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Abstract

Let X be a d-dimensional diffusion and M the running supremum of its first com-
ponent. In this paper, we show that for any t> 0, the density (with respect to the

(d + 1)-dimensional Lebesgue measure) of the pair
(

Mt, Xt

)
is a weak solution of a

Fokker–Planck partial differential equation on the closed set
{

(m, x) ∈Rd+1, m ≥ x1
}
,

using an integral expansion of this density.
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1. Introduction

The goal of this paper is to study the law of the pair (Mt, Xt) where X is a d-dimensional
diffusion and M is the running maximum of the first component. In a previous work [9], using
Malliavin calculus and specifically Nualart’s seminal book [21], we have proved that, for
any t> 0, the law of Vt := (Mt, Xt

)
is absolutely continuous with respect to the Lebesgue

measure with density pV (.; t), and that the support of this density is included in the set{
(m, x) ∈Rd+1, m ≥ x1

}
.

In the present work, we prove that the density pV is a weak solution of a partial differential
equation (PDE). Furthermore, we exhibit a boundary condition on the set {(m, x) ∈Rd+1, m =
x1}. This work extends the results given in [8] and in Ngom’s thesis [20], obtained in the
case where X is a Lévy process, where it is proved that the density is a weak solution to an
integro-differential equation.

In the literature, there exist many studies of the law of Vt. When the process X is a Brownian
motion, one can refer to [15, 17], where an explicit expression for pV is given. When X is a
one-dimensional linear diffusion, [11] provides an expression for pV using the scale function,
the speed measure, and the density of the law of some hitting times. See also [1, 4] for the
particular case of an Ornstein–Uhlenbeck process. For some applications to the local score of
a biological sequence, see [19], which presents the case of reflected Brownian motion. The
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1172 L. COUTIN AND M. PONTIER

law of the maximum Mt is studied in [2] for general Gaussian processes. The case of a Lévy
process X has been deeply investigated in the literature; see for instance [12, 20]. Moreover,
Section 2.4 in Ngom’s thesis [20] provides the existence and the regularity of the joint law
density of the process

(
Mt, Xt

)
for a Lévy process X. In the case where X is a martingale (see

e.g. [13, 22] or [10, 16]), the law of the running maximum is provided.
Such studies concerning this running maximum are useful in the areas of finance which

involve hitting times, for instance for the pricing of barrier options. It is known that the law of
hitting times is closely related to that of the running maximum; see [6, 7, 23]. As an application
of our work, consider a firm whose activity is characterized by a set of processes

(
X1, . . . , Xd

)
,

one of which, e.g. X1, is linked to an alarm; namely, when there exists s ≤ t such that X1
s

exceeds a threshold a, which is equivalent to Mt = sup0≤s≤t X1
s ≥ a, it is important to perform

some action. So the firm needs to know the law of such a pair
(
Mt, Xt

)
; more specifically, the

law of the stopping time τa = inf
{
u, X1

u ≥ a
}

is linked to the law of M as follows: {τa ≤ t} =
{Mt ≥ a}. To know the probability of such an alarm, it is useful to know the law of the pair(
Mt, Xt

)
.

We provide an infinite expansion of the density of the law of the pair
(
Mt, Xt

)
, which can

lead to a numerical approximation.
Let (�,F , P) be a probability space endowed with a d-dimensional Brownian motion W.

Let X be the diffusion process with values in Rd which solves

dXt = B(Xt)dt + A(Xt)dWt, t> 0, (1)

where X0 is a random variable independent of the Brownian motion W, with law μ0, and
A (resp. B) is a map from Rd to the set of (d × d) matrices (resp. to Rd). Let us denote by
Ci

b

(
Rd,Rn

)
the set of functions on Rd which are i times differentiable, bounded, with bounded

derivatives, taking their values in Rn. Let F= (Ft, t ≥ 0) be the completed right-continuous
filtration defined by Ft := σ {X0, Ws, s ≤ t} ∨N , where N is the set of negligible sets of F .

Under classical assumptions on A and B (cf. (4) and (5) below), according to [9], for all
t> 0, the law of Vt = (supu≤t X1

t , Xt
)

has a density with respect to the Lebesgue measure on
Rd+1.

The main results and notation are given in Section 2: in the d-dimensional case, under a quite
natural assumption (namely, Hypothesis 2.1 below) on the regularity of pV around the boundary
of �, we have that pV is a weak solution of a Fokker–Planck PDE on the subset of Rd+1

defined by
{
(m, x), m ≥ x1

}
. When A = Id, this assumption is satisfied; see Theorem 2.4. The

main results are proved in Section 3 under Hypothesis 2.1. Section 4 is devoted to proving that
Hypothesis 2.1 is satisfied when A = Id. The main tool is an infinite expansion of pV given in
Proposition 3.2 In Section 5, which treats the one-dimensional case, a Lamperti transformation
[18] allows us to get the main result for any A ∈ C2

b(R,R). Finally, the appendix contains some
technical tools that are useful for the proofs of main results.

2. Main results and some notation

In this section, we give our main results. (As mentioned in the introduction, the proofs will
be given later on.)

2.1. Notation

Let � be the open set of RD+1 given by � := {(m, x), m ∈R, x ∈Rd, m> x1, x =(
x1, . . . , xd

)}
. From now on, we use Einstein’s convention. The infinitesimal generator L
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PDE for the joint law of the pair of a continuous diffusion and its running maximum 1173

of the diffusion X defined in (1) is the partial differential operator on the space C2(Rd,R)
given by

L= Bi∂xi + 1

2
(AAt)ij∂2

xi,xj
, (2)

where At denotes the transposed matrix.
Its adjoint operator is L∗f = 1

2�
ij∂2

ij f − [Bi − ∂j
(
�ij
)]
∂if − [∂iBi − 1

2∂
2
ij

(
�ij
)]

f , where

� := AAt. In what follows, the operators L and L∗ are extended to the space C2
(
Rd+1,R

)
, for

� ∈ C2
(
Rd+1,R

)
, as

L(�)(m, x) = Bi(x)∂xi�(m, x) + 1

2
�ij(x)∂2

xi,xj
�(m, x)

and

L∗(�)(m, x) =
1

2
�ij(x)∂2

ij�(m, x) − [Bi − ∂j
(
�ij)](x)∂xi�(m, x) +

[
1

2
∂2

xi,xj
�ij − ∂xiB

i
]

(x)�(m, x).

We stress that these operators are degenerate, since no derivative with respect to the variable m
appears.

Let A1(x) be the d-dimensional vector A1(x) = (A1
j (x), j = 1, . . . , d

) ∈Rd corresponding to
the first column of A(x); similarly Aj(x) denotes its jth row.

Recall that M denotes the running maximum of the first component of X, meaning Mt =
sup0≤s≤t

{
X1

s

}
, and V is the Rd+1-valued process defined by (Vt = (Mt, Xt), ∀t ≥ 0). Finally,

x̃ ∈Rd−1 denotes the vector (x2, . . . , xd).
In [9], under Assumptions (4) and (5) below, when the initial value is deterministic, X0 =

x0 ∈Rd, the density of Vt exists and is denoted by pV (.; t, x0). If μ0 is the distribution of X0,
the density of the law of Vt with respect to the Lebesgue measure on Rd+1 is

pV (.; t, μ0) :=
∫
Rd

pV (.; t, x0)dμ0(x0). (3)

When there is no ambiguity, the dependency on μ0 is omitted.
Since Mt ≥ X1

t , the support of pV (.; t, μ0) is contained in �̄ := {(m, x) ∈Rd+1|m ≥ x1
}

.

2.2. Main results

The aim of this article is to show that the density pV is a weak solution of a Fokker–Planck
PDE. We assume that the coefficients B and A satisfy

B ∈ C1
b

(
Rd,Rd) and A ∈ C2

b

(
Rd,Rd×d) (4)

and that there exists a constant c> 0 such that the Euclidean norm of any vector v satisfies

c‖v‖2 ≤ vtA(x)At(x)v, ∀v, x ∈Rd. (5)

Our first result will be established under the following hypothesis, which is a quite natural
assumption on the regularity of pV in the neighborhood of the boundary of �, since the set of
times where the process M increases is included in the set {t, Mt = Xt}.
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1174 L. COUTIN AND M. PONTIER

Hypothesis 2.1. The density of the law of Vt = (Mt, Xt
)
, denoted by pV (see (3)), satisfies the

following:

(i) The map (t,m, x̃) 	→ supu>0 pV (m,m − u, x̃; t) belongs to L1([0, T] ×Rd, dtdmdx̃).

(ii) For all t> 0, almost surely in (m, x̃) ∈Rd, limu→0+ pV (m,m − u, x̃; t) exists and is
denoted by pV (m,m, x̃; t).

Theorem 2.2. Assume that A and B fulfil (4) and (5) and that (M, X) fulfils Hypothesis 2.1.
Then, for any initial law μ0 and F ∈ C2

b

(
Rd+1,R

)
,

E
[
F
(
Mt, Xt

))=E

[
F
(
X1

0, X0
)]+ ∫ t

0
E [L (F) (Ms, Xs)] ds

+ 1

2

∫ t

0
E

[
∂mF
(
X1

s , Xs
)‖A1(Xs)‖2 pV

(
X1

s , Xs; s
)

pX(Xs; s)

]
ds. (6)

Actually, pX is the solution of the PDE ∂tp =L∗p, p(.; 0) =μ0, where

L∗f = 1
2�

ij∂2
ij f − [Bi − ∂j

(
�ij
)]
∂if − [∂iBi − 1

2∂
2
ij

(
�ij
)]

f . Let aij := �ij,

ai := [Bi − ∂j
(
�ij
)]
∂i, and a0 := ∂iBi − 1

2∂
2
ij

(
�ij
)
. Under Assumptions (4) and (5), the

operator L∗ satisfies all the assumptions of [14, Theorem 3.5] (see (3.2), (3.3), and (3.4) on
p. 177). As a consequence of [14, Theorem 3.5], line 14, we have pX(x; s)> 0.

Remark 2.1. (i) When A is the identity matrix of Rd (denoted by Id) and B ∈ C1
b

(
Rd,Rd

)
,

Hypothesis 2.1 is fulfilled; see Theorem 2.4 below. When d = 1, using a Lamperti transforma-
tion [18], one can prove that Hypothesis 2.1 is always fulfilled; see Section 5.

(ii) This result is similar to [8, Theorem 2.1], where the process X is a Lévy process.
Proposition 4 in [8] gives a key to the last term in (6) with factor 1

2 . First, roughly speaking,
the local behavior of X1

t − X1
s conditionally on Fs is that of ‖A1(Xs)‖

(
W1

t − X1
s

)
. So, as in the

Brownian case, the running maximum M of X1 is increasing as soon as it is equal to X1 and
both M and X1 are increasing. It is well known that the Brownian process W1 is increasing with

probability 1
2 ; more specifically, we have P

{
limt→s+ W1

t −W1
s

t−s = −∞
}

= P

{
limt→s+ W1

t −W1
s

t−s =
+∞
}

= 1
2 .

The starting point of the proof of Theorem 2.2 is Itô’s formula: let F belong to C2
b

(
Rd+1,R

)
.

The process M is increasing; hence V = (M, X) is a semi-martingale. Applying Itô’s formula
to F(V) and taking the expectation of both sides, we have

E [F(Vt)] =E [F(V0)] +
∫ t

0
E [L(F)(Vs)] ds +E

[∫ t

0
∂mF(Vs)dMs

]
.

The novelty comes from the third term in the right-hand side of the equation above. The
following theorem, proved in Section 3, completes the proof of Theorem 2.2.

Theorem 2.3. Assume that A and B fulfil (4) and (5) and that (M, X) fulfils Hypothesis 2.1. For
every 	 ∈ C1

b

(
Rd+1,R

)
, let Fψ be the map

Fψ : t 	→E

[∫ t

0
	(Ms, Xs)dMs

]
.
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Then F	 is absolutely continuous with respect to the Lebesgue measure, and its derivative is

Ḟ	 (t) = 1

2

∫
Rd
	(m,m, x̃)‖A1(m, x̃)‖2pV (m,m, x̃; t)dmdx̃.

Observe that, as expressed in Theorem 2.2, this derivative can be written as

1

2
E

[
	
(
X1

t , Xt
)‖A1(Xt)‖2 pV

(
X1

t , Xt; t
)

pX(Xt; t)

]
.

Remark 2.2. The above proposition provides an explicit formulation of the derivative of the
function F	 . Note that the absolute continuity of Fψ could be established as a direct conse-
quence of the existence of the density of the law of the hitting time τa = inf

{
s : X1

s ≥ a
}

when
it exists, using the identity {τa ≤ t} = {Mt ≥ a}. Conversely, it could be proved that the absolute
continuity of F	 yields the existence of the density of the law of the hitting time τa, using a
sequence of C2

b(R,R) functions (Fn) approximating the indicator function 1[a,∞); namely, this
density satisfies fτa (t) = 1

2

∫
Rd−1 pV (a, a, x̃; t)dx̃.

Theorem 2.4. Assume that A = Id and B satisfies Assumption (4). Then, for all t> 0, the distri-
bution of the pair

(
Mt, Xt

)
fulfils Hypothesis 2.1. As a consequence, for all F ∈ C2

b

(
Rd+1,R

)
,

E
[
F
(
Mt, Xt

)]=E

[
F
(
X1

0, X0
)]+ ∫ t

0
E [L (F) (Ms, Xs)] ds

+ 1

2

∫ t

0
E

[
∂mF
(
X1

s , Xs
)pV
(
X1

s , Xs; s
)

pX(Xs; s)

]
ds.

Proof. This theorem is a consequence of Theorem 2.2 and Proposition 4.1. �
When d = 1, a Lamperti transformation leads to the following corollary.

Corollary 1. Assume that d = 1, and A and B satisfy (4) and (5). Then the density pV satisfies
Hypothesis 2.1, so

E
[
F
(
Mt, Xt

)]=E [F(X0, X0)] +
∫ t

0
E [L (F) (Ms, Xs)] ds

+ 1

2

∫ t

0
E

[
A2(Xs)∂mF(Xs, Xs)

pV (Xs, Xs; s)

pX(Xs; s)

]
ds.

Remark 2.3. If pV is regular enough, and if the initial law of X0 satisfies μ0(dx) = f0(x)dx,
then Theorem 2.2 means that pV is a weak solution in the set � of ∂tp =L∗p, where L∗f =
1
2�

ij∂2
ij f − [Bi − ∂j

(
�ij
)]
∂if − ∂iBi − 1

2∂
2
ij

(
�ij
)
)f with boundary condition

B1(m, x̃)pV (m,m, x̃; s) = ∂xk

(
�1,kpV

)
(m,m, x̃; s) + 1

2
∂m
(‖A1‖2pV

)
(m,m, x̃; s). (7)

This result is proved in Appendix A.3.

This boundary condition also appears in [4, Proposition 4, Equation (11)] (Ornstein–
Uhlenbeck process). Finally, a similar PDE is studied in [14, Chapter 1.2], where the
authors establish the existence of a unique strong solution of the PDE, but in the case of a
non-degenerate elliptic operator.
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3. Proof of Theorem 2.3

We start this section with a roadmap for the proof of Theorem 2.3. First we compute the
right derivative of the map F	 : t 	→E

[∫ t
0 	(Ms, Xs)dMs

]
, namely limh→0+ Th,t with Th,t =

1
hEP

[ ∫ t+h
t ψ(Vs)dMs

]
. A first step is the decomposition

Th,t = 1

h
EP

[ ∫ t+h

t
(ψ(Vs) −ψ(Vt))dMs

]
+ 1

h
EP[ψ(Vt)

(
Mt+h − Mt

)
]. (8)

Since ψ ∈ C1
b

(
Rd+1,R

)
and the process M is increasing, the first term in (8) is dominated by

E

[∫ t+h

t
(ψ(Vs) −ψ(Vt))dMs

]
≤ ‖∇ψ‖∞E

[
sup

t≤s≤t+h
‖Vs − Vt‖

(
Mt+h − Mt

)]
.

Lemma 3.1 states that supt≤s≤t+h ‖Xs − Xt‖p = O
(√

h
)
, and Lemma 3.2 yields

‖Mt+h − Mt‖p = o
(√

h
)
, so that that this first term is o(h).

Concerning the second term in (8), Mt+h − Mt can be written as sup0≤u≤h

(
X1

t+h − X1
t −

Mt + X1
t

)
+. In order to use the independence of the increments of Brownian motion, we

introduce a new process, independent of Ft, which is an approximation of X1
t+u − X1

t :

X1
t,u := A1

k(Xt)Ŵ
k
u where Ŵk

u := Wk
t+u − Wk

t ; Mt,h := sup
0≤u≤h

X1
t,u. (9)

Lemma 3.4(ii) will set E

[
|Mt+h − Mt − (Mt,h − Mt + X1

t

)
+ |
]
= o(h), where (x)+ =

max(x, 0). Thus,

1

h
E[ψ(Vt)

(
Mt+h − Mt

)
] =E

[
ψ(Vt)

(
Mt,h − Mt + X1

t

)
+
]+ o(h). (10)

Observe that the law of Mt,h given Ft is the law of ‖A1(Xt)‖ sup0≤u≤h Ŵ1
u ; then, using the

function H from (13), an Ft-conditioning yields

1

h
E
[
ψ(Vt)

(
Mt+h − Mt

)]= 2√
h
E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]
+ o(h). (11)

Then

Th,t = 2√
h
E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]
+ o(h),

as given in Proposition 3.1(ii). In Proposition 3.2, under Hypothesis 2.1, we compute
limh→0 Th; t.

Finally in Section 3.4 we prove that Fψ : t 	→ E
[ ∫ t

0 ψ(Vs)dMs
]

is an absolutely continuous
function with respect to the Lebesgue measure, integral of its right derivative. Actually we
prove that Fψ is a continuous function belonging to the Sobolev space W1,1(I), I = (0, T).
This completes the proof of Theorem 2.3.
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The main propositions to prove are the following.

Proposition 3.1. Let B and A fulfil (4) and (5), and let 	 ∈ C1
b

(
Rd+1,R

)
. Recall that A1 is the

vector
(
A1

j , j = 1, . . . , d
)
, and ‖A1(x)‖2 =∑d

j=1

(
A1

j (x)
)2

.

(i) For every T > 0, there exists a constant C> 0 (depending on ‖A‖∞, ‖B‖∞, ‖∇A‖∞,
‖	‖∞, ‖∇	‖∞, and T) such that for all t ∈ [0, T] and h ∈ [0, 1],∣∣∣∣∣E
[∫ t+h

t
	(Vs)dMs − 2

√
h

(
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

))]∣∣∣∣∣≤ Ch‖∇	‖∞.

(12)

(ii) For all t> 0 and h ∈ [0, 1],

lim
h→0+

1

h

∣∣∣∣∣E
[∫ t+h

t
	(Vs)dMs

]
− 2

√
hE

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]∣∣∣∣∣= 0,

where, denoting by�G the standard Gaussian cumulative distribution function, we write

H(θ ) :=
∫ ∞

θ

1√
2π

(y − θ )e− y2

2 dy = e− θ2
2√

2π
− θ�G(−θ ). (13)

The following remark will be useful.

Remark 3.1. The definition of H in (13) implies that
∫∞

0 H(u)du = 1/4. Moreover, H′(θ ) =
−�G(−θ ) ≤ 0; in particular, H is non-increasing.

Proposition 3.2. Assume that A and B fulfil (4) and (5) and that (M, X) fulfils Hypothesis 2.1.
Then for all 	 ∈ C1

b

(
Rd+1,R

)
, all T > 0, and all t ≥ 0, the following hold:

(i) t 	→ sup
h>0

2
√

h

h
E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]
∈ L1([0, T],R);

(ii) lim
h→0+

2
√

h

h
E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]

= 1

2

∫
Rd
	(m,m, x̃)‖A1(m, x̃)‖2pV (m,m, x̃; t)dmdx̃

As a corollary, the function

t → 1

2

∫
Rd
	(m,m, x̃)‖A1(m, x̃)‖2pV (m,m, x̃; t)dmdx̃

belongs to L1([0, T],R).

The proof of Proposition 3.1 will be obtained using the lemmas in the following section.

3.1. Tools for proving Proposition 3.1

Here we provide some estimates of the expectations of the increments of the processes
X and M. Assumptions (4) and (5) allow us to introduce a constant K which denotes either
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max(‖A‖∞, ‖B‖∞) or max(‖A‖∞, ‖B‖∞, ‖∇A‖∞). Let Cp be the constant in the Burkholder–
Davis–Gundy inequality (cf. [3, Theorem B.36]).

Lemma 3.1. Let A and B be bounded. Then, for all 0< h ≤ 1, for all p ≥ 1 there exists a
constant Cp,K (depending only on p and K) such that

sup
t>0

E

[
sup

0≤s≤h
‖Xt+s − Xt‖p

]
≤ Cp,Khp/2.

Proof. Using the fact that (a + b)p ≤ 2p−1 [ap + bp] , a, b ≥ 0, one obtains

0 ≤ sup
s≤h

‖Xt+s − Xt‖p ≤ 2p−1

[
sup
u≤h

(∥∥∥ ∫ t+u

t
B(Xs)ds

∥∥∥)p

+ sup
u≤h

(∥∥∥ ∫ t+u

t
Aj(Xs)dWj

s

∥∥∥)p
]

.

If we take the expectation of both sides, the Burkholder–Davis–Gundy inequality implies

E

[
sup
s≤h

‖Xt+s − Xt‖p
]
≤ 2p−1(1 + Cp)E

⎡
⎣(∫ t+h

t
‖B(Xs)‖ds

)p

+
(∫ t+h

t
‖A(Xs)‖2ds

)p/2
⎤
⎦ .

Assumption (4) on B and A yields

E

[
sup
s≤h

‖Xt+s − Xt‖p

]
≤ 2p−1(1 + Cp)

(
hpKp + hp/2Kp).

�
Lemma 3.2. Let B and A satisfy Assumptions (4) and (5). Then, for all 0< h ≤ 1, for all p ≥ 1
we get

sup
t>0

E
[|Mt+h − Mt|p

]≤ Cp,Khp/2 ; E
[|Mt+h − Mt|p

]= o
(
hp/2). (14)

Proof. Recall that

Mt+h − Mt =
(

sup
0≤u≤h

(
X1

t+u − X1
t

)+ X1
t − Mt

)
+
,

recalling (x)+ = max(x, 0). For any a ≥ 0, one has (x − a)+ ≤ |x|1{x>a}; thus

0 ≤ Mt+h − Mt ≤
∣∣∣ sup

0≤u≤h

(
X1

t+u − X1
t

)∣∣∣1{
sup0≤u≤h

(
X1

t+u−X1
t

)
>Mt−X1

t

}.
The Cauchy–Schwarz inequality yields

0 ≤E
[
(Mt+h − Mt)

p]
≤
√√√√E

[∣∣∣ sup
0≤u≤h

(
X1

t+u − X1
t
)∣∣∣2p
]
P

({
sup

0≤u≤h

(
X1

t+u − X1
t
)
>Mt − X1

t

})
.

Replacing p by 2p in Lemma 3.1 leads to the inequality in (14), and the equality

lim
h→0

sup
0≤u≤h

(
X1

t+u − X1
t

)= 0
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holds almost surely. According to [9, Theorem 1.1] extended to X0 with law μ0 on Rd,
the pair

(
Mt, Xt

)
admits a density; thus P{Mt − X1

t = 0} = 0 holds almost surely. Therefore
E
([

Mt+h − Mt
]p) is bounded by the product of hp/2 and a factor going to zero when h goes

to 0, and this quantity is o(hp/2). �
For any fixed t we recall the process (Xt,u, u ∈ [0, h]) and the running maximum of its first

component as follows:

Xt,u :=
∑

j

Aj(Xt)Ŵ
j
u, Mt,h := sup

0≤u≤h
X1

t,u. (15)

Lemma 3.3. Under Assumptions (4) and (5), for every p ≥ 1 there exists a constant Cp,K such
that for all t ≤ T, for all h ∈ [0, 1],

E

[
sup
s≤h

∣∣X1
s+t − X1

t − X1
t,s

∣∣p]≤ Cp,Khp.

Proof. By definition, recalling Ŵu := Wt+u − Wt, u ≥ 0, we obtain

X1
s+t − X1

t − X1
t,s =

∫ s

0
B1(Xu+t)du +

∫ s

0

[
A1(Xu+t) − A1(Xt)

]
dŴu.

Once again using the inequality (a + b)p ≤ 2p−1(ap + bp), a, b ≥ 0, we get

sup
0≤s≤h

∣∣X1
s+t − X1

t − X1
t,s

∣∣p ≤

2p−1

[(∫ h

0
‖B1(Xu+t)‖du

)p

+ sup
0≤s≤h

∥∥∥∥
∫ s

0

[
A1(Xu+t) − A1(Xt)

]
dŴu

∥∥∥∥
p
]

.

Taking the expectation of both sides and applying the Burkholder–Davis–Gundy inequality
yields, with Dp = 2p−1(1 + Cp),

E

[
sup

0≤s≤h

∣∣X1
s+t − X1

t − X1
t,s

∣∣p]

≤ Dp

⎛
⎝E
[∫ h

0
‖B1(Xu+t)‖du

]p

+E

∣∣∣∣∣
∫ h

0
‖A1(Xu+t) − A1(Xt)‖2du

∣∣∣∣∣
p/2
⎞
⎠ .

The first term above is bounded by Kphp, since B is bounded. The assumption that A
belongs to C1

b

(
Rd,Rd×d

)
and Jensen’s inequality imply that the second term is bounded by

Kphp/2−1
∫ h

0 E‖Xu+t − Xt‖pdu; thus

E

[
sup

0≤s≤h

∣∣X1
s+t − X1

t − X1
t,s

∣∣p]≤ DpKphp/2−1

(
hp/2+1 +

∫ h

0
E‖Xu+t − Xt‖pdu

)
.

From Lemma 3.1 we obtain the uniform upper bound E[‖Xu+t − Xt‖p] ≤ Cp,Kup/2; hence,

E

[
sup
s≤h

∣∣X1
s+t − X1

t − X1
t,s

∣∣p]≤ DpKpCp,K
p
2 + 1

hp.

�
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Lemma 3.4. Under Assumptions (4) and (5), the following hold:

(i) There exists C> 0 such that

sup
0≤t≤T; 0≤h≤1

h−1E

[∣∣∣∣Mt+h − Mt −
(

Mt,h − Mt + X1
t

)
+

∣∣∣∣
]

≤ C<∞.

(ii) We have

lim
h→0+ h−1E

[∣∣∣∣Mt+h − Mt −
(

Mt,h − Mt + X1
t

)
+

∣∣∣∣
]

= 0.

Proof. First, observe that

∀a ∈R,
∣∣(x − a)+ − (y − a)+

∣∣≤ |x − y| [1{x>a} + 1{y>a}
]
, (16)

and if f and g are functions on [0, T], then

∀s ∈ [0, T], f (s) − sup
0≤u≤T

g(u) ≤ f (s) − g(s) ≤ |f (s) − g(s)| ≤ sup
v≤T

|f (v) − g(v)|;

hence sups≤T f (s) − supu≤T g(u) ≤ supv≤T |f (v) − g(v)|. Here the roles of f and g are symmet-
rical, so sups≤T g(s) − supu≤T f (u) ≤ supv≤T |f (v) − g(v)|, and∣∣∣∣∣sup

s≤T
g(s) − sup

u≤T
f (u)

∣∣∣∣∣≤ sup
v≤T

|f (v) − g(v)|. (17)

We now consider Mt+h − Mt = (sup0≤u≤h

(
X1

u+t − X1
t

)− Mt + X1
t

)
+ ; using (16),∣∣∣∣Mt+h − Mt −

(
Mt,h − Mt + X1

t

)
+

∣∣∣∣≤∣∣∣∣∣ sup
0≤u≤h

(
X1

u+t − X1
t

)− Mt,h

∣∣∣∣∣
[

1{
sup0≤u≤h

(
X1

u+t−X1
t

)
>Mt−X1

t

} + 1{
Mt,h>Mt−X1

t

}] .

Then, for any t fixed, we apply the inequality (17) to the maps g : u 	→ X1
u+t−Xt

1 and
f : u 	→ X1

t,u. Then∣∣∣∣Mt+h − Mt −
(

Mt,h − Mt + X1
t

)
+

∣∣∣∣≤
sup

0≤u≤h

∣∣∣X1
u+t − X1

t − X1
t,u

∣∣∣ [1{
sup0≤u≤h

(
X1

u+t−X1
t

)
>Mt−X1

t

} + 1{
Mt,h>Mt−X1

t

}] .

From the Cauchy–Schwarz inequality and the fact that (a + b)2 ≤ 2
(
a2 + b2

)
, we get

E

[∣∣∣∣Mt+h − Mt −
(

Mt,h − Mt + X1
t

)
+

∣∣∣∣
]

≤√√√√2E

[
sup
u≤h

∣∣X1
u+t − X1

t − X1
t,u

∣∣2](P{ sup
0≤u≤h

(
X1

u+t − X1
t
)
>Mt − X1

t

}
+ P
{
Mt,h >Mt − X1

t
})

.

https://doi.org/10.1017/apr.2022.76 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.76


PDE for the joint law of the pair of a continuous diffusion and its running maximum 1181

Lemma 3.3 with p = 2 ensures that the map h 	→ h−1

√
2E
[
supu≤h

∣∣X1
u+t − X1

t − X1
t,u

∣∣2] is

uniformly bounded in t. Concerning the second factor, we have the following:

• First, the almost sure continuity with respect to h ensures that the quantities
limh→0 sup0≤u≤h

(
X1

u+t − X1
t

)
and limh→0 Mt,h are equal to 0.

• Second, the law of the pair
(
Mt, Xt

)
admits a density with respect to the Lebesgue mea-

sure on �̄, according to [9, Theorem 1.1], so P
({

0 = Mt − X1
t

})= 0, and the limit of the
second factor is equal to 0.

This concludes the proof of the lemma. �

Recall Definition (15): Xt,h = Aj(Xt)
[
Wj

t+h − Wj
t
]
, Mt,h = sup0≤u≤hX1

t,u, h ∈ [0, 1].

Lemma 3.5. Under Assumptions (4) and (5), with H defined in (13), we have

E

[(
Mt,h − Mt + X1

t

)
+|Ft

]
= 2‖A1(Xt)‖

√
hH
(

Mt − X1
t

‖A1(Xt)‖
√

h

)
.

Proof. For any t fixed, conditionally on Ft, the process
(
X1

t,u, u ∈ [0, h]
)

from (9) has the

same law as
(√

h‖A1(Xt)‖Ŵu, u ∈ [0, 1]
)
, where Ŵ is a Brownian motion independent of Ft,

and for any h, the random variable Mt,h has the same law as
√

h‖A1(Xt)‖ supu≤1 Ŵu.
Following [17, Section 3.1.3], the random variable supu≤1 Ŵu has the same law as |G|,

where G is a standard Gaussian variable (independent of Ft) with density 2√
2π

e− z2
2 1[0,+∞[(z).

Then, using the function H introduced in (13), we have

E

[(
Mt,h − (Mt − X1

t

))
+|Ft

]
=
∫ ∞

0

(
‖A1(Xt)‖

√
hz − (Mt − X1

t

))
+

2√
2π

e− z2
2 dz

= 2‖A1(Xt)‖
√

hH
(

Mt − X1
t√

h‖A1(Xt)‖
)

.

�

3.2. Proof of Proposition 3.1

Let t> 0. The key in this proof is to write the quantity

E

[∫ t+h

t
	(Vs)dMs

]
− 2

√
hE

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]

as the sum of three terms,

E

[ ∫ t+h

t
(	(Vs) −	(Vt))dMs

]
+E

[
	(Vt)

((
Mt+h − Mt

)−E

[
Mt,h − Mt + X1

t

)
+|Ft

] )]
(18)

+E

[
	(Vt)E

[(
Mt,h − Mt + X1

t

)
+ | Ft

]
− 2

√
h	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]
.
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We now prove that each of the terms in the sum (18) are both o(h) and O(h) uniformly in time.
(a) Using Lemma 3.1, the third term is null.
(b) Concerning the second term, using the fact that 	 is bounded and Lemma 3.1(i), for all

t ∈ [0, T] ∣∣∣E [	(Vt)[
(
Mt+h − Mt

)−E
[(

Mt,h − Mt + X1
t

)
+ | Ft

]]∣∣∣≤
‖	‖∞

∣∣∣E [Mt+h − Mt −E
[(

Mt,h − Mt + X1
t

)
+|Ft
]]∣∣∣≤ Ch‖	‖∞,

as is required in (12). Moreover, using Lemma 3.4(ii),

lim
h→0

1

h

∣∣∣E [	(Vt)[
(
Mt+h − Mt

)−E
[(

Mt,h − Mt + X1
t

)
+ | Ft

]]∣∣∣= 0.

(c) Since ∇	 is bounded and the process M is increasing, the first term is bounded:

E

[∫ t+h

t
[	(Vs) −	(Vt)]dMs

]
≤ ‖∇	‖∞E

[
sup

t≤s≤t+h
‖Vs − Vt‖

(
Mt+h − Mt

)]
.

Using the Cauchy–Schwarz inequality,

E

[
sup

t≤s≤t+h
‖Vs − Vt‖

(
Mt+h − Mt

)]≤
√
E

[
sup

t≤s≤t+h
‖Vs − Vt‖2

]
E
[(

Mt+h − Mt
)2].

Since ‖Vs − Vt‖2 = (Ms − Mt)2 + ‖Xs − Xt‖2, we obtain

sup
t≤s≤t+h

‖Vs − Vt‖2 ≤ (Mt+h − Mt
)2 + sup

t≤s≤t+h
‖Xs − Xt‖2;

hence

E

[
sup

t≤s≤t+h
‖Vs − Vt‖

(
Mt+h − Mt

)]≤
√√√√
E
[(

Mt+h − Mt
)2]+E

[
sup

t≤s≤t+h
‖Xs − Xt‖

]2√
E
[(

Mt+h − Mt
)2].

Lemmas 3.1 and 3.2 (p = 2) yield the fact that the first factor is o
(√

h
)

and the second is O
(√

h
)

uniformly with respect to t ≥ 0. Then E
[

supt≤s≤t+h ‖Vs − Vt‖
(
Mt+h − Mt

)]
is o(h) and O(h)

uniformly with respect to t ≥ 0. �

3.3. Proof of Proposition 3.2

(i) Recall that A and B fulfil (4), (5) and (M, X) fulfils Hypothesis 2.1. Then, using the
density pV of the law of the pair

(
Mt, Xt

)
, we have

E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]
≤

‖	‖∞‖A‖∞
∫
Rd+1

H
(

m − x1

√
h‖A1(x1, x̃)‖

)
pV
(
m, x1, x̃; t

)
dm dx1 dx̃.
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The change of variable x1 = m − u
√

h yields
√

h

h
E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]
≤ (19)

‖	‖∞‖A1‖∞
∫
Rd×[0,+∞[

H
(

u

‖A1
(
m − √

hu, x̃
)‖
)

pV
(
m,m − √

hu, x̃; t
)
dm dx̃ du.

Since H is decreasing (Remark 3.1) and 0 ≤ h ≤ 1, we have

H
(

u

‖A1
(
m − √

hu, x̃
)‖
)

≤H
(

u

‖A1‖∞

)
,

so ∣∣∣∣∣
√

h

h
E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]∣∣∣∣∣≤
‖	‖∞‖A1‖∞

∫
Rd×[0,+∞[

H
(

u

‖A1‖∞

)
sup
r>0

pV (m,m − r, x̃; t)dm dx̃ du.

Applying Tonelli’s theorem, computing the integral with respect to du in the right-hand side
with

∫∞
0 H(v)dv = 1/4 (Remark 3.1), we obtain

sup
h>0

∣∣∣∣∣
√

h

h
E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]∣∣∣∣∣
≤ 1

4
‖	‖∞‖A1‖2∞

∫
Rd

sup
r>0

pV (m,m − r, x̃; t)dm dx̃.

Using Hypothesis 2.1(i), we obtain that the map

t 	→ sup
h>0

∣∣∣∣∣
√

h

h
E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]∣∣∣∣∣
belongs to L1([0, T],R). Part (i) of Proposition 3.2 is proved.

(ii) For the proof of Part (ii), first note that

E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]

=
∫
Rd+1

	(m, x)‖A1(x)‖H
(

m − x1

√
h‖A1(x)‖

)
pV (m, x; t)dm dx.

After the change of variable x1 = m − u
√

h, we obtain
√

h

h
E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]
= (20)

∫
Rd×R+

	
(
m,m − u

√
h, x̃
)‖A1(m − u

√
h, x̃
)‖H
(

u

‖A1
(
m − √

hu, x̃
)‖
)

pV
(
m,m − √

hu, x̃; t
)
dm dx̃ du.
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Using Lebesgue’s dominated convergence theorem, we let h go to 0 in (20) for t> 0, and using
the fact that 	, A, and H are continuous and Hypothesis 2.1(ii), we obtain

lim
h→0

√
h

h
E

[
	(Vt)‖A1(Xt)‖H

(
Mt − Xt√
h‖A1(Xt)‖

)]
=

∫
Rd×[0,+∞[

	(m,m, x̃)‖A1(m, x̃)‖H
(

u

‖A1(m, x̃)‖
)

pV (m,m, x̃; t)dm dx̃ du.

Using the change of variable z = u
‖A1(m,x̃)‖ and Remark 3.1

∫∞
0 H(z)dz = 1/4 yields

lim
h→0

√
h

h
E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)]

= 1

4

∫
Rd
	(m,m, x̃)‖A1(m, x̃)‖2pV (m,m,x̃; t)dm dx̃.

�

3.4. End of proof of Theorem 2.3

We recall Theorem 8.2 from Brezis [5, p. 204]: let f ∈ W1,1(0, T); then f is almost surely
equal to an absolutely continuous function. As a particular case, any f ∈ W1,1(0, T) ∩ C(0, T)

is absolutely continuous. Recall Fψ : t 	→E

[∫ t
0 	(Vs)dMs

]
.

Lemma 3.6. Assume that A and B fulfil (4) and (5) and that 	 is a continuous bounded
function. Then F	 is a continuous function on R+.

Proof. Let 0 ≤ s ≤ t. Since 	 is bounded and M is non-decreasing,

|F	 (t) − F	 (s)| =
∣∣∣∣E
[∫ t

s
	(Vu)dMu

]∣∣∣∣≤ ‖	‖∞E[Mt − Ms].

The map t 	→E[Mt] being continuous, F	 is a continuous function on R+. �
Lemma 3.7. Assume that A and B fulfil (4) and (5), (M, X) fulfils Hypothesis 2.1, and 	 ∈
C1

b. Then for all T > 0, the map Fψ belongs to the Sobolev space W1,1(]0, T[), and its weak
derivative is

Ḟ	 (t) := 1

2

∫
Rd
	(m, x̃)‖A1(m, x̃)‖2pV (m,m, x̃; t)dmdx̃.

Proof. Let g : [0, T] →R be C1 with compact support [α, β] ⊂ (0, T). This means both
functions g and ġ are continuous, hence bounded, and that moreover g(α) = g(β) = 0. Note
that

ġ(t) = lim
h→0

g(t) − g(t − h)

h
, ∀t ∈ (0, T).

Moreover,

sup
t∈[0,T]

sup
h∈[0,1]

|g(t) − g(t − h)

h
| ≤ ‖ġ‖∞.

Observe that, since M is non-decreasing and the coefficients A and B are bounded,∣∣Fψ (t)
∣∣≤ ‖	‖∞E[MT ]<∞.
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Then, using Lebesgue’s dominated convergence theorem, we have∫ T

0
ġ(s)Fψ (s)ds =

∫ T

0
lim
h→0

g(s) − g(s − h)

h
Fψ (s)ds = lim

h→0

∫ T

0

g(s) − g(s − h)

h
Fψ (s)ds.

Using the change of variable u = s − h in the last integral, we have∫ T

0

g(s) − g(s − h)

h
F	 (s)ds = h−1

∫ T

0
g(s)F	 (s)ds − h−1

∫ T−h

−h
g(u)F	 (u + h)du

=
∫ T

0
g(s)

F	 (s) − F	 (s + h)

h
ds−h−1

∫ 0

−h
g(s)F	 (s + h)ds+h−1

∫ T

T−h
g(s)F	 (s + h)ds.

Recalling that supp(g) = [α, β] ⊂ (0, T), gF	 extended by 0 on [α, β]c is bounded on [0, T],
so lims→0 g(s) = lims→T g(s) = 0. Then

h−1
∫ 0

−h
g(s)F	 (s + h)ds = h−1

∫ T

T−h
g(s)Fψ (s + h)ds = 0

as soon as 0< h ≤ T − β; thus

lim
h→0

[
h−1
∫ 0

−h
g(s)F	 (s + h)ds

]
= lim

h→0

[
h−1
∫ T

T−h
g(s)Fψ (s + h)ds

]
= 0.

Applying Lebesgue’s dominated convergence theorem yields that F admits a weak
derivative: ∫ T

0
ġ(s)Fψ (s)ds = −

∫ T

0
g(s)Ḟ	 (s)ds.

Using Proposition 3.1(ii), we have

lim
h→0+

(
−F	 (t) − F	 (t + h)

h
− 2√

h
E

[
	(Vt)‖A1(Xt)‖H

(
Mt − X1

t√
h‖A1(Xt)‖

)])
= 0.

Using Proposition 3.2(ii),

−Ḟ	 (t+) := lim
h→0,h>0

F	 (t) − F	 (t + h)

h
= −1

2

∫
Rd
	(m,m, x̃)‖A1(m, x̃)‖2pV (m,m, x̃; t)dmdx̃,

and by Propositions 3.1(i) and 3.2(i),

sup
h>0

∣∣∣∣F	 (t) − F	 (t + h)

h

∣∣∣∣ ∈ L1([0, T], dt),

so Ḟ	 ∈ L1([0, T],R). By [5, Chapter 8, Section 2, p. 202], F	 belongs to
W1,1(]0, T[,R). �

We now finish the proof of Theorem 2.3. According to [5, Theorem 8.2, p. 204], Fψ is equal
almost surely to an absolutely continuous function. Since F	 is continuous (Lemma 3.6), the
equality holds everywhere. Thus F	 is an absolutely continuous function, and its derivative is
its right derivative.
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4. The case A = Id

In this rather technical section, we first prove that the density of the pair
(
Mt, Xt

)
fulfils

Hypothesis 2.1: pV (from (3)) is continuous on the boundary of �̄ and is dominated by an
integrable function.

Proposition 4.1. Assume that B fulfils Assumption (4) and A = Id. Then (M, X) fulfils
Hypothesis 2.1, meaning that for any probability measure μ0 on Rd, the following hold:

(i) For every T > 0,

sup
(h,u)∈[0,1]×R+

pV (b, b − hu, ã; t, μ0) ∈ L1([0, T] ×Rd, dtdbdã
)
.

(ii) Almost surely in (m, x̃) ∈Rd, for every t> 0,

lim
u→0, u>0

pV
(
m,m − u, x̃; t, μ0

)= pV
(
m,m, x̃; t, μ0

)
.

As a by-product, using Theorems 2.2 and 2.3, this proposition completes the proof of
Theorem 2.4. The main tool for the proof of this proposition is an integral representation of the
density.

Proposition 4.2 For any probability measure μ0 on Rd, for all t> 0,

pV = p0 −
∑

k=m,1,...,d

(
pk,α + pk,β), (21)

where the various p terms are defined as follows (here ∂k is the derivative with respect to
k = m, x1, . . . , xd and Bm = B1):

p0(m, x; t) :=
∫
Rd

pW∗1,W

(
m − x1

0, x − x0; t
)
μ0(dx0),

pk,α(m, x; t) :=
∫ t

0

∫
Rd+1

1b<mBk(a)∂kpW∗1,W

(
m − a1, x − a; t − s

)
pV (b, a; s)dbdads,

pk,β (m, x; t) :=
∫ t

0

∫
R(d+1)

1b<mBk(a)∂kpW∗1,W

(
b − a1, x − a; t − s

)
pV (m, a; s)dbdads,

where pW∗1,W (., .; t) is the density of the distribution of
(
sups≤t W1

s ,Wt
)

for t ≥ 0; see
Appendix A.2.

4.1. Integral representation of the density: proof of Proposition 4.2

Let t> 0 be fixed. First, we assume that μ0 = δx0 , x0 being fixed in Rd. By Lemma 4.2
below, and using the fact that B is bounded, for all t ∈ [0, T], the functions pk,γ ∈∞
L
(
[0, T], L1

(
Rd+1

))
for γ = α, β.

Let F ∈ C1
b

(
Rd+1,R

)
with compact support. We will prove that

EP[F
(
Mt, Xt

)
] =
∫
Rd+1

F(m, x)

⎛
⎝p0 −

∑
k=m,x1,...,xd

(
pk,α + pk,β)(m, x, t)

⎞
⎠ dmdx. (22)

Using Malliavin calculus we obtain the following decomposition.
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Lemma 4.1. We have

EP

[
F
(
Mt, Xt

)]= ∫
Rd+1

F
(
x1

0 + b, x0 + a
)
pW∗1,W (b, a; t)dbda

+
∫ t

0
EP

[∫
Rd+1

∂mF
(

X1
s + b, Xs + a

)
1{

Ms<X1
s +b
}B1(Xs)pW∗1,W (b, a; t − s)dbda

]
ds

+
∫ t

0
EP

[∫
Rd+1

∂kF
(

max
(

Ms, X1
s + b

)
, Xs + a

)
Bk(Xs)pW∗1,W (b, a; t − s)dbda

]
ds.

Proof. Let Z be the exponential martingale solution of

Zt = 1 +
∫ t

0
ZsB

k(x0 + Ws
)
dWk

s . (23)

As before, Einstein’s convention is used. Let Q= ZP; according to Girsanov’s theorem,

using (23), WB :=
(

Wk
t − ∫ t

0 Bk
(
x0 + Ws

)
ds; k = 1, . . . , d

)
t≥0

is a Q-continuous martingale

such that 〈WB〉t = t for all t ≥ 0. That means that under Q, WB is a d-dimensional Brownian
motion. Then the distribution of X (resp. (M, X)) under P is the distribution of W + x0 (resp.
(W1∗ + x0,W + x0)) under Q, and

EP

[
F
(
Mt, Xt

)]=EQ

[
F
(
x1

0 + W1∗
t , x0 + Wt

)]=EP

[
F
(
x1

0 + W1∗
t , x0 + Wt

)
Zt

]
. (24)

Let G := F
(
x1

0 + W1∗
t , x0 + Wt

)
and u := ZB(x0 + W); using (23),

EP[F
(
Mt, Xt

)
] =EP

[
F
(
x1

0 + W1∗
t , x0 + Wt

)]+EP [Gδ(u)] . (25)

As a first step we will apply (50) (see the appendix) to the second term in (25). Thus we have
to check that the pair (G, u) ∈D1,2 ×L1,2. Since F is bounded and smooth, we have G ∈D1,2;
and according to Lemma A.1, the process u belongs to L1,2.

Using (53)
(
τ := inf

{
s,W1∗

s = W1∗
t

})
, the pair

(
W1∗

t ,Wt
)

belongs to D1,2 with Malliavin
gradient

DsW
1∗
t = (1[0,τ ](s), 0, . . . , 0

)
, DsW

k
t = (δj=k, j = 1, . . . , d

)
1[0,t](s), k = 1, . . . , d.

Using the chain rule,

〈DG, u〉H =
∫ t

0
∂mF
(
x1

0 + W∗1
t , x0 + Wt

)
1{

W1∗
s <W1∗

t

}B1(x0 + Ws
)
Zsds

+
∫ t

0
∂kF
(
x1

0 + W∗1
t , x0 + Wt

)
Bk(x0 + Ws

)
Zsds.

We are now in a position to apply (50), EP[Gδ(u)] = EP[〈DG, u〉H]:

EP[Gδ(u)] =EP

[∫ t

0
∂mF
(
x1

0 + W1∗
t , x0 + Wt

)
1{W1∗

s <W1∗
t }B

1(x0 + Ws
)
Zsds

]

+EP

[∫ t

0
∂kF
(
x1

0 + W1∗
t , x0 + Wt

)
Bk(x0 + Ws

)
Zsds

]
. (26)
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Plugging the identity (26) into the right-hand side of (25) and using Fubini’s theorem to
commute the integrals in ds and dP, we obtain

EP

[
F
(
Mt, Xt

)]=EP

[
F
(
x1

0 + W1∗
t , x0 + Wt

)]
(27)

+
∫ t

0
EP

[
∂mF
(
x1

0 + W1∗
t , x0 + Wt

)
1{

W1∗
s <W1∗

t

}ZsB
1(x0 + Ws

)]
ds

+
∫ t

0
EP

[
∂kF
(
x1

0 + W1∗
t , x0 + Wt

)
ZsB

k(x0 + Ws
)]

ds.

As a second step, we use the independence of the increments of the Brownian motion in
order to obtain the density of

(
W1∗

t−s,Wt−s
)
. Recall (9): Ŵt−s := Wt − Ws and

(
Ŵ1
)∗

t−s =
maxs≤u≤t

(
W1

u − W1
s

)
. Then

W1∗
t = max

(
W1∗

s ,W1
s + max

s≤u≤t

(
W1

u − W1
s

))
= max

(
W1∗

s ,W1
s + (Ŵ1)∗

t−s

)
,

so the expression (27) becomes

EP

[
F
(
Mt, Xt

)]=EP

[
F
(
x1

0 + W1∗
t x0 +,Wt

)]+∫ t

0
EP

[
∂mF
(

x1
0 + W1

s + (Ŵ1)∗
t−s, x0 + Ws + Ŵt−s

)
1{

W1∗
s <W1

s +
(

Ŵ1
)∗

t−s

}ZsB
1(x0 + Ws

)]
ds

+
∫ t

0
EP

[
∂kF
(

max
(

x1
0 + W1∗

s , x1
0 + W1

s + (Ŵ1)∗
t−s

)
, x0 + Ws + Ŵt−s

)
ZsB

k(x0 + Ws
)]

ds.

The random vector
((

Ŵ1
)∗

t−s, Ŵt−s

)
is independent of the σ -field Fs and has the same distri-

bution as the pair
(
W1∗

t−s,Wt−s
)
. Let pW∗1,W (., .; t − s) be the density of its law, and express the

expectation with this density:

EP

[
F
(
Mt, Xt

)]= ∫
Rd+1

F
(
x1

0 + b, x0 + a
)
pW∗1,W (b, a; t)dbda

+
∫ t

0
EP

[∫
Rd+1

∂mF
(
x1

0 + W1
s + b, x0

+ Ws + a
)
1{

W1∗
s <W1

s +b
}ZsB

1(x0 + Ws
)
pW∗1,W (b, a; t − s)dbda

]
ds

+
∫ t

0
EP

[∫
Rd+1

∂kF
(
x1

0 + max
(

W1∗
s ,W1

s + b
)
, x0

+ Ws + a
)
ZsB

k(x0 + Ws
)
pW∗1,W (b, a; t − s)dbda

]
ds.
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Using Girsanov’s Theorem for Z.P=Q, since the law of (M, X) under P is the law of
(
x1

0 +
W1∗, x0 + W

)
, under Q, using the equality (24), we have:

EP

[
F
(

Mt, Xt

)]
=
∫
Rd+1

F
(

x1
0 + b, x0 + a

)
pW∗1,W (b, a; t)dbda

+
∫ t

0
EP

⎡
⎣∫

Rd+1
∂mF
(

X1
s + b, Xs + a

)
1{

Ms<X1
s +b

}B1(Xs)pW∗1,W (b, a; t − s)dbda

⎤
⎦ ds

+
∫ t

0
EP

[∫
Rd+1

∂kF
(

max
(

Ms, X1
s + b

)
, Xs + a

)
Bk(Xs)pW∗1,W (b, a; t − s)dbda

]
ds.

�
We are now in a position to complete the proof of Proposition 4.2. Using some suitable

translations of the variables (a, b), we have EP

[
F
(
Mt, Xt

)]=∑d
k=0 Ik + Im, where

I0 =
∫
Rd+1

F(b, a)pW∗1,W

(
b − x1

0, a − x0; t
)
dbda, (28)

Im =
∫ t

0
EP

[∫
Rd+1

∂mF(b, a)1{Ms<b}B1(Xs)pW∗1,W

(
b − X1

s , a − Xs; t − s
)

dbda

]
ds,

and for k = 1, . . . , d,

Ik =
∫ t

0
EP

[∫
Rd+1

∂kF(max(Ms, b) , a) Bk(Xs)pW∗1,W

(
b − X1

s , a − Xs; t − s
)
dbda

]
ds.

Since B, F, and its derivatives are bounded, all these integrals are finite. Using (54) in the
appendix, the function pW∗1,W (., .; t) is C∞ on �̄= {(b, a), b≥a1+, (a, b) ∈Rd+1

}
. The aim

is now to identify the terms p0, pk,α , pk,β , k = m, 1, . . . , d, defined in Proposition 4.2.

Step 1. First we identify p0(b, a; t) as the factor of F(b, a) in the integrand of I0:

p0(b, a; t) = pW∗1,W

(
b − x1

0, a − x0; t
)
.

Step 2. We now deal with Ik, k = 2, . . . , d. Integrating by parts with respect to ak between
−∞ and ∞ in Ik for k = 2, . . . , d yields

Ik = −
∫ t

0
EP

[∫
Rd+1

F(max(Ms, b) , a) Bk(Xs)∂kpW∗1,W

(
b − X1

s , a − Xs; t − s
)
dbda

]
ds

= −
∫ t

0
EP

[∫
Rd+1

1{b>Ms}F(b, a) Bk(Xs)∂kpW∗1,W

(
b − X1

s , a − Xs; t − s
)
dbda

]
ds

−
∫ t

0
EP

[∫
Rd+1

1{b<Ms}F(Ms, a) Bk(Xs)∂kpW∗1,W

(
b − X1

s , a − Xs; t − s
)
dbda

]
ds.

We identify −pk,α(b, a, t) inside the integral on the set {b>Ms}. For the integral on the set
{b<Ms}, we introduce the density of (Ms, Xs) and identify −pk,β (m, a; t) as the factor of
F(m, a).
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Step 3. Finally, we identify the terms pm,γ and p1,γ , γ = α, β, which come from the sum of
Im and I1. Note that pW∗1,W

(
b − X1

s , a − Xs; t − s
)= 0 on the set

{
b< a1

}
. Integrating by parts

with respect to b between max
(
a1,Ms

)
and ∞ in Im yields

Im = −
∫ t

0
EP

[∫
Rd

F
(

max
(

a1,Ms

)
, a
)

B1(Xs)pW∗1,W

(
max
(

a1,Ms

)
− X1

s , a − Xs; t − s
)

da

]
ds

−
∫ t

0
EP

[∫
Rd+1

1Ms<bF(b, a) B1(Xs)∂mpW∗1,W

(
b − X1

s , a − Xs; t − s
)

dbda

]
ds. (29)

Integrating by parts with respect to a1 between −∞ and b in I1 yields

I1 =
∫ t

0
EP

[∫
Rd

F(max (Ms, b) , b, ã) B1(Xs)pW∗1,W

(
b − X1

s , b − X1
s , ã − X̃s; t − s

)
dbdã

]
ds

−
∫ t

0
EP

[∫
Rd+1

F(max(Ms, b) , a) B1(Xs)∂1pW∗1,W

(
b − X1

s , a − Xs; t − s
)
dbda

]
ds.

(30)

We then have the following:

(i) The term pm,β (b, a, t) comes from the second term in Im (Equation (29)) as the factor of
F(b, a):

−
∫ t

0
EP

[∫
Rd+1

1Ms<bF(b, a) B1(Xs)∂mpW∗1,W

(
b − X1

s , a − Xs; t − s
)
dbda

]
ds

(ii) The terms −p1,α(b, a, t) and −p1,β (b, a; t) come from the second term in I1 (Equation
(30)):

−
∫ t

0
EP

[∫
Rd+1

F(max(b,Ms) , a) B1(Xs)∂1pW∗1,W

(
b − X1

s , a − Xs; t − s
)
dbda

]
ds.

Inside the integral on the set {Ms < b} we identify −p1,α(b, a, t) as the factor of F(b, a),
and inside the integral on the set {Ms > b} we identify −p1,β (b, a;t) as the factor of
F(Ms, a).

(iii) The term −pm,α(b, a, t) comes from the sum of first terms in I1 (Equation (30)) and Im

(Equation (29)).

Now we replace the variable b by a1 and replace dbdã by da in the first terms of Im and I1:

I1
m = −

∫ t

0
EP

[∫
Rd

F
(

max
(
a1,Ms

)
, a
)
B1(Xs)pW∗1,W

(
max
(
a1,Ms

)− X1
s , a − Xs; t − s

)
da

]
ds,

I1
1 =
∫ t

0
EP

[∫
Rd

F
(

max
(
Ms, a1), a

)
B1(Xs)pW∗1,W

(
a1 − X1

s , a − Xs; t − s
)
da

]
ds.

Note that

− pW∗1,W

(
max
(
a1,Ms

)− X1
s , a − Xs; t − s

)+ pW∗1,W

(
a1 − X1

s , a − Xs; t − s
)

=
[
−pW∗1,W

(
Ms − X1

s , a − Xs; t − s
)+ pW∗1,W

(
a1 − X1

s , a − Xs; t − s
)]

1Ms>a1

= −
∫ Ms

a1
∂mpW∗1,W

(
b − X1

s , a − Xs, t − s
)
db1Ms>a1 .

https://doi.org/10.1017/apr.2022.76 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.76


PDE for the joint law of the pair of a continuous diffusion and its running maximum 1191

Then the sum of I1
m and I1

1 is

−
∫ t

0
EP

[∫
Rd+1

F(Ms, a)B1(Xs)∂mpW∗1,W

(
b − X1

s , a − Xs; t − s
)
1Ms>b>a1dadb

]
ds.

We introduce the density of the law of the pair (Ms, Xs) and we identify −pm,α(m, a; t) as the
factor of F(m, a).

These three steps complete the proof of Proposition 4.2 when μ0 = δx0 .
Finally, when μ0 is the law of X0, we have pV (m,w; t, μ0) = ∫

Rd pV (m, x; t, δx0 )μ0(dx0).
Then we can complete the proof of Proposition 4.2 for any initial law μ0 by integrating with
respect to μ0 the expression obtained in (21) for pV

(
m, x; t, δx0

)
. �

4.2. Proof of Proposition 4.1

Using some ideas used in [14, Section V.3.2], let us introduce the following linear maps on
L∞([0, T], dt, L1

(
Rd+1, dmdx

))
, for k = m, 1, . . . , d:

Ik,α[p](m, x; t) :=
∫ t

0

∫
Rd+1

1b<mBk(a)∂kpW∗1,W

(
m − a1, x − a; t − s

)
p(b, a; s)dbdads,

(31)

Ik,β [p](m, x; t) :=
∫ t

0

∫
Rd+1

1b<mBk(a)∂kpW∗1,W

(
b − a1, x − a; t − s

)
p(m, a; s)dbdads.

Let us introduce the following inductively defined functions:

p0(m, x; t, μ0) =
∫
Rd

pW1∗,W
(
m − x1

0, x − x0; t
)
μ0(dx0), pn = −

∑
k=m,1,...,d

(
pk,α

n + pk,β
n

)
,

(32)

and for k = m, 1, . . . , d, j = α, β, and n ≥ 1,

pk,j
n+1(m, x; t) := Ik,j[pn](m, x; t).

Let us define the operator

I := −
∑

j=α,β; k=m,1,...,d

Ik,j. (33)

Moreover, one can observe that this means pn+1 = I(pn), and Proposition 4.2 leads to pV =
p0 + I(pV ). Let

Pn :=
n∑

k=0

pk, n ≥ 0. (34)

Proposition 4.3. Assume the vector B is bounded; then for all T the sequence (Pn)n converges
in L∞([0, T], L1(Rd+1, dxdm)) to pV . Moreover, pV =∑∞

n=0 pn.
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The proof is a consequence of the following two lemmas.

Lemma 4.2. Let j = α, β, k = m, 1, . . . , d, and T > 0. The linear maps Ik,j are continu-
ous on L∞([0, T], dt, L1

(
Rd+1, dmdx

))
: there exists a constant C such that for all p ∈

L∞([0, T], dt, L1
(
Rd+1, dmdx

))
,

sup
s∈[0,t]

‖Ik,j[p](., .; s)‖
L1
(
Rd+1,dmdx

) ≤ C
∫ t

0

1√
t − s

sup
u∈[0,s]

‖p(., .; u)‖
L1
(
Rd+1,dmdx

)ds. (35)

As a consequence,

sup
s∈[0,t]

‖I[p](., .; s)‖
L1
(
Rd+1,dmdx

) ≤ 2(d + 1)C
∫ t

0

1√
t − s

sup
u∈[0,s]

‖p(., .; u)‖
L1
(
Rd+1,dmdx

)ds.

(36)

Proof. Let T > 0, p ∈ L∞([0, T] × L1
(
Rd+1, dmdx

))
, and t ∈ [0, T], and let φd+1 be the

Gaussian law density restricted to the subset
{
b> a1+

}
(up to a constant):

φd+1
(
b, b − a1, ã; 2t

)
:= 1

√
2π t

d+1
1b>a1+e− b2+

(
b−a1
)2

+‖ã‖2

4t . (37)

(i) Let j = α and k = m, 1, . . . , d; according to the definition of Ik,α and the boundedness
of B,∣∣∣Ik,α[p](m, x; t)

∣∣∣≤ ‖B‖∞
∫ t

0

∫
Rd+1

1b<m|∂kpW∗1,W

(
m − a1, x − a; t − s

)
p(b, a; s)|dbdads.

Using Lemma A.2, there exists a constant D such that for k = m, 1, . . . , d,

|∂kpW∗1,W (b, a; t) | ≤ D√
t
φd+1

(
b, b − a1, ã; 2t

)
. (38)

So ∣∣∣Ik,α[p](m, x; t)
∣∣∣

≤ ‖B‖∞
∫ t

0

∫
Rd+1

D√
t − s

φd+1
(
m − a1,m − x1, x̃ − ã; t − s

)|p(b, a; s)|dbdads.

We perform an integration with respect to (m, x) using Tonelli’s theorem and omitting the
indicator functions. Since φd+1 is the density of a Gaussian law, we get the bound∥∥∥Ik,α[p](., .; t)

∥∥∥
L1
(
Rd+1,dmdx

) ≤ D‖B‖∞
∫ t

0

∫
Rd+1

1√
t − s

|p(b, a; s)|dbdads

≤ 2(d+1)/2D‖B‖∞
∫ t

0

1√
t − s

sup
u≤s

‖p(., .; u)‖
L1
(
Rd+1,dbda

)ds,

which implies the inequality (35) when j = α.
(ii) Let j = β and k = m, 1, . . . , d. According to the definition of Ik,β and the boundedness

of B,∣∣∣Ik,β [p](m, x; t)
∣∣∣≤ ‖B‖∞

∫ t

0

∫
Rd+1

1b<m|∂kpW∗1,W

(
b − a1, x − a; t − s

)
p(m, a; s)|dbdads.
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Using (38) yields

∣∣∣Ik,β [p](m, x; t)
∣∣∣≤ ‖B‖∞

∫ t

0

∫
Rd+1

D√
t − s

φd+1
(
b − a1, b − x1, x̃ − ã; 2(t − s)

)|p(m, a; s)|dbdads.

We integrate with respect to x, then with respect to b, using Tonelli’s theorem and omitting the
indicator functions, and using the fact that φ is the density of a Gaussian law. So the bound
with respect to a multiplicative constant is

∥∥∥Ik,β [p](., .; t)
∥∥∥

L1
(
Rd+1,dmdx

) ≤ D‖B‖∞2(d+1)/2
∫ t

0

∫
Rd+1

1√
t − s

|p(m, a; s)|dmdads

≤ D‖B‖∞2(d+1)/2
∫ t

0

1√
t − s

sup
u≤s

‖p(., .; u)‖
L1
(
Rd+1,dmda

)ds,

which implies the inequality (35) for j = β.
Finally, the estimate (36) is obtained by adding the estimates (35) for j = α, β and

k = m, 1, . . . , d. �

The following lemma is a consequence of (36) in Lemma 4.2.

Lemma 4.3. For all n,

sup
u≤t

‖pn(., .; u)‖
L1
(
Rd+1,dmdx

) ≤ (2(d + 1)C)ntn/2
�(1/2)n

�(1 + n/2)
, (39)

sup
u≤t

‖(pV − Pn)(., .; u)‖
L1
(
Rd+1,dmdx

) ≤ (2(d + 1)C)n+1t(n+1)/2 �(1/2)n+1

�((n + 3)/2)
. (40)

Proof. (i) For all t> 0, p0(.; t) is a probability density function, so (39) is satisfied for
n = 0. We now assume that (39) is satisfied for n. Using pn+1 = I[pn], (36), and the inductive
assumption,

sup
u≤t

‖pn+1(., .; u)‖
L1
(
Rd+1,dmdx

) ≤ (2(d + 1)C)n+1 �(1/2)n

�(1 + n/2)

∫ t

0

√
sn

√
t − s

ds.

We perform the change of variable s = tu and use∫ 1

0
ua−1(1 − u)b−1du = �(a)�(b)

�(a + b)

to obtain

sup
u≤t

‖pn+1(., .; u)‖
L1
(
Rd+1,dmdx

) ≤ (2(d + 1)C)n+1t(n+1)/2 �(1/2)n

�(1 + n/2)

�(1/2)�(1 + n/2)

�((n + 3)/2)
,

which proves (39) for all n.
(ii) Noting that P0 = p0 and pV − p0 = I[pV ] and applying (36) to pV , we obtain

sup
u≤t

‖(pV − P0)(., .; u)‖
L1
(
Rd+1,dmdx

) ≤ 2(d + 1)Ct1/2.

But �(1/2)/�(3/2) = 2, so (40) is satisfied for n = 0.
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We now suppose that (40) is satisfied for n. Using

pV − Pn+1 = p0 + I(pV ) − (p0 + I(Pn)) = I(pV − Pn),

the bound (36), and the induction assumption, we have

sup
u≤t

‖[pV − Pn+1](., .; u)‖
L1
(
Rd+1,dmdx

) ≤ 2(d + 1)C
∫ t

0
(2(d + 1)C)n+1 �(1/2)n+1

�((3 + n)/2)

√
sn+1

√
t − s

ds.

We now perform the change of variable s = tu and∫ 1

0
ua−1(1 − u)b−1du = �(a)�(b)

�(a + b)

with a = (n + 3)/2, b = 1
2 , to obtain

sup
u≤t

‖[pV − Pn+1](., .; u)‖
L1
(
Rd+1,dmdx

) ≤ (2(d + 1)C)n+2t(n+2)/2 �(1/2)n+2

�((4 + n)/2)
,

which proves (40) for n + 1 and thus for all n. �
The series

∑
n

xn

�(n/2+1) is convergent for any x, so Proposition 4.3 is a consequence of
Lemmas 4.2 and 4.3.

4.2.1. Upper bound of pV (i.e., Hypothesis 2.1(i)). For all T > 0, x0 ∈Rd, and p ∈
L∞([0, T], L1

(
Rd+1, dmdx

)
) whose support is contained in

{
(m, x), m> x1

0,m> x1
}
, let us

define

N(p; t, x0) := sup
(m,x)∈Rd+1, m>x1,m>x1

0

|p(m, x; t)|
φd+1

(
m − x1

0,m − x1, x̃ − x̃0; 2t
) . (41)

Proposition 4.4. For every T > 0 there exists a constant CT , and for all n there exist constants

Cn =
[‖B‖∞D(2(d+1))2d/2�(1/2)

]n
�(1+n/2) , such that for all x0 ∈Rd, 0< t ≤ T, the following hold:

(i)
∣∣pn
(
m, x; t, x0

)∣∣≤ Cntn/2φd+1
(
m − x1

0,m − x1, x̃ − x̃0, 2t
)
1

m>max
(

x1,x1
0

);
(ii)
∣∣pV
(
m, x; t, x0

)∣∣≤ CTφd+1
(
m − x1

0,m − x1, x̃ − x̃0, 2t
)
1

m>max
(

x1,x1
0

);
(iii) for every initial probability measure μ0 on Rd,

sup
u>0

pV (m,m − u, x̃, t;μ0) ∈ L1([0, T] ×Rd, dtdmdx̃).

Note that Part (iii) is actually Hypothesis 2.1(i).

Proof. Part (ii) is a consequence of Part (i), since pV =∑∞
n=0 pn, and the series∑

n
1

�(1+n/2) xn has an infinite radius of convergence (Proposition 4.3).
We prove Part (i) by induction on n, using Part (ii) of Lemma A.2:

p0
(
m, x; t, x0

)≤ e−
(

m−x1
)2

4t − ‖x̃−x̃0‖2

4t −
(

m−x1
0

)2
4t√

(2π )d+1td+1
1

m>max
(

x1,x1
0

)
= φd+1(m − x1,m − x1

0, x̃ − x̃0; 2t)1
m>max

(
x1,x1

0

),
so N(p0; t, x0) ≤ 1, which is Part (i) for n = 0, C0 = 1.
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We assume Part (i) is true for pn, meaning N(pn; t, x0) ≤ Cntn/2. By definition, pn+1 =
I[pn]; Lemma 4.4, proved below, yields

N(pn+1; t, x0) = N(I[pn]; t, x0) ≤ 2(d + 1)2d/2‖B‖∞DCn

∫ t

0

sn/2

√
2π (t − s)

ds.

We perform the change of variable s = tu to obtain

N(pn+1; t, x0) ≤ 2(d + 1)2d/2‖B‖∞D√
2π

Cn
(√

t
)n+1

∫ 1

0

un/2

√
1 − u

ds.

Using ∫ 1

0

un/2

√
1 − u

du = �((n + 2)/2)�(1/2)

�((n + 3)/2)

and the definition of Cn, we have

N(pn+1; t, x0) ≤ Cn+1
(√

t
)n+1;

this completes the proof of Proposition 4.4(i).
Then, for all x0 ∈Rd and using x1 = m − u,

sup
u>0

pV (m,m − u, x̃; t) ≤ CTφd+1
(
m − x1

0, 0, x̃ − x̃0; 2t
) ∈ L1([0, T] ×Rd, dtdmdx̃

)
.

Since pV (m, x; t, μ0) = ∫
Rd pV

(
m, x; t, x0

)
μ0(dx0), Part (iii) is true. �

Lemma 4.4. Let T > 0, x0 ∈Rd, p ∈ L∞([0, T], dt, L1
(
Rd+1, dmdx

))
be such that the support

of p(., .; t) is included in
{
(m, x), m> x1

0,m> x1
}

and for all s ∈ ]0, T] N(p; s, x0)<∞. Then
for j = α, k = m, 1, . . . , d, the support of the function I j,k[p](.; t) is included in

{
(m, x), m>

x1
0,m> x1

}
. Moreover, for all t ∈ [0, T], we have

N(I[p]; t, x0) ≤ 2(d + 1)2d/2‖B‖∞D
∫ t

0

1√
2π (t − s)

N(p; s, x0)ds, ∀t ∈ [0, T].

Proof. Let T > 0, x0 ∈Rd, p ∈ L∞([0, T], dt, L1
(
Rd+1, dmdx

))
be such that for all t> 0,

the support of p(.; t) is included in
{
(m, x), m> x1

0,m> x1
}
.

(i) For j = α, k = m, 1, . . . , d, using the definition of Iα,k yields

Ik,α[p](m, x; t) :=∫ t

0

∫
Rd+1

Bk(a)∂kpW∗1,W

(
m − a1, x − a; t − s

)
1x1

0<b<m,m>x1 p(b, a; s)dbdads.

So the support of Iα,k[p](.; t) is included in
{
(m, x) ∈Rd+1, m>max

(
x1

0, x1
)}

. From now on,
we consider only (m, x) such that m>max

(
x1, x1

0

)
.

Let p be a function such that for all s ∈ ]0, T], N(p; x0, s)<∞. The definition of Ik,α, the
boundedness of B, the fact that ∂kpW∗,W satisfies (38), and the definition (41) of N(p; t, x0)
imply that∣∣∣Ik,α[p](m, x; t)

∣∣∣≤ ‖B‖∞
∫ t

0

∫
Rd+1

N(p; s, x0)
D√

(t − s)
1m>x1 1

m>b>max
(

a1,x1
0

)
φd+1

(
m − a1,m − x1, x̃ − ã; t − s

)
φd+1

(
b − x1

0, b − a1, ã − x̃0; s
)
dbdads.
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We integrate in ã using Lemma A.3(ii) with u = x̃, v = ã, w = x̃0 and the fact that φd+1 is a
Gaussian probability density function:∣∣∣Iα,k[p](m, x; t)

∣∣∣≤ 2(d−1)/2‖B‖∞D (42)

∫ t

0

∫
R2

N(p; s, x0)1
m>b>max

(
a1,x1

0

) e− ‖x̃−x̃0‖2

4t√
(2π t)d−1

e−
(

m−a1
)2

4(t−s) −
(

m−x1
)2

4(t−s)√
(2π )2(t − s)3

e−
(

b−x1
0

)2
4s −

(
b−a1
)2

4s√
(2π )2s2

dbda1ds.

Using Part (i′) of Lemma A.2 with u = m, v = a1, w = b, k = 1, we integrate in da1 up to b:

∫ b

−∞
e−
(

m−a1
)2

4(t−s)

√
2π (t − s)

e−
(

b−a1
)2

4s√
(2πs)

da1 = e
−(m−b)2

4t√
2π t

�G

(√
s

2t(t − s)
(b − m)

)
,

where

�G(u) =
∫ u

−∞
e−z2/2dz ≤ 1

2
e−u2/2

for u = b − m< 0 by Lemma A.3(iii). This yields the bound

e
−(m−b)2

4t√
2π t

e− s(b−m)2

4t(t−s)

and

2
∫ b

−∞
e−
(

m−a1
)2

4(t−s)

√
2π (t − s)

e−
(

b−a1
)2

4s√
(2πs)

da1 ≤ e− (m−b)2

4t√
2π t

e− s(m−b)2

4t(t−s) = e− (m−b)2

4(t−s)

√
2π t

.

Plugging this inequality into (42) yields the following, with Cd,B = 2(d+1)/2‖B‖∞D:

∣∣Iα,k[p](m, x; t)
∣∣

Cd,B
≤
∫ t

0

∫
R

N(p; s, x0)1m>b>x1
0

e− ‖x̃−x̃0‖2

4t√
(2π t)d

e− (m−b)2

4(t−s) −
(

m−x1
)2

4(t−s)√
2π (t − s)2s

e−
(

b−x1
0

)2
4s dbds.

Omitting the indicator functions, Lemma A.3(ii) with u = m, v = b, w = x1
0, k = 1 implies

∫
b<m

e− (m−b)2

4(t−s) e−
(

b−x1
0

)2
4s√

2π (t − s)2πs
db ≤

√
2

2π t
e−
(

m−x1
0

)2
4t .

Inserting this result, we obtain

∣∣∣Iα,k[p](m, x; t)
∣∣∣≤ √

2Cd,B

∫ t

0
N(p; s, x0)

e− ‖x̃−x̃0‖2

4t√
(2π t)d+1

e−
(

m−x1
0

)2
4t −

(
m−x1
)2

4(t−s)

√
2π (t − s)

ds.

For 0< s< t, we have

e−
(

m−x1
)2

4(t−s) ≤ e−
(

m−x1
)2

4t ,
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so

∣∣∣Iα,k[p](m, x; t)
∣∣∣≤ √

2Cd,B

∫ t

0
N(p; s, x0)

e− ‖x̃−x̃0‖2

4t√
(2π t)d+1

e−
(

m−x1
0

)2
4t −

(
m−x1
)2

4t√
2π (t − s)

ds.

Using the definition of φd+1 we find∣∣∣Iα,k[p](m, x; t)
∣∣∣≤ √

2Cd,B

∫ t

0
N(p; s, x0)

φd+1
(
m − x1

0,m − x1, x̃ − x̃0; 2t
)

√
2π (t − s)

ds,

and with the definition of N, with respect to a multiplicative constant we have

N(Iα,k[p], x0, t) ≤ √
2Cd,B

∫ t

0
N(p; s, x0)

1√
2π (t − s)

ds.

(ii) For j = β, k = m, 1, . . . , d, using the definition of Iβ,k and the fact that the support of p is
included in

{
(m, x), m>max

(
x1

0, x1
)}

yields

Iβ,k[p](m, x; t) =∫ t

0

∫
Rd+1

1m>b>x1,m>x1
0,b>a1 Bk(a)∂kpW1∗,W

(
b − a1, x − a, t − s

)
p(m, a, s)dadbds.

Thus the support of Iβ,k[p](.; t) is included in
{
(m, x), m>max

(
x1, x0

)}
. From now on

we consider only (m, x) satisfying m>max
(
x1, x1

0

)
. From the definition of Iβ,k and the

boundedness of B, as well as the inequality (38) satisfied by ∂kpW∗,W , namely

|∂kpW1∗,W
(
b − a1, x − a, t − s

)| ≤ D√
t − s

φd+1
(
b − a1, b − x1, x̃ − ã, 2(t − s)

)
,

and the definition of N(p; t, x0), we obtain∣∣∣Iβ,k[p](m, x; t)
∣∣∣≤ ‖B‖∞D

∫ t

0

∫
Rd+1

1m>b>x1,b>a1 N(p; s, x0)

e−
(

b−a1
)2

4(t−s) −
(

b−x1
)2

4(t−s) − ‖x̃−ã‖2

4(t−s)√
(2π )d+1(t − s)d+2

e−
(

m−x1
0

)2
4s −

(
m−a1
)2

4s − ‖x̃0−ã‖2

4s√
(2π )d+1sd+1

dadbds.

We integrate in ã using Lemma A.3(ii) with u = x̃, v = ã, and w = x̃0:∣∣∣Iβ,k[p](m, x; t)
∣∣∣≤ Cd,B. (43)

∫ t

0

∫
R2

1m>b>x1,b>a1
e− ‖x̃−x̃0‖2

4t√
(2π t)d−1

N(p; s, x0).
e−
(

b−a1
)2

4(t−s) −
(

b−x1
)2

4(t−s)√
(2π )2(t − s)3

e−
(

m−x1
0

)2
4s −

(
m−a1
)2

4s√
(2π )2s2

da1dbds.

Using Lemma A.3(i′) for u = b, v = a1, w = m, k = 1, we have

∫ b

−∞
e−
(

b−a1
)2

4(t−s)

√
2π (t − s)

e−
(

m−a1
)2

4s√
2πs

da1 = √
2

e− (b−m)2

4t√
2π t

�G

(√
t

4s(t − s)

[
b −
(

s

t
b + t − s

t
m

)])

= e− (b−m)2

4t√
2π t

�G

(√
t − s

4st
[b − m]

)
≤ e− (b−m)2

4t√
2π t

e− t−s
4st [b−m]2 = e− (b−m)2

4s√
2π t

,
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the last bound coming from Lemma A.3(iii) since b − m< 0.
We plug this estimate into (43):∣∣∣Iβ,k[p](m, x; t)

∣∣∣≤
Cd,B

∫ t

0

∫
R

1m>b>x1
e− ‖x̃−x̃0‖2

4t√
(2π t)d

N(p; s, x0)
e− (b−x1)2

4(t−s)√
2π (t − s)2

e−
(

m−x1
0

)2
4s − (b−m)2

4s√
2πs

dbds.

We integrate with respect to b on R, and we use Lemma A.3(ii) with u = x1, v = b, w = m,
k = 1:

∣∣∣Iβ,k[p](m, x; t)
∣∣∣≤ √

2Cd,B

∫ t

0

e−
(

m−x1
)2

4t − ‖x̃−x̃0‖2

4t√
(2π t)d+1

N(p; s, x0)
e−
(

m−x1
0

)2
4s√

2π (t − s)
ds.

When 0< s< t, we have

e−
(

m−x1
0

)2
4s ≤ e−

(
m−x1

0

)2
4t ,

so

∣∣∣Iβ,k[p](m, x; t)
∣∣∣≤ √

2Cd,B

∫ t

0

e−
(

m−x1
)2

4t − ‖x̃−x̃0‖2

4t −
(

m−x1
0

)2
4t√

(2π t)d+1
N(p; s, x0)

1√
2π (t − s)

ds.

Under the integral we identify the factor φd+1
(
m − x1

0,m − x1, x̃ − x̃0; 2t
)
, so

∣∣∣Iβ,k[p](m, x; t)
∣∣∣≤ √

2Cd,Bφd+1
(
m − x1

0,m − x1, x̃ − x̃0; 2t
) ∫ t

0
N(p; s, x0)

1√
2π (t − s)

dbds.

Finally, using the definition of N (Equation (41)), we have proved

N
(Iβ,k[p], x0, t

)≤ √
2Cd,B

∫ t

0
N(p; s, x0)

1√
2π (t − s)

ds,

which completes the proof of Lemma 4.4. �

4.2.2. Proof of Hypothesis 2.1(ii), case A = Id.

Proposition 4.5. For any probability measure μ0 on Rd, for all (m, x̃, t) ∈Rd × ]0, T], u 	→
pV (m,m − u, x̃, t) admits a limit when u goes to 0, u> 0.

Proof. The proof is a consequence of the following three lemmas.

Lemma 4.5. Recall that p0(m, x; t) = ∫
Rd pW∗1,W

(
m − x1

0, x − x0; t
)
μ0(dx0). We have

lim
u→0,u>0

p0(b, b − u, ã; t) = p0(b, b, ã; t), ∀u> 0, (b, ã) ∈Rd, ∀t> 0.

Proof. We have

p0(b, b − u, x̃; t) =
∫
Rd

2
b + u − x1

0√
(2π )dtd+1

e−
(

b+u−x1
0

)2
2t − ‖x̃−x̃0‖2

2t 1b≥x1
0, u≥0μ0(dx0).
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Then, since the integrand is dominated by

D√
(2π )dtd+1

and μ0 is a probability measure, using Lebesgue’s dominated convergence theorem yields

lim
u→0,u>0

p0(b, b − u, x̃; t) = p0(b, b, x̃; t), ∀ (b, x̃) ∈Rd, ∀t> 0.

�
Lemma 4.6. For k = m, 1, . . . , d, recall that

pk,α(m, x; t) =
∫ t

0

∫
Rd+1

1b<mBk(a)∂kpW∗1,W (m − a1, x − a, t − s)pV (b, a; s)dbdads.

The map u 	→ pk,α(m,m − u, x̃; t) converges to pk,α
(
m,m, x̃; t

)
when u goes to 0+.

Proof. The proof will be a consequence of Lebesgue’s dominated convergence theorem.
First, the map u 	→ 1b<m∂kpW∗1,W

(
m − a1,m − u − a1, x̃ − ã; t − s

)
pV (b, a; s) converges to

1b<m∂kpW∗1,W

(
m − a1,ma1, x̃ − ã; t − s

)
pV (b, a; s) when u goes to 0+.

Second, it is dominated by

qk,α(m, x̃, a, b; s, x0) :=
|Bk(a)|1b<m sup

u>0

∣∣∣∂kpW∗1,W

(
m − a1,m − u − a1, x̃ − ã; t − s

)
pV (b, a; s, x0)

∣∣∣ .
We seek to prove that

∫ T

0

∫
R2d+1

qk,α(m, x̃, a, b; s, x0
)
dsdbdaμ0(dx0)<+∞. (44)

According to the estimate (38) of ∂kpW∗1,W and the estimate (ii) of Proposition 4.4, we
obtain

qk,α(m, x̃, a, b; s, x0
)≤ ‖B‖∞1m>b>a1

D
√

t − s
√

2π (t − s)d+1
exp

[
−
(
m − a1

)2
4(t − s)

− ‖x̃ − ã‖2

4(t − s)

]

CT√
2πs

d+1
exp

[
−
(
b − x1

0

)2
4s

−
(
b − a1

)
4s

− ‖x̃0 − ã‖2

4s

]
.

We integrate with respect to ã using Lemma A.3(ii) for k = d + 1, u = x̃, v = ã, and w = x̃0:

∫
Rd−1

qk,α(m, x̃, a1, b; s, x1
0

)
dã ≤ 1m>b>a1

‖B‖∞CTD2(d−1)/2

√
t − s

√
2π (t − s)2√2πs

2

e− |x̃−x̃0‖2

4t

√
2π t

d−1

exp

[
−
(
m − a1

)2
4(t − s)

−
(
b − x1

0

)2
4s

−
(
b − a1

)2
4s

]
.
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We integrate with respect to a1 between −∞ and b using Lemma A.3(i′) for u = m, v = a1,
and w = b:∫
Rd

1a1<bqk,α(m, x̃, b, a; s; x0)da ≤ 1b<m
‖B‖∞CTD2d/2

√
t − s

√
2π (t − s)

√
2πs

e− |x̃−x̃0‖2

4t − (b−m)2

4t√
2π t

d

exp

[
−
(
b − x1

0

)2
4s

]
�G

(√
t

2s(t − s)

(
b −
[ s

t
m + (t − s)

t
b
]))

.

Note that √
t

2s(t − s)

(
b −
[ s

t
m + (t − s)

t
b
])

=
√

s

2t(t − s)
(b − m),

and using Lemma A.3(iii),

∫
Rd

qk,α(m, x̃, b, a; s, x0)da ≤ 1b<m
‖B‖∞CTD2d/2

√
t − s

√
2π (t − s)

√
2πs

e− |x̃−x̃0‖2

4t − (b−m)2

4t

√
2π t

d

exp

[
−
(
b − x1

0

)2
4s

]
exp

[
− s

t(t − s)

(b − m)2

4

]
.

We observe that 1
t + s

t(t−s) = 1
t−s , so that

exp

[
− (b − m)2

4t

]
exp

[
− s

t(t − s)

(b − m)2

4

]
= exp

[
− (b − m)2

4(t − s)

]
.

We integrate with respect to b (neglecting the indicator function) using Lemma A.3(ii) for

u = m, v = b, and w = x1
0, and exp

[
−
(

m−x1
0

)2
4t

]
≤ 1:

∫
Rd+1

qk,α(m, x̃, b, a; s, x0)dadb ≤ 1m>x1
0

‖B‖∞CTD2(d+1)/2

√
t − s

e− |x̃−x̃0‖2

4t

√
t
d+1

.

Since μ0 is a probability measure, we have∫ t

0

∫
R2d+1

qk,α(m, x̃, b, a; s, x0)dadbμ0(dx0)ds<+∞.

This is (44) and completes the proof of Lemma 4.6. �

Lemma 4.7. For k = m, 1, . . . , d, recall that

pk,β (m, x; t) =
∫ t

0

∫
Rd+1

1b<mBk(a)∂kpW∗1,W

(
b − a1, x − a, t − s

)
pV (m, a; s)dbdads.

The map u 	→ pk,β (m,m − u, x̃; t) converges to 0 when u goes to 0+.

Proof. Using the estimate (38) of ∂kpW∗1,W and the estimate (ii) of Proposition 4.4 for pV ,

we dominate the integrand which defines pk,β (m,m − u, x̃; t) by

qk,β (m, u, x̃, a, b, x0, s) :=

1m−u<b<m,a1<b
e−
(

b−a1
)2

4(t−s) − (b−m+u)2

4(t−s) − ‖x̃−ã‖2

4(t−s) −
(

m−x1
0

)2
4s −

(
m−a1
)

4s − ‖x̃0−ã‖2

4s

√
t − s

√
2π (t − s)d+1√2πs

d+1
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up to a multiplicative constant, meaning that∣∣∣pk,β (m,m − u, x̃; t)
∣∣∣≤ ‖B‖∞

∫ t

0

∫
R2d+1

qk,β (m, u, x̃, a, b, x0, s)dbdadsμ0(dx0). (45)

We integrate with respect to ã using Lemma A.3(ii) with u = x̃, v = ã, and w = x̃0:

∫
Rd−1

qk,β (m, u, x̃, a, b, x0, s)dã ≤ √
2

d−1 e− ‖x̃−x̃0‖2

4t

√
2π t

d−1

e−
(

b−a1
)2

4(t−s) − (b−m+u)2

4(t−s) −
(

m−x1
0

)2
4s −

(
m−a1
)

4s

√
t − s

√
2π (t − s)2√2πs

2
.

We integrate with respect to a1 between −∞ and b using Lemma A.3(i′) for u = b, v = a1, and
w = m: ∫

Rd
1b>a1 qk,β (m, u, x̃, a, b, x0, s)da ≤

e− ‖x̃−x̃0‖2

4t

√
2π t

d

e− (b−m)2

4t − (b−m+u)2

4(t−s) −
(

m−x1
0

)2
4s

√
t − s

√
2π (t − s)

√
2πs

�G

(√
t

s(t − s)2
(b − s

t
b − t − s

t
m)

)

= e− ‖x̃−x̃0‖2

4t

√
2π t

d

e− (b−m)2

4t − (b−m+u)2

4(t−s) −
(

m−x1
0

)2
4s

√
t − s

√
2π (t − s)

√
2πs

�G

(√
t − s

2st
(b − m)

)
.

Since b − m< 0, using Lemma A.3(iii) we have

∫
Rd

1b>a1 qk,β (m, u, x̃, a, b, x0, s)da ≤ e− ‖x̃−x̃0‖2

4t

√
2π t

d

e− (b−m)2

4t − (b−m+u)2

4(t−s) −
(

m−x1
0

)2
4s

√
t − s

√
2π (t − s)

√
2πs

e− t−s
4st (b−m)2

.

Note that

e− (b−m)2

4t e− t−s
4st (b−m)2

)
= e− (b−m)2

)
4s .

We integrate this last bound with respect to b between m − u and m using Lemma A.3(i′) for
the triplet (m − u, b,m) and the fact that

s

t
(m − u) + t − s

t
m = s(m − u) + m(t − s)

t
,

to obtain

∫
Rd+1 1m−u<b<m,b<a1 qk,β (m, u, x̃, a, b, x0, s)dadb ≤ e− ‖x̃−x̃0‖2

4t√
2π t

d+1
e−
(

m−x1
0

)2
4s√

t−s
.[

�G

(√
t

2s(t−s)

(
m − s(m−u)+m(t−s)

t

))
−�G

(√
t

2s(t−s)

(
m − u − s(m−u)+m(t−s)

t

))]
.

Then, ∫
Rd+1

qk,β (m, u, x̃, a, b, x0, s)dadb ≤

e− ‖x̃−x̃0‖2

4t

√
2π t

d+1

e−
(

m−x1
0

)2
4s√

t − s

[
�G

(√
s

2t(t − s)
u

)
−�G

(
−
√

t − s

2t(t − s)
u

)]
.
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Note that

lim
u→0

�G

(√
s

2t(t − s)
u

)
−�G

(
−
√

t − s

2t(t − s)
u

)
= 0

and ∣∣∣∣�G

(√
s

2t(t − s)
u

)
−�G

(
−
√

t − s

2t(t − s)
u

)∣∣∣∣≤ 1.

Since μ is a probability measure, using Lebesgue’s dominated convergence theorem,

lim
u→0+

∫ t

0

∫
R2d+1

1m−u<b<m,b<a1 qk,β (m, u, x̃, a, b, x0, s)dadbμ0(dx0)ds = 0.

Finally, the estimate (45) yields limu→0+ pk,β (m,m − u, x̃; t) = 0. �

5. The case d = 1

Proposition 5.1. Consider the real diffusion X given by dXt = B(Xt)dt + A(Xt)dWt where A,B
fulfil (4) and (5). Then the probability density function pV satisfies Hypothesis 2.1, so for any
initial law μ0 and F ∈ C2

b(R2,R),

E
[
F
(
Mt, Xt

))=E [F(X0, X0)] +
∫ t

0
E [L (F) (Ms, Xs)] ds

+ 1

2

∫ t

0
E

[
∂mF(Xs, Xs)‖A(Xs)‖2 pV (Xs, Xs; s)

pX(Xs; s)

]
ds. (46)

Proof. We perform a Lamperti transformation [18]. Without loss of generality, A can be
chosen positive. In the case d = 1, Assumption (5), which states that there exists c> 0 such
that for any x ∈R, A2(x) ≥ c, can be expressed as follows:

∃c> 0 such that for any x ∈R, A(x) ≥ c. (47)

Let ϕ be such that ϕ′ = 1
A and ϕ(0) = 0, so that ϕ′ is uniformly bounded and ϕ ∈ C2(R), as is

the function A. Moreover, ϕ′ being strictly positive, ϕ is strictly increasing, hence invertible,
and we denote by ϕ−1 its inverse function. Under the initial condition ϕ(0) = 0, using Itô’s
formula, Y = ϕ(X) satisfies

dYt =
[

B

A
◦ ϕ−1(Yt) − 1

2
A′ ◦ ϕ−1(Yt)

]
dt + dWt, Y0 = ϕ(X0). (48)

Let Aϕ = 1 and Bϕ := B
A ◦ ϕ−1 − 1

2 A′ ◦ ϕ−1, which belongs to C1
b(R) as a consequence

of the fact that B ∈ C1
b and A ∈ C2

b. Obviously, ϕ′ > 0 implies that ϕ is increasing, and
Y∗

t = ϕ
(
X∗

t

)= ϕ(Mt).
Theorem 1.1 in [9] can easily be extended to the case where X admits an initial law μ0; thus

the law of the pair (Y∗
t , Yt) admits a density with respect to the Lebesgue measure. Moreover,

[9, Lemma 2.2] sets out

pV (b, a; t) = pY∗,Y (ϕ(b), ϕ(a); t)

A(b)A(a)
.

Now, applying Theorem 2.4 to the pair (Bϕ, 1), we find that the density pY∗,Y satisfies
Hypothesis 2.1.
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Since the functions A and ϕ are continuous,

lim
u→0+ pV (b, b − u; t) = pY∗,Y (ϕ(b), ϕ(b); t)

A2(b)
,

which means pV satisfies Hypothesis 2.1(ii).
Now, using (47),

sup
u>0

pV (b, b − u; t) ≤ 1

c2
sup
u>0

pY∗,Y (ϕ(b), ϕ(b − u); t).

Since ϕ is increasing, if u> 0, then ϕ(b − u)<ϕ(b); writing v = ϕ(b) − ϕ(b − u), we have
v> 0, and

sup
u>0

pV (b, b − u; t) ≤ 1

c2
sup
v>0

pY∗,Y (ϕ(b), ϕ(b) − v; t).

After the change of variable m = ϕ(b), so that db = A(b)dm, we have∫ T

0

∫
R

sup
u>0

pY∗,Y (ϕ(b), ϕ(b) − u; t)dbdt =
∫ T

0

∫
R

A(ϕ−1(m)) sup
u>0

pY∗,Y (m,m − u; t)dmdt.

Since A is bounded and pY∗,Y satisfies Hypothesis 2.11(i),

∫ T

0

∫
R

A(ϕ−1(m)) sup
u>0

pY∗,Y (m,m − u; t)dmdt<∞,

and pV satisfies Hypothesis 2.1(i)–(ii). �

6. Conclusion

This paper establishes a PDE of which the density of the running-maximum–diffusion-
process pair [Mt, Xt] is a weak solution, under a quite natural assumption on the regularity of
pV around the boundary of �. This assumption is fulfilled when the matrix coefficient of the
diffusion A is the identity matrix or when the dimension d = 1. This PDE is degenerate; thus,
the classical results on uniqueness cannot be applied here. The case of a non-constant matrix
A is an open problem. Such a generalization could be useful in practical applications, such as
the management of barrier options, in models including stochastic volatility.

Appendix A. Tools

A.1. Malliavin calculus tools

The material in this subsection is taken from [21, Section 1.2].
Let H= L2([0, T],Rd) be endowed with the usual scalar product 〈., .〉H and the associated

norm ‖.‖H. For all h ∈H, W(h) := ∫ T
0 h(t)dWt is a centered Gaussian variable with variance

equal to ‖h‖2
H

. If (h1, h2) ∈H2 and 〈h1, h2〉H = 0, then the random variables W(hi), i = 1, 2,
are independent.

Let S denote the class of smooth random variables F defined by

F = f (W(h1), . . . ,W(hn)), n ∈N, h1, . . . , hn ∈H, f ∈ Cb(Rn). (49)
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Definition A.1. The derivative of the smooth variable F defined in (49) is the H-valued random
variable given by DF := ∑n

i=1 ∂if (W(h1), . . . ,W(hn))hi.
We denote the domain of the operator D in L2(�) by D1,2, meaning that D1,2 is the closure

of the class of smooth random variables S with respect to the norm

‖F‖1,2 =
{
E
[|F|2]+E

[‖DF‖2
H

]}1/2
.

Definition A.2. L1,2 is the set of processes (us, s ∈ [0, T]) such that

u ∈ L2(�× [0, T],Rd),
and for all s ∈ [0, T], us belongs to D1,2 and

‖u‖2
L1,2 = ‖u‖2

L2([0,T]×�) + ‖Du‖2
L2([0,T]2×�) <∞.

Definition A.3. Let u ∈L1,2; then the divergence δ(u) is the unique random variable of L2(�)
such that E [Fδ(u)] =E [〈DF, u〉H] for every smooth random variable F ∈ S . We apply [21,
Definition 1.3.1] with u ∈L1,2 and G ∈D1,2:

E [Gδ(u)] =E [〈DG, u〉H] . (50)

Let x0 ∈Rd. We introduce the exponential martingale

Zx0
t := exp

[
d∑

k=1

(∫ t

0
Bk(x0+Ws)dWk

s − 1

2

∫ t

0

(
Bk(x0+Ws

))2
ds

)]
. (51)

When there is no ambiguity, we will omit the exponent x0.

Lemma A.1. Let B ∈ C1
b(Rd,R); then for all x0 ∈Rd, the process

(B
(
x0 + Ws

)
Zx0

s , s ∈ [0, T])

belongs to L1,2.

Proof. Let x0 be fixed. In this proof we omit the exponent x0. Note that

Z2
t = exp

(
2

d∑
k=1

∫ t

0
Bk(x0 + Ws

)
dWk

s − 4

2

∫ t

0
‖B
(
x0 + Ws

)‖2ds + 4 − 2

2

∫ t

0
‖B
(
x0 + Ws

)‖2ds

)

≤ eT‖B‖2∞ exp

(
2

d∑
k=1

∫ t

0
Bk(x0 + Ws

)
dWk

s − 4

2

∫ t

0
‖B
(
x0 + Ws

)‖2ds

)
.

Then, Zt belongs to L2(�) for all t ∈ [0, T], since

sup
t∈[0,T]

E
(
Z2

t

)≤ eT‖B‖2∞ . (52)
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Note that Zt = 1 +∑d
k=1

∫ t
0 Bk
(
x0 + Ws

)
ZsdWk

s , t ∈ [0, T]. Using Lemma 2.2.1 and Theorem
2.2.1 of [21], as well as the definition of L1,2 applied to the Rd+1-valued process Y = (W, Z)
with a null drift coefficient, the (d + 1) × d matrix � defined by

[σ j,k(y), 1 ≤ j, k ≤ d] = Id, σ d+1,k(y) = Bk(x1
0 + y1, . . . , xd

0 + yd)z, k = 1, . . . , d,

we obtain that Z belongs to L1,2. Since B is continuously differentiable with bounded
derivatives, the process (B(Ws + x0)Zs, s ∈ [0, T]) belongs to L1,2. �

The following remark will frequently be used: by [9, p. 135, line 15] or [21, Exercise 1.2.11,
p. 36], we have

D1
s W1∗

t = 1[0,τ ](s), where τ := inf
{
s,W1∗

s = W1∗
t

}
. (53)

A.2. Estimates for the Brownian motion case

Let us recall the density of the distribution of the pair
(
W∗,1

t ,W1
t

)
, where W1 is a one-

dimensional Brownian motion and W∗,1 its running maximum (see, e.g., [17, Section 3.2] or
[15]):

pW1∗,W1 (b, a; t) = 2
2b − a√

2π t3
exp − (2b − a)2

2t
1b>sup (a,0).

Thus, using the independence of the components of the process W, the law of
(
W1∗

t ,Wt
)

has a density with respect to the Lebesgue measure on Rd+1, denoted by pW1∗,W (.; t):

pW1∗,W (b, a; t) = 2

(
2b − a1

)
√

(2π )dtd+2
e−
(

2b−a1
)2

2t −
∑d

k=2 |ak |2
2t 1b≥0,b≥a1 ,

b ∈R, a = (a1, . . . , ad) ∈Rd. (54)

Lemma A.2. (i) For all t> 0, pW∗1,W (.; t) is the restriction to �̄ of a C∞(Rd+1
)

function, and
there exists a universal constant D such that for x = b, a1, a2, . . . , ad,

∣∣∂xpW∗1,W (b, a; t)
∣∣≤ D√

(4π )dtd+2
e− b2+

(
b−a1
)2

4t −∑d
k=2

(
ak
)2

4t 1
b>max

(
a1,0
). (55)

As a consequence,∑
x=b,a1,...,ad

∣∣∂xpW∗1,W (b, a; t − s)
∣∣ ∈ L1([0, t] ×Rd+1, dbdads

)
.

(ii) We have

p0(m, x; t, x0) ≤ e−
(

m−x1
)2

4t − ‖x̃−x̃0‖2

4t −
(

m−x1
0

)2
4t√

(2π )d+1td+1
1

m>max
(

x1,x1
0

)
= 2(d+1)/2φd+1

(
m − x1,m − x1

0, x̃ − x̃0; 2t
)
1

m>max
(

x1,x1
0

),
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Proof. (i) Let pW be the density of a d-dimensional Brownian motion, and the density of
the law of Wt for all t> 0, with pW (.; t) ∈ C∞(Rd) given by

pW (x; t) = 1√
2dπdtd

e−∑d
k=1

(
xk
)2

2t , t> 0, x = (x1, . . . , xd) ∈Rd.

Its derivative with respect to x1 is

∂x1pW (x; t) = − x1

√
2dπdtd+2

e−∑d
k=1

(
xk
)2

2t , t> 0, x = (x1, . . . , xd) ∈Rd.

Its second derivatives are

∂2
x1xk pW (x; t) = x1xk

√
2dπdtd+4

e−∑d
k=1

(
xk
)2

2t , t> 0, x = (x1, . . . , xd) ∈Rd, k = 2, . . . , d,

∂2
x1x1pW (x; t) = (x1)2 − t√

2dπdtd+4
e−∑d

k=1

(
xk
)2

2t , t> 0, x = (x1, . . . , xd) ∈Rd.

Using [14, (2.1), p. 106] we obtain the analogue of [14, (2.2), p. 107]: there exists a constant
C such that∣∣∂2

x1x1pW (x; t)
∣∣+ ∣∣∂2

x1xk
pW (x; t)

∣∣≤ C

t
pW (x; 2t), k = 1, . . . , d, t> 0, x ∈Rd. (56)

Recall (54):

pW∗1,W (b, a; t) = 2
2b − a1√
(2π )dtd+2

e−
(

2b−a1
)2

2t −∑d
k=2

(
ak
)2

2t 1b≥a1+ , ∀(b, a) ∈Rd+1, t> 0.

We observe that

pW∗1,W (b, a; t) = −2∂x1pW
(
2b − a1, a2, . . . , ad; t

)
1b≥a1+ . (57)

Then pW∗1,W (., .; t) is the restriction to � of a C∞ function. Moreover, using the chain rule,
with x being

(
b, a1, . . . , ad

)
, we have

∣∣∂xpW∗1,W (b, a; t)
∣∣≤ 4C

t
pW
(
2b − a1, a2, . . . , ad; 2t

)
1b≥a1+ . (58)

On the set
{
(b, a), b>max

(
0, a1
)}

we have(
2b − a1)2 = (b + b − a1)2 ≥ (b)2 + (b − a1)2. (59)

Plugging the estimate (59) into (58) yields (55) with D = 23C.

(ii) Recalling the definition

p0(m, x; t, x0) = pW1∗,W
(
m − x1

0, x − x0; t
)

= 2
m − x1 + m − x1

0√
(2π )dtd+2

e−
(

m−x1+m−x1
0

)2
2t − |x̃−x̃0‖2

2t 1m≥x1∨x1
0
,
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we deduce the standard bound which uses xe−x2 ≤ e−x2/2 and
(
m − x1 + m − x1

0

)2 ≥ (m −
x1
)2 + (m − x1

0

)2:

p0(m, x; t, x0) ≤ e−
(

m−x1
)2

4t − ‖x̃−x̃0‖2

4t −
(

m−x1
0

)2
4t√

(2π )d+1td+1
1m>x1∨x1

0

= 2(d+1)/2φd+1
(
m − x1,m − x1

0, x̃ − x̃0; 2t
)
1m>x1∨x1

0
.

Lemma A.3. For all 0< s< t, k ≥ 1 and all u, v,w ∈Rk, the following hold:

(i)
‖u − v‖2

t − s
+ ‖v − w‖2

s
= t

s(t − s)

∥∥∥∥v −
(

s

t
u + t − s

t
w

)∥∥∥∥
2

+ ‖u − w‖2

t
;

(i′) k = 1,
∫ b

−∞
e− (u−v)2

4(t−s)

√
2π (t − s)

e− (w−v)2

4s√
2πs

dv = √
2

e− (u−w)2

4t√
2π t)

�G

(√
t

s(t − s)

[
b −
(

s

t
u + t − s

t
w

)])
;

(ii)
∫
Rk

e− ‖u−v‖2

4(t−s)√
(2π (t − s))k

e− ‖w−v‖2

4s√
(2πs)k

dv = 2k/2 e− ‖u−w‖2

4t√
(2π t)k

;

(iii) for u> 0, 1 −�G(u) :=
∫ +∞

u

e− z2
2√

2π
dz =�G(−u) ≤ e− u2

2

2
.

Proof. Part (i) is proved by a development of both sides, then an identification of the coeffi-
cients of the squared norms and scalar products ‖u‖2, ‖v‖2, ‖w‖2, u.v, u.w, v.w. So we deduce
(i′) as the integral of

e− t
4s(t−s) (v−( s

t u+ t−s
t w))

2− (u−w)2

4t

√
2π (t − s)

√
2πs

with respect to v up to b.
Part (ii) is a consequence of Part (i), then an integration on Rk of the Gaussian density with

respect to dv.
(iii) The function

u 	→�G(u) − e− u2
2

2

is null at 0, it has a null limit when u goes to −∞, and its derivative is

u 	→ − e− u2
2√

2π
+ u

e− u2
2

2
.

Its derivative vanishes at
√

2/π and is negative for u ≤ √
2/π and positive after. Thus, u 	→

�G(u) − e− u2
2

2 is negative for u ≤ 0. �
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A.3. Proof of Remark 2.3, boundary conditions of the PDE

Here we assume that pV is regular enough. Let μ0(dx) = f0(x)dx. Using Theorem 2.2, (6)
means that for all F ∈ C2

b

(
Rd+1,Rd

)
,∫

�̄

F(m, x)pV (m, x; t)dmdx =
∫
Rd

F(m,m, x̃)f0(m, x̃)dmdx̃

+
∫ t

0

∫
�̄

LF(m, x)pV (m, x; s)dmdxds

+ 1

2

∫ t

0

∫
Rd

‖A1(m, x̃)‖2∂mF(m,m, x̃)pV (m,m, x̃; s)dmdx̃ds,

(60)

recalling L= Bi∂xi + 1
2�

ij∂2
xi,xj

, where � = AAt.
(i) Integrating by parts with respect to a convenient dxk in∫ t

0

∫
�̄

LF(m, x)pV (m, x; s)dmdxds

and noting that the support of pV (., .; s) is �̄, we see that the boundary terms concern only the
component x1:∫ t

0

∫
�̄

LF(m, x)pV (m, x; s)dmdxds = −
∫ t

0

∫
�̄

F(m, x)∂xk

(
BkpV

)
(m, x; s)dmdxds

− 1

2

∫ t

0

∫
�̄

∂xlF(m, x)∂xk [�k,l(m, x)pV (m, x; s)]dmdxds

+
∫ t

0

∫
Rd

(
F(m,m, x̃)B1(m, x̃) + 1

2
∂xk F(m,m, x̃)�1,k(m, x̃)

)
pV (m,m, x̃; s)dmdx̃ds.

We again perform integration by parts on the second term on the right-hand side above:

− 1

2

∫ t

0

∫
�̄

∂xlF(m, x)∂xk�
k,l(m, x)pV (m, x; s)]dmdxds

= 1

2

∫ t

0

∫
�̄

F(m, x)∂2
xk,xl

[
�k,lpV

]
(m, x; s)dmdxds

− 1

2

∫ t

0

∫
Rd

F(m,m, x̃)∂xk

[
�1,kpV

]
(m,m, x̃; s)dmdx̃ds.

Gathering these equalities yields∫ t

0

∫
�̄

LF(m, x)pV (m, x; s)dmdxds =
∫ t

0

∫
�̄

F(m, x)L∗pV (m, x; s)dmdxds

−1

2

∫ t

0

∫
Rd

F(m,m, x̃)∂xk

[
�1,kpV

]
(m,m, x̃; s)dmdx̃ds (61)

+
∫ t

0

∫
Rd

(
F(m,m, x̃)B1(m, x̃)pV (m,m, x̃; s) + 1

2

[
∂xk F�1,kpV

]
(m,m, x̃; s)

)
dmdx̃ds.

(ii) Using F ∈ C2
b

(
Rd+1,R

)
with compact support in � (so F(m,m, x̃) = 0), we deduce the

equality in �:
∂tpV (m, x; s) =L∗pV (m, x; s), ∀s> 0, (m, x) ∈�. (62)
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We use (60), (61), and (62) applied to F ∈ C2
b

(
Rd+1,R

)
with compact support in �̄:

0 =
∫
Rd

F(m,m, x̃)f0(m, x̃)dmdx̃−1

2

∫ t

0

∫
Rd

F(m,m, x̃)∂xk

[
�1,kpV

]
(m,m, x̃; s)dmdx̃ds

+
∫ t

0

∫
Rd

(
F(m,m, x̃)B1(m, x̃)pV (m,m, x̃; s) + 1

2

[
∂xk F�1,kpV

]
(m,m, x̃; s)

)
dmdx̃ds

+ 1

2

∫ t

0

∫
Rd

‖A1(m, x̃)‖2∂mF(m,m, x̃)p(m,m, x̃; s)dmdx̃ds. (63)

We now perform integration by parts on the last two terms:∫ t

0

∫
Rd

([
∂xk F.�1,k.pV

]
(m,m, x̃; s) + ‖A1(m, x̃)‖2∂mF(m,m, x̃)pV (m,m, x̃; s)

)
dmdx̃ds =

−
∫ t

0

∫
Rd

([
F.∂xk (�1,kpV )

](
m,m, x̃; s

)+ ∂m
(‖A1‖2pV

)
(m,m, x̃; s)

)
dmdx̃ds (64)

Plugging (64) into (63) yields the boundary condition, namely a PDE of which pV is a solution
in the weak sense:

B1(m, x̃)pV (m,m, x̃; s) = 1
2

∑
k≥1 ∂xk

(
�1,kpV

)
(m,m, x̃; s)

+ 1
2

∑
k≥1∂xk

(
�1,kpV

)
(m,m, x̃; s) + 1

2∂m
(‖A1‖2pV

)
(m,m, x̃; s),

simplified as

B1(m, x̃)pV (m,m, x̃; s) =
∑
k≥1

∂xk

(
�1,kpV

)
(m,m, x̃; s) + 1

2
∂m
(‖A1‖2pV

)
(m,m, x̃; s)

with the initial condition pV (m,m, x̃; 0) = f0(m, x̃). �
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