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1. Introduction. In this note we show that any derivation of a simple C*-algebra,
whose range is not dense, is closable. We also derive a necessary and sufficient condition
for a *-derivation of a C*-algebra, which is defined on the domain of a closed *-
derivation, to be closed.

A linear mapping 8 from a dense *-subalgebra D(8) of a C*-algebra si into M is
called a derivation if 8(ab) = 8(a)b + a 8(b)(a, b e D(8)). If in addition 8{a*) = 8(a)*, then
5 is called a *-derivation. For a linear mapping 5 from a linear subspace D of a Banach
space M into si, we let <T(8) denote the set {be si: there is a sequence (a,,) in D with
an —» 0 and 8(an) —> b}, and call it the separating space of 8. The hypothesis on a(8) forces
cr(8) to be a closed linear subspace of si, and 8 is closable if and only if cr(<5) = (0) [4, p. 8].
We show that the separating space of a derivation of a C*-algebra is a closed two sided
ideal. Then we apply this result to prove the main result of this paper. In the paper R(8)
denotes the range of the derivation 8; i.e. R(8) = 8(D(8)). S. Sakai [3] has asked: when is
the range of a closed *-derivation of a simple C*-algebra not dense? Our result implies
the answer to a converse question, namely, if the range of a *-derivation 8 of a simple
C*-algebra is not dense, then 8 is closable.

Let 8 and 80 be derivations of a C*-algebra defined on the same domains D, say;
then 8 is called 80-bounded if there is a number M > 0 such that ||8(a)||=£M(||a|| + ||80(a)||)
(aeD) . It follows from [1] that if <50 is a closed *-derivation and 8 is a *-derivation with
D(8)^D(80), then 8 is 80-bounded. Sakai conjectured that 8 should be closable [2]. An
easy argument shows that if D(8) = D(80), then 8 is closed if and only if 80 is S-bounded.

2. The results. It will now be shown that, under one restriction, a derivation of a
simple C*-algebra admits a closed extension.

THEOREM 1. Let si be a simple C*-algebra and 8 be a derivation of s£. Then 8 is
closable if R (8) is not dense in si-

Proof. It suffices to show that the separating space of 5 is {0}. The separating space
o-(8) is obviously a linear subspace of si. We show that it is a closed two-sided ideal in si.
Suppose (bn) is a sequence in a(8) and bn -» b; then there is a sequence (cJcD(S) such
that | | c j< l /n and \\8(cn)-bn\\<l/n; it therefore follows that c n ^ 0 and 8(cn)->b. We
conclude that <x(S) is closed. Let ceD(8) and beo-(8); then there exists a sequence (an)
in D(8) such that an -» 0 and 8{an) -» b. Hence can -» 0, anc -» 0, and
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Thus cb, be ecr(S). Suppose now that b e<r(S) and c e i . The density of D(8) in si implies
that there is a sequence (cn) in D(8) such that cn—>c and hence cnb, bcnea(8), cb,
be 6 cr(8), since <r(S) is closed. Thus <r(8) is a closed two-sided ideal in si. It follows now
that cr(8) = {0} or si. If cr(8) = si, then R(8) would be dense in si; however, by our
assumption R(8) is not dense. This contradiction shows that cr(8) = {0} and therefore 8 is
closable.

COROLLARY 2. Let 8 be a *-derivation of a simple C*-algebra si. Then 8 is closable if
one of the two sets {a±8(a):aeD(8)} is not dense in si.

Proof. This follows from the proof of the theorem above.

Let So be a closed *-derivation of a C*-algebra si and let 5 be a *-derivation of si
with the domain D(8) = D(80). The next result gives a necessary and sufficient condition
for 8 to be closed. By [1] 8 is 80-bounded. Suppose moreover that 80 is S-bounded; then
there exists two real numbers M, K>0 such that for aeD(8) = D(80) we have

If an -» a (aneD(8)) and S(aJ-H> b, then

||S0(an) - 50(am)|| = l ^ ^ - a m ) H K ( | k - am|| +118(0,,) -

thus (80(an)) is a Cauchy sequence in si and hence is convergent. Thus aeD(80) and
80(dn)-^ 80(a) and so S(a n )^8(a) . This gives the following theorem.

THEOREM 3. Let 80 and 8 be *-derivations of a C*-algebra si. Suppose 80 is closed and
D(8) = D(80). Then 8 is closed if and only if 80 is 8-bounded.

3. Comments. Let si be a normed space. A subset si0 of si is said to be a G6 set if
CO

there exists a countable family {Gn} of open sets such that siQ = f] Gn. For a closed linear

mapping 8 of a normed space si into si with R(8) = si, the closedness condition of R(8)
is equivalent to R(8) being a G8 set. In fact if R(8) is of second category, then R(8) = si.
If we can show that the range R(8) of a closed ^-derivation 8 of a simple C*-algebra si is
not closed and is a Gs set, then it follows that R(8)^si. The following problem poses
itself: suppose So is a closed ^-derivation of a simple C*-algebra si and R(80)^si. Let 8
be a *-derivation of M with its domain D(8) = D(80). Then can we conclude that R(8) 5 si
and thus 8 is closable?

Let 80 be a closed *-derivation of a C*-algebra si and 8 be a *-derivation of si with
its domain D(8) = D(80); then (80-8) is 80-bounded. Hence there are two positive
numbers N, M such that

An easy computation shows that 8 is closed if M < 1 .
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We note that the proof of Theorem 1 shows that the separating space of a derivation
from a Banach algebra is a closed two-sided ideal. It also follows that if T is a densely
defined operator from a Banach algebra and D(T)a(T)za-(T), a(T)D(T)ca(T), then
<x(T) is a closed two-sided, ideal.
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