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Dynamical evolution of a plane system of non-interacting particles, which are 

in a certain smoothed-out regular field, is of a certain interest in a number astro-

nomical applications. Among them are the plane subsystems of the spiral galaxies, 

the rings of the giant planets and protoplanetary nebulae. The problem of deter-

mining the stationary state of these systems has been studied enough [1]. But one 

seldom comes across studies concerning with the reaction of the non-stationary field. 

We consider various types of the non-stationary actions, which may be in certain 
Cases strictly periodic, but it may be quasiperiodic in the sense that the amplitude 
and the phase change gradually from one period to the other. In the general form 
this phenomenon is well known in the theory of oscillations, for instance, when su-
perpositioning the oscillations with close frequencies (beats). Various mechanisms 
of generating these oscillations are admissible. In Case of nebulae, the non-linear 
effects or resonances can be a cause of such quasiperiodic disturbances. 

First, we are trying to elaborate a suitable procedure for describing small dis-

turbances of statistical nature to which belong the enumerated plane subsystems 

due to their extension along the radius and, particularly, because of dispersion of 

velocities. Secondly, special interest for us is one aspect of the problem, namely 

difference of the reversible changes from the irreversible ones. 

At first we give a model disturbing potential in the form 

U(r, Θ) = <°>(r) + eUW(r) cos u(9 - A(r) - J Q(t)dt) (1) 

where U(°\r) is the main part of the potential, ε is the small parameter, A(r) is 

a certain function depending on the concrete form of the spiral, Ω is the angular 

velocity of revolution of the particles in the nebula, ν is the azimuthal wave number 

(we consider u as the arbitrary positive integer), t is time, τ is the radius. 

In fact, further we shall restrict ourselves to rotation of a rigid body only and 

to the near circular orbits. 

Let us go over to the action-angle variables. The disturbing part of the poten-

tial must be also expressed in terms of these variables (it appears to be a periodic 

function of the angular variables). In the Case when this periodic dependence is 

a fast oscillating, it may be of convenience to carry out an averaging with respect 

to angles, so that the averaged Hamiltonian appears to be a function of variables 
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action only. Then the averaged trajectories are easily found. Averaging with respect 

to the epicycle motion is a physical meaning of this operation. The circular epicycle 

occurs rather often, but we use the epicycle as an ellipse with the arbitrary ratio of 

the semiaxes. 

The different situation exists in a Case of slow oscillations. Then, the princi-

ple of adiabatic invariance does not work, and the adiabatic invariants are defined 

in a more complicated way. This Case appears to be especially typical for the 

corotation. Except for corotation, the singularities in application of the adiabatic 

invariants arise from Lindblad's resonances as well. 

The way at once suggests itself to take the angular momentum J (the integral 

of the motion), characterizing the regular rotation of the population, as one of the 

variables of action. The other action variables, say, iV, we associate with a peculiar 

motion of particles. One may show that the expression for Ν starts with a quadratic 

form, the coefficients of which can be found in terms of the epicycle frequency κ and 

the angular velocity Ω. Then we find, after some, simple in concept, computations, 

the angular variables Θ" and φ. Finally, the equations of the undisturbed motion 

are defined by the formulae: 

D N _ D I _ Λ
 M" _

 d E άφ _ 8E 
li ~ li ~ ' ~df~~dl' ~dt ~~ dN 

(E is the energy). 

Let us pass to the coordinate system rotating together with a wave with a con-

stant angular velocity ω. The quantity θ is now counted off relative to the new 

coordinate system, that is θ is equal to the former value θ — ωί. The corresponding 

canonical equations keep the previous form (2) with the Hamiltonian in the form 

H\ = Η — ωΧ — Ε — SU — ωΧ) where, according to (1), SU is a known function. 

Then we find SU, (the averaged part of SU) and introduce the derived SU into 

the equations of the motion. The averaged problem has one degree of freedom and 

in accordance with composition of our equations the motion of a particle is as if 

reduced to moving along the level curves in the plane (Χ, Θ"). 

In general, resonant zones cover rather narrow zones along r. In majority of Cas-

es in their limits the function Ux(r) may be regarded as constant and equal, say, to 

b. Respectively, the function A(r) is supposed to be the linear one: A(r) = a(r —r*), 

where r* is the radius of the middle line of the resonance zone. 

After linearization with respect to r - r*, the Hamiltonian Ηχ takes the form 

Hi = Εχ + b cos νθ" - a(r - r* ) sin i/0", 

where the Ει is a totality of terms, which do not depend on Ν and Θ". If one gives 

the specific value h for Ϊ2Ί, it is seen after some reasoning that under h > 6 the 

corresponding curve falls into the two isolated branches and under h < b the real 
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value y = r — r* corresponds to the only possible interval of changing the variable 

Θ". This gives an oval-like curve, which does not envelope the center of the system. 

In the intermediate Case, separatrixes are obtained, which are topologically similar 

to those of the well-known problem of the motion of the mathematical pendulum 

with its rotatory and oscillatory types of behavior [2, 3]. 

If one goes to the wave, depending smoothly on time, it is necessary to take into 

account the adiabatic invariance of the quantity 

T = jide". 

Here, the integral is taken along the level curve H\ — const. The closure of the way 

is understood in the sense of keeping the variable Θ" of the previous value or the 

value, changed by ±2π . 

Three Cases take place. 

Case 1. - Responds to the trapped orbits, when in the rotating coordinate 

system the particle performs the pendulum-like motions about the libration center 

and, consequently, moves with the mean angular velocity Ω of the disturbed field. 

Case 2. - Corresponds to the flying by orbits, which are not synchronous to the 

disturbing field, that is, they lag behind or pass ahead the wave. 

Case 3. - Has an intermediate character. The motion here takes place along the 

separatrix. 

Let us take into account consequences of the dependence on time of the param-
eter Ω, when the disturbance has the quasiperiodic character. Again, neglecting the 
comparatively unimportant dependence on Ν of the Hamiltonian and restricting 
ourselves to the Case a = 0, we obtain the modified Hamiltonian, for which the 
classification of the orbits could be made in the same way as before (although in a 
more complicated form). In particular, a question can be raised on the transforma-
tion of the family of trapped particles into the flying by ones. 

Here we have the following picture of the non-stationary disturbance effects. 
There is a category of the trapped particles which move together with the reso-
nant zone and fill the phase space is some domains, not closing with each other. 
The other (flying by) particles pass in the intervals between these domains and are 
not subject to such essential action of disturbance. It is also clear that under the 
sufficiently large amplitude of changing the quantity Ω even if it returns finally to 
the previous value, the irreversible changes of the type corresponding to the phase 
intermixing are accumulated. The latter take place due to the redistribution of the 
phase domains of various behavior and at expense of "chaotization" of the motion 
in the resonance zones, in the vicinity of the separatrixes. According to Liouville's 
theorem, any irreversibility can lead to the diffusion of the phase diagram only, that 
is usually equivalent to increasing the peculiar velocities. It is not expected that 
such "heating" tends to decrease the density of the particles in the resonance zones. 
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AU this entitles us to draw the following conclusions: Effects of non-stationary 

actions lead to the local temporary decrease of the density during the time interval 

as long as the specific zone is a resonance one. 
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