Comparison of systems for assuring the eating quality of beef

L.J. Farmer, D.J. Devlin, N.F.S. Gault, A.W. Gordon, B.W. Moss, E.L.C. Tolland, I.J. Tollerton Agri-Food and Biosciences Institute, Belfast, United Kingdom *Email: linda.farmer@afbini.gov.uk*

Introduction A number of quality assurance schemes have been developed to grade the eating quality of beef. The UK MLC Blueprint (UK BP) and New Zealand QMark (NZ QM) systems aim to improve eating quality through process control of factors such as carcase suspension, electrical stimulation and ageing. These systems select those carcasses expected to provide consumers with good eating quality. The USDA system classifies beef carcases into quality grades based on the degree of maturity and intramuscular marbling. The Australian MSA system uses process control and carcass characteristics but also classifies individual beef muscles into eating quality grades derived from consumer perceptions, depending on cooking method.

Materials and methods A series of experiments were conducted to assess the role of factors including gender, breed, hanging method, ageing, electrical stimulation/chilling, muscle and position within muscle on eating quality. In total, 192 animals were used, giving 36000 beef samples which were assessed by 6000 consumers. Breed, sex, hot standard carcase weight and EUROP grade were recorded as were hump height, ossification, rib fat, marbling, meat colour, fat colour, ultimate pH and temperature. Grilled and roasted beef muscles were assessed by consumers who gave it a quality rating: 'unsatisfactory', 'satisfactory everyday quality', 'better than everyday quality' and 'premium' (Farmer *et al.*, 2009). The information recorded enabled the meat to be accorded a classification under several trial quality systems (Table 1). These were very similar to or were modifications of those available internationally. The distribution of the consumer scores for each muscle for each grade was evaluated statistically using a combination of Wald analyses (Genstat) with visual inspection of the distributions to establish the direction of any differences.

Table 1 Grading systems for delivery of good eating quality for NI beef

		MSA	MSA-B	USDA		UK BP	UK BP-C	NZ QM
Classifications	for	Ungraded,	Ungraded,	Ungraded,	Utility,	Ungraded,	Ungraded,	Ungraded,
statistical		Unsatis., 3*,	Unsatis., 3*,	Standard,	Select,	BP, BP+21d	BP, BP+21d	QMark
evaluation.		(4* + 5*)	(4* + 5*)	(Choice + P	rime)			
Basis	for	Processing &	animal data,	Maturity	and	Processing &	animal data	Processing
classification		muscle & cooki	ing method	marbling		EUROP grade	data	
Amendments		-	Bulls included	-		-	'O' included	-

Results and Discussion Table 2 identifies where consumer quality ratings were significantly different between grades and where the more highly graded meat gave better eating quality (o) or not (~). No system was perfect. Beef passing the NZ and US systems delivered improved eating quality inconsistently and performed poorly for roasts. These systems do not consider hanging method and the US system focuses on marbling, which is generally much lower in European carcases. The UK Blueprint performed well only when low conformation grades were included (UKBP-C). Versions of the MSA system performed well for the greatest proportion of muscles and for both cooking methods. The inclusion of bulls (MSA-B) improved performance for some muscles.

Table 2 Ability of beef eating quality systems to show differentiation between different levels of consumer satisfaction

Cooking	Muscle	MSA		MSA-B		USDA		UKBP		UKBP-C		NZQM	
Grilled	Striploin – anterior (l. dorsi)	***	О	bx		ns	~	*	О	***	О	ns	~
	Striploin – mid (l. dorsi)	***	~	ns	~	**	O	ns	~	ns	~	***	O
	Striploin – posterior (<i>l. dorsi</i>)	***	O	**	O	***	O	ns	O	***	O	***	O
	Rump flat (biceps femoris)	*	O	*	О	ns	~	ns	~	ns	~	ns	O
	Rump (gluteus medius)	***	O	***	О	***	O	ns	O	***	О	*	O
	Rump (gluteus medius eye)	ns	O	*	O	*	O	**	O	**	O	ns	~
Roast	Silverside eye	ns	~	ns	~	ns	~	ns	~	ns	~	ns	~
	Silverside	ns	O	**	O	ns	~	*	O	*	O	ns	O
	Rump (gluteus medius eye)	***	O	***	O	***	O	ns	O	***	O	ns	O
	Topside (semimembranosus)	***	0	bx		ns	~	*	О	***	0	*	O

Statistical significance of distribution: ns, * = P < 0.05, ** = P < 0.01, *** = P < 0.001; direction of eating quality indicated by: o where higher grades received better consumer scores or \sim no consistent relationship; bx = no bulls tested

Conclusions Of the quality assurance systems tested, the standard MSA system performed best for NI beef before amendment. Both MSA and MLC Blueprint performed well with amendments. MSA allows grading of individual muscles which improves versatility.

Reference

Farmer, L. J. et al. 2009. Proceedings 55th Int. Congress on Meat Science and Technology, Copenhagen: PE7.34