continuous ex
cept at the end points of the interval, Ui and Li are the maximum and mini
mum values attained by F on [/;, raj. 

It follows from Lemma 2 that the values of y Ç F [l, m] assumed only on 
S[l, m] and for which F~1(y) is countable and dense form a null set since they 
are assumed at the same points by the continuous function G(x). The set Ey 

of the values y taken two or more times on at least one interval [/*, m2] and for 
which F~l(y) is countably infinite and dense is null since it is contained in the 
sum of a countable number of null sets. We have left to consider those values 
taken not more than once on any interval [/;, mi\. From the Darboux con
tinuity of F it follows that the only values of y outside [It, ?Hi]Fy not taken at 
least twice for x on [/;, mî\ are the values Uu Li and these form a countable set. 
Suppose that y0 = F(x0) G [k, rnl]Fy is taken only once on [k rnl] and not more 
than once on any interval [lj, ray], j 9e i. Then G(x\) = y0 for some point 
x'o, U ^ x'o ^ raz-. If there is no other point with G(x) — y0 then F(x) takes 
this value only at xo. If there are other points with G(x) = yo there exists a 
point x\ nearest x'o with G(x\) = y0 and with x'i (E [lj, mf\ for somej. Then 
F(x) = 7o for some point x\ Ç [/y, my], there are no points between x0 and x\ at 
which F(x) — yo and F~l(y0) is not dense . Hence F has property D " on [/, m] 
and we conclude that the set S is empty. 

Since the property D " always implies D' Theorem III is also established. 
Since D' implies D the corollary follows. 

2.5. Proof of Theorem IV. By Lusin's theorem [13, p. 73] there exists for 
each n a closed set En with (b — a) — \En\ < \/n and such that F(x) is con
tinuous over the set En. Let Fn(x) denote the continuous function coinciding 
with F(x) on En and linear on the intervals complementary to En on [a, b]. 
Then Fn fulfils the condition (N) on [a, b] and therefore has the property (T2) 
on [a, b]. Set E = E\ + E2 + • . .). For each n, denote by Sn the set of 
values of Fn(x) taken a non-countable infinity of times on E. Then |S n | = 0, 
(n = 1, 2, . . .) . Every value taken a non-countable infinity of times on E 
must be taken a non-countable infinity of times by at least one function Fn. 
The measure of the set of all values taken a non-countable number of times 
by any one of the functions Fn does not exceed |Si| + P2I + . . . = 0 . Finally 
(jb-a) - \E\ = 0, so that F[(a, b)] - E = 0, since F fulfils the condition (N) 
on [a, b]. We conclude that F has the property (T2) on [a, b]. 

2.6. Proof of Theorem V. Let [a', br] be any interval, a ^ a' < V ^ b with 
F(a') 7* F{b'). Points of discontinuity of F(x) and H(x) correspond and both 
functions have the same saltus at each point of discontinuity. For a' ^ Xo <b' 
suppose that U = lim sup F(x0 + h) ^ lim inf F(x0 + h) = L. We may 

assume without loss of generality that G(x0) — 0. Suppose that there exists 
an interval [a, 0], L < a < P < U and a value 5 such that H(x) takes no 
values between a and /3 for x on (x0, Xo + d). Given e > 0 there exists h' ^ h 
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such that \G(xo + h) — G(xo)\ < e for all h < h!. Hence on (x0, x0 + h), 
\F(x) — H(x)\ < e and, for e sufficiently small, there are values between a and 
(3 not taken by F(x) on (xo,x0 + h) contradicting the Darboux continuity of 
F(x) in the neighbourhood of XQ. We have shown that H[a', b'] is everywhere 
dense on [L, U]. 

The interval [a', b']Hy is covered by the values corresponding to points of 
continuity of H{x) together with the aggregate of intervals [L, U] correspond
ing to all of the points of discontinuity (on either or both sides) of H(x). We 
conclude that H[a', b'] is everywhere dense on [af, bf]Hy. 

2.7. Proof of Theorem VI. The function H{x) is [CG], has property D j by 
Theorem V, and is therefore Darboux continuous by the corollary following 
Theorem III. 

3. Differential properties. 

3.1. Proof of Theorem VII. Let E be the set of points of [a, b] at which 
ADF(x) = 0. From the definition of E, F(x) fulfils Saks's condition (D,,i_€) 
[13, p. 290] at each point of E} where 0 < e < 1 and TJ > 0 are arbitrary. 
Then [13, p. 290] 

\F[E}\ ^ 2n|£| /( l - 6). 

Keeping e fixed and letting 77 —> 0 shows that |F[JE]| = 0. Since \E\ = b — a 
and F(x) fulfils the condition (N) on [a, b]y \F[a, b]\ = 0 . Property D* then 
implies that F(x) is constant on [a, b]. 

3.2. Proof of Theorem VIII. The necessity part follows from Lemma 2. 
We shall show that the condition is sufficient. Let / = [a, b] and let 5 be the 
set of points at which AD F ^ 0. Then \F[I]\ = | F [ / - 5 ] | from the condition 
(N). Let Ey be the points of F[/-5] taken at most a countable infinity of 
times on / . Since F(x) is measurable and fulfils the condition (N) the points 
Ey taken more than a countable number of times form a null set by Theorem 
IV. Property D ' then implies that the set of values of Ey for which F~l{y) 
is dense in the ordered sense form a null set. Hence for almost every value 
y G Eyi F~l(y) consists of a single point or contains two points x0 and xi with 
no points between Xo and x±. The second case together with Darboux con
tinuity implies that either F(x) > y or F(x) < y at all points of (x0, #i). This 
contradicts the fact that ADF > 0 at both x0 and X\. It follows that almost 
all points of Eu and therefore of F[I] are assumed just once on / . 

Suppose, if possible, that F (a') = F(bf) for a pair of points a;, b' with 
a ^ a' < V ^ b. Then F is constant on (a! V) for, if F{xf) ^ F {a') at any 
point x', a' < xf < b', all values between F {a') and F{x') are assumed by F(x) 
on (ar, xf) and again on (x', b'). Hence a set of positive measure is assumed 
more than once which is a contradiction. Since ADF 9^ 0 almost everywhere, 
F(x) cannot be constant and we conclude that there is no value taken more 
than once on / . Thus since F(x) is Darboux continuous it is strictly increasing 
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or strictly decreasing and continuous on / . Since ADF > 0 almost every
where, F(x) is increasing, continuous and, in fact, AC [13, p. 227]. 

The corollary is established by applying the theorem to F(x) — ex where 
€ > 0 is arbitrary. It is necessary to replace the condition (N) by ACG in 
order to ensure that when a linear function is added to F(x) the sum is subject 
to the condition (N). 

3.3. Proof of Theorem IX. For functions that are [ACG] properties D* 
and D are the only two distinct Darboux properties. If F(x) is Darboux 
continuousTheorem IX follows immediately from Theorem III and the corollary 
of Theorem VIII. More generally property D* ensures that if F(x) is non-
decreasing on (a, b) then it is non-decreasing on [a, b]. With this result re
placing Theorem I r of [5], the proof is the same as that of Theorem I I r of [5]. 
The example given before Theorem I shows that F(x) need not then be con
tinuous. 

3.4. Proof of Theorem X. The function H{x) = F{x) — G(x) is [ACG] on 
[a, b] as the sum of two [ACG] functions, H(x) is Darboux continuous on [a, b] 
by Theorem VI and ADH ^ 0 almost everywhere on [a, b]. By Theorem IX 
H(x) is AC on [a, b]. Therefore F(x) is AC or continuous and [ACG] according 
as G(x) is AC or continuous and [ACG]. 

To end this section we consider certain general continuity definitions imply
ing Darboux continuity. Functions that are Cesàro [3] or Afrcontinuous [5] 
are everywhere the derivative of their indefinite ^-integrals and are therefore 
Darboux continuous by the classical theorem of Darboux. 

3.5. Proof of Theorem XI. There is no difficulty in showing that every 
bounded approximately continuous function is everywhere the derivative of 
its indefinite Lebesgue integral [4, p. 172] and is therefore Darboux continuous. 
Suppose that F(x) is not bounded and not Darboux continuous on [a, b]. There 
must then exist values F (I) ^ F(m), a ^ / < m ^ b, and a number c between 
F(l) and F(m) that is not taken by F(x) on (/, m). For M > max[|F(/)| , 
\F(m)\] define FM(x) = F(x) when \F(x)\ ^ M, FM(x) = M when F(x) > M 
and FM(X) = — M when F(x) < — M. The function FM(X) is then bounded 
and approximately continuous on (7, m) ; it is therefore Darboux continuous 
on (/, m) and so takes the value c on (/, m). It follows that F{x) takes the 
value c on (/, m) giving a contradiction. 

From Lemma lr and Theorem VII r of [5] and Theorem II above, it follows 
that any [ACG], Cr- or ilfr-continuous function [3, 5] and in particular any in
definite CrP- or Gikfr-integral is Darboux continuous [cf. 5, Theorem IX r]. 

4. Applications to non-absolutely convergent integrals. The Riemann, 
Lebesgue, special Denjoy and Perron integrals are included in the general 
Denjoy integral, i.e., every function that is integrable in any of these senses is 
D-integrable to the same value. Since indefinite Z)-integrals are continuous 
and ACG they are Darboux continuous and [ACG], and the classes of indefinite 
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integrals corresponding to each of the above definitions are subclasses of the 
class [F] of all Darboux continuous, [ACG] functions. If infinite discontinu
ities in the final stage of the construction of the Young integral [7, p. 719] are 
not allowed, indefinite Young integrals are Darboux continuous [7, p. 720] and 
the methods of [9] (Theorems I and II) apply to show that they are [ACG]. 

Bosanquet's Cesàro-Lebesgue [1], Burkill's Cesàro-Perron [3], and Sargent's 
Cesàro-Denjoy [14] integrals of each order are included in the GM-integrals of 
the same order [5, Theorem VII]. Since indefinite GMr-integrals (r = 1, 2, . . .) 
are Darboux continuous and [ACG], each of the classes of indefinite integrals 
corresponding to the above definitions is a subclass of [F]. 

Finally, Burkill's approximate Perron integral [2] and Ridder's a-integrals 
are included in Ridder's /3-integrals [12, p. 162]. Indefinite integrals in any of 
these senses are approximately continuous and therefore also Darboux con
tinuous by Theorem XI. It follows from the descriptive definition of the 
/3-integral [12, p. 148] that they are [ACG]. 

Each of the subclasses of [F] mentioned above except the class of indefinite 
Young integrals is linear. For instance, the class of functions that are indefinite 
jS-integrals on an interval [a, b] coincides with the class of all functions that 
are [ACG] and approximately continuous on [a, b]. Since any linear sum of 
two [ACG], approximately continuous function is likewise [ACG] and approxi
mately continuous this class is linear. On the other hand the class [F] of all 
functions that are [ACG] and Darboux continuous is not linear since it contains, 
for example, the functions. 

F(x) = — G(x) = sin , x 9^ c, a < c <b\ F(c) = 1; G{c) = 0. 
x — c 

4.1. Proof of Theorem XII . If F(x) and G(x) belong to a linear subclass of 
[F] so does II (x) = F(x) — G(x), i.e., H(x) is Darboux continuous and [ACG] on 
[a, b]. If ADF(x) = ADG(x) almost everywhere on [a, b] ADH{x) = 0 almost 
everywhere on [a, b] and property (2) follows from Theorem VII. If AD F ^ 
ADG almost everywhere then ADII ^ 0 almost everywhere and property (3) 
follows from Theorem IX. Finally, if F(x) belongs to an arbitrary subclass of 
[F] (not necessarily linear) and G(x) belongs to the class of indefinite D-integrals 
both with respect to an interval [a, b] then II(x) is Darboux continuous by 
Theorem VI and is [ACG] as the sum of two [ACG] functions and, as before, 
II (x) is constant if AD F = ADG almost everywhere on [a, b]. 

4.2. The theorems of §1.3 may also be used to investigate more general 
linear classes. A consideration of properties (1) and (2) leads us to rule out a 
wide class of functions that are almost everywhere approximately derivable. 
First suppose that F(x) is a Cantor function, continuous, increasing, with 
DF = 0 almost everywhere on [a, b]. Then F(x) and 2F(x) have the same 
derivatives almost everywhere on [a, b] without differing by a constant. We 
consider only functions having Lusin's property (N), ruling out all Cantor 
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functions and functions of a similar nature. Secondly, any linear class con
taining a step function F(x) cannot have the uniqueness property (2) even 
though F(x) fulfils the condition (N). We eliminate step functions by con
sidering only functions having some Darboux property. (Actually all of the 
Darboux properties except D^ eliminate all functions having discontinuities 
of the first kind.) Theorem VII then shows that an arbitrary linear subclass 
of the class of all functions that are almost everywhere approximately derivable 
and have property D^ and fulfil the condition (N) on an interval [a, b], has 
property (2), i.e., that functions of the class are uniquely determined apart 
from an additive constant by a knowledge of their approximate derivatives 
almost everywhere. The remainder of the table in §1.4 may be completed 
similarly from the results in §1.3. 

To verify that there are linear subclasses of the class of all functions that 
are ACG and have property D' on [0, 1] and do not have property (4) consider 
the class of functions kH(x) where H(x) is the function defined in Example 4 and 
where k runs through all real numbers. This class has properties (l)-(3) but 
Example 4 shows that it does not have property (4). Similar examples may 
be given where any other property is not listed in the table. 

5. Additional properties of P-classes. We next state some additional prop
erties of P-classes. We shall distinguish those P-classes that are subclasses 
of the class [F] of all [ACG], Darboux continuous functions by P*. P - and 
P^-integrability (see 1.4) are taken below to refer to a single, arbitrary P- or 
P^-class. 

5.1. Iff and g are P-integrable on [a, b] then any linear combination of + fig 
is P-integrable and 

b Cb Cb 
(of + Pg)dx = a fdx + P gdx. 

5.2. Iff is P-integrable on [a, b] then f is necessarily measurable [13, p. 299]. 

5.3. Iff is P-integrable on [a, b] and if there exists a Lebesgue integrable 
(D-integrable) function g such that f ^ g almost everywhere on [a, b] then f is 
Lebesgue (D-integrable) on [a, b]. 

This follows from Theorem X. In particular if/ is bounded above or below 
and P*-integrable on [a, b] then it is necessarily Lebesgue integrable on [a, b]. 

5.4. Consider an arbitrary P*-class containing the class of all AC functions. 
Given a non-decreasing sequence fn of P^-integrable functions whose generalized 
integrals over [a, b] constitute a sequence bounded above, then the function f(x) 
= l im/n(x) is P*- integrable and 

[cf. 13, p. 243]. 

b 

f(x) dx — lim 
a « - * ooj 

b 
fn(x) dx 
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For a P*-class that does not contain the class of all AC functions, the class 
consisting of all the members of the original class, all AC functions, and all 
linear combinations of members of the two classes, is a P*-class and the 
theorem is true for it. 

5.5. If fis P*-integrable and Darboux continuous on [a, b] there exists a point 
£, a < £ < b such that 

"f(x) dx = F(b) - F(a) = (b - a)/(É). 
a 

5.6. Let f and g be P-integrable on [a, b], F and G be indefinite P-integrals of 
f and g. Suppose that F(x)G(x) belongs to the same P-class as F and G and that 
F(x)g(x) is P-integrable on [a, b]. Then f(x)G(x) is P-integrable on [a, b] and 

(i) 
b 
f{x)G{x) dx = F(b)G(b) - F(a)G(a) 

b 
F(x)g(x) dx. 

Set H(x) = F(x)G(x) — jlF(x)g(x)dx. Since J** F(x)g(x)dx belongs to the 
P-class, H(x) belongs to the P-class by the linearity property. Now ADG(x) 
= F(x)ADG(x) + ADF(x)g{x) — F{x)g{x) = f(x)G(x) almost everywhere on 
[a, b] so that F(x)G(x) is P-integrable on [a, b] and (i) follows. 

The necessity of the hypotheses that F(x)G(x) belong to the P-class depends 
on the P-class. For instance, if the P-class is the class of all ACG and con
tinuous, or all [ACG] and approximately continuous functions then F(x)G(x) 
necessarily belongs to the same class. On the other hand the product of two 
mean continuous functions or even the product of a mean continuous and a 
continuous function need not be mean continuous. 

The condition that F(x)g(x) be P-integrable may be replaced by conditions 
on g(x) if the P-class is one of the classes of indefinite Cesàro or GATr-integrals. 
However, this condition is necessary for the class of all [ACG], approximately 
continuous functions since functions of this class need not be integrable in any 
sense. 

6. Appendix (Details of examples listed in 1.2). We denote by Ivk = 
[aph* bvk] (k = 1 , 2 , . . . 2P_1) the closures of the pth. set of intervals deleted in 
the usual definition of Cantor's ternary set and let E = [0, 1] — £ Iph. Then 

p ,k 

\E\ = 0. Each of the functions we shall define will be AC on each of the in
tervals Ivk and on the set E and therefore ACG on [0, 1]. Except for the 
continuous function defined in example 4 they will not be [CG] or [ACG]. 

Example 1. Arrange the rational numbers between 0 and 1 in the order 1, 
1/2, 2/2, 1/3, . . . , l/n, 2/n, . . . n/n, . . . Let rv denote the £th number of 
this sequence. Set F(x) = 0 on E and, on each of the intervals Ipk (k = 1, 
2, . . . , 2"-1) set F(x) = rp. Then F(x) is ACG on [a, 6], DF = 0 almost 
everywhere on [a, b] and F has property D<* without having any of the other 
Darboux properties. 
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Example 2. Define F(x) = 0 on E and on each interval Ipk set 

Fjx) = 1 + 2 ( X " Kk) • 
bpk — apk 

Example 3. Set F(x) = 1, x £ E, 

F(x) = 1 + ( 2 ? ~ 1 } (X ~ &7,t) on /p* for p even, 
2pOP* - apk) 

F(x) = - 1 + ( 2 " ~ 1 ) ( * ~ g i ' * ) 0 n Iph for /. odd. 
2"(6,* - ap t) 

Example 4. Let F(x) be the function defined in example 1. Using as bases 
each of the closed intervals Ipk for which rv = i/n (i = 1, 2, . . . , n; n = 1, 
2, . . . ), construct isosceles triangles with altitudes 1/n. Define G(x) = 0 for 
x £ E and define G(x) as the corresponding point in the side of the triangle 
above x for the remaining points of [0, 1]. Then G(x) is continuous on [0, 1] 
and is [ACG] on [0, 1] since it is AC on each of the closed intervals Ipk and on 
the perfect set E, the closure of E. The function H(x) = F(x) — G(x) is Dar-
boux continuous, in fact has property D", on [0, 1] while H(x) — G(x) has 
property D^ without having any other Darboux property. 
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