*
 The Exterior Cube L-Function for GL(6) ${ }^{\star}$

DAVID GINZBURG ${ }^{1}$ and STEPHEN RALLIS ${ }^{2}$
${ }^{1}$ School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
${ }^{2}$ Department of Mathematics, The Ohio State University, Columbus, OH 43210, U.S.A.

(Received: 20 November 1997; in final form: 13 September 1999)

Abstract

We construct a Rankin Selberg integral to represent the exterior cube L function $L\left(\pi, \Lambda^{3}, s\right)$ of an automorphic cuspidal module π of $\mathrm{GL}_{6}\left(\mathbb{A}_{F}\right)$ (where F is a number field). We determine the poles of this L function and find period conditions for the special value $L\left(\pi, \Lambda^{3}, 1 / 2\right)$. We use the Siegal Weil formula. We also state an analogue of the Gross-Prasad conjecture concerning a criterion for the nonvanishing of $L\left(\pi, \Lambda^{3}, 1 / 2\right)$.

Mathematics Subject Classification (2000). 11F67.
Key words. Rankin-Selberg integral, poles of L functions, special value of L functions.

In this paper we study certain properties of the exterior cube L-function of GL_{6}. If F is a number field we let π be a cuspidal representation of $\mathrm{GL}_{6}\left(\mathbb{A}_{F}\right)$ with central character ω_{π}. We let χ be a character of $F^{*} \backslash \mathbb{A}_{F}^{*}$. Let Λ^{3} denote the third fundamental representation of GL_{6}. The space of Λ^{3} is a 20 -dimensional vector space and let 1_{20} be the map of $\mathrm{GL}_{1} \cong \mathbb{C}^{*}$ into $\mathrm{GL}_{20}(\mathbb{C})$ given by $\lambda \rightarrow \lambda \cdot I_{20}$. In this paper we give a Rankin Selberg integral which represents $L^{S}\left(\pi \otimes \chi, \Lambda^{3} \otimes 1_{20}, s\right)$ - the twisted partial L function associated to the automorphic representation $\pi \otimes \chi$ of $\mathrm{GL}_{6} \times \mathrm{GL}_{1}$ and the representation $\Lambda^{3} \otimes 1_{20}$ of the L-group of $\mathrm{GL}_{6} \times \mathrm{GL}_{1}$ (which is again $\mathrm{GL}_{6} \times \mathrm{GL}_{1}$). Here S is a finite number set of places. To simplify notations we write $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, s\right)$ for $L^{S}\left(\pi \otimes \chi, \Lambda^{3} \otimes 1_{20}, s\right)$.

Our global integral involves the Siegel Eisenstein series of GSp 6 . Since the analytic properties of this Eisenstein series are basically the same as the Siegel Eisenstein series of Sp_{6}, we can apply the Siegel Weil formula as stated in [K-R]. Using [K-R] we are able to study the analytic properties of $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, s\right)$ and the behavior of this L-function at $s=1 / 2$ (the center of symmetry of the functional equation). In Section 3 we first prove that $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, s\right)$ can have at most a simple pole at $s=1$ (Theorem 3.2). Using [K-R] we can relate the existence of this pole to a certain period (Theorem 3.3). In Section 4 we study the value of $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, 1 / 2\right)$. When $\omega_{\pi} \chi^{2}=1$ we relate the nonvanishing of the partial L

[^0]function with certain periods (Theorem 4.2). In fact, in Section 4 we make a precise conjecture concerning the conditions similar to the Gross Prasad conjecture when $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, 1 / 2\right)$ is nonvanishing.

To predict the criterion for the existence of a pole of $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, s\right)$ we consider more closely the representation of GL_{6} in $\Lambda^{3}\left(\mathbb{C}^{6}\right)$. This is an irreducible GL_{6} module. In fact there is a nondegenerate symplectic form ω on $\Lambda^{3}\left(\mathbb{C}^{6}\right)$ (obtained by the obvious pairing $\Lambda^{3} \otimes \Lambda^{3} \rightarrow \Lambda^{6} \cong \mathbb{C}$) so that GL_{6} embeds into $\operatorname{GSp}(\omega)=$ the similitude group of ω.

We heuristically consider a cuspidal automorphic representation of $\mathrm{GL}_{6} \times \mathrm{GL}_{1}$ as being classified by a homomorphism ρ of the (conjectured) Langlands groups \mathcal{L}_{F} into $\mathrm{GL}_{6} \times \mathrm{GL}_{1}$. Then the L-function associated to ρ and the representation $\Lambda_{3} \otimes 1_{20}$ should admit a pole at $s=1$ if the image $=\left(\Lambda^{3} \otimes 1_{20} \circ \rho\right)\left(\mathcal{L}_{F}\right)$ admits a fixed vector in Λ^{3}. In particular, this means that $\left(\Lambda^{3} \otimes 1_{20}\right) \circ \rho\left(\mathcal{L}_{F}\right)$ is contained in the group

$$
\left[\left(\left(\mathrm{GL}_{3} \times \mathrm{GL}_{3}\right) \times Z_{2}\right) \times \mathrm{GL}_{1}\right]^{0}
$$

which consists of all tuples $\left(\left(g_{1}, g_{2}, \epsilon\right), \lambda\right)$ so that

$$
\lambda \operatorname{det} g_{1}=\lambda \operatorname{det} g_{2}=1 \quad \text { and } \quad \epsilon= \pm 1
$$

and

$$
\epsilon\left(g_{1}, g_{2}, 1\right) \epsilon= \begin{cases}\left(g_{1}, g_{2}, 1\right) & \text { if } \epsilon=1, \\ \left(g_{2}, g_{1}, 1\right) & \text { if } \epsilon=-1 .\end{cases}
$$

We note here that the above subgroup embeds into $\mathrm{GL}_{6} \times \mathrm{GL}_{1}$ via the map

$$
\left(\left(g_{1}, g_{2}, \epsilon\right), \lambda\right) \rightsquigarrow\left(\left(\begin{array}{cc}
g_{1} & 0 \\
0 & g_{2}
\end{array}\right) \cdot \epsilon^{\prime}, \lambda\right),
$$

with $\epsilon^{\prime}=I_{6}$ or $\epsilon^{\prime}=\left(\begin{array}{cc}0 & I_{3} \\ I_{3} & 0\end{array}\right)$ according to $\epsilon=+1$ or $\epsilon=-1$. Also the above subgroup in $\mathrm{GL}_{6} \times \mathrm{GL}_{1}$ is the fixator of a generic vector in $\Lambda^{3}\left(\mathbb{C}^{6}\right)$. We note that the L group of $\mathrm{GL}_{3}(K)$ (relative to restriction of scalars where K / F is a degree 2 extension) is given by the semi-direct product $\left(\mathrm{GL}_{3}(\mathbb{C}) \times \mathrm{GL}_{3}(\mathbb{C})\right) \propto W_{F}$ with W_{F}, the Weil group of F (where W_{F} acts on $\mathrm{GL}_{3} \times \mathrm{GL}_{3}$ by the map $W_{F} \rightarrow W_{F} / W_{K} \cong Z_{2}$ with Z_{2} flipping the two coordinates in $\left.\mathrm{GL}_{3} \times \mathrm{GL}_{3}\right)$. In fact let $i_{K}:{ }^{L} \mathrm{GL}_{3}(K) \rightarrow \mathrm{GL}_{6}$ given by sending $\left(g_{1}, g_{2}\right) \rightarrow\left(\begin{array}{ll}g_{1} & \\ & g_{2}\end{array}\right)$ and $W_{F} \rightarrow Z_{2}$ as above. Thus we emphasize here that $L\left(\Lambda_{3} \otimes 1_{20} \circ \rho, s\right)$ has a pole at $s=1$ is equivalent to the fact that ρ factors through the subgroup [$]^{0}$ above contained in $i_{K}\left({ }^{L} \mathrm{GL}_{3}(K)\right) \times \mathrm{GL}_{1}$.

In this paper we give a period condition for the existence of a pole for $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, s\right)$ at $s=1$. We require that $\omega_{\pi} \chi^{2}$ has order 2 ; thus we can determine a quadratic field K / F. The period condition in Theorem 3.3 is determined in terms of the quadratic field K as stated above.

We note here that if τ is an automorphic cuspidal representation of $\mathrm{GL}_{3}\left(\mathbb{A}_{K}\right)$ then if we apply the induction functor i_{K} to τ (defined above) we get by [A-C] that $i_{K}(\tau)$ is an automorphic representation of $\mathrm{GL}_{6}\left(\mathbb{A}_{F}\right)$. Thus we compute

$$
L^{S}\left(i_{K}(\tau), \Lambda^{3} \otimes \chi, s\right)=\xi_{K, S}\left(\omega_{\tau} \circ \chi_{K / F}, s\right) L^{S}\left(\Lambda^{2}(\tau) \otimes \tau^{\sigma} \otimes \chi_{K / F}, s\right)
$$

where $\omega_{\tau}=$ central character of $\tau, \chi_{K / F}=\chi \circ \operatorname{Norm}_{K / F}, \tau^{\sigma}$ is the Galois twist of τ associated to σ in $\operatorname{Gal}(K / F), L^{S}\left(\Lambda^{2}(\tau) \otimes \tau^{\sigma} \otimes \chi_{K / F}, s\right)$ is the partial Rankin product of $\Lambda^{2}(\tau) \otimes \tau^{\sigma} \cong \omega_{\tau}^{-1} \tau^{\vee} \otimes \tau^{\sigma}$ twisted by $\chi_{K / F}$ and ζ_{K}^{S} is the usual partial zeta function associated to the field K. Then we see that $L^{S}\left(i_{K}(\tau), \Lambda^{3} \otimes \chi, s\right)$ admits a pole at $s=1$ if and only if $\omega_{\tau} \circ \chi_{K / F}=1$ or $\omega_{\tau} \chi_{K / F} \tau^{\sigma} \cong \tau\left(\right.$ or $\left.\tau^{\sigma} \cong\left(\omega_{\tau} \chi_{K / F}\right)^{-1} \tau\right)$. The last statement implies that $\omega_{\tau^{\sigma}}=\omega_{\tau}\left(\omega_{\tau} \chi_{K / F}\right)^{3}$ or $\left.\left(\omega_{\tau} \chi_{K / F}\right)^{3}\right|_{\mathbb{A}_{F}^{*}}=1$. Thus it follows that if δ is some automorphic character on \mathbb{A}_{K}^{*} so that $\delta^{3}=1$ and $\delta=\omega_{\tau} \chi_{K / F}$ on \mathbb{A}_{F}^{*} then for β an automorphic character on \mathbb{A}_{K}^{*} satisfying $\frac{\beta /}{\beta \beta^{\sigma}}=\delta^{-1} \omega_{\tau} \chi_{K / F}$ we have that $(\tau \otimes \beta)^{\sigma} \cong \tau \otimes \beta$. Thus $i_{K}(\tau \otimes \beta)$ (and hence $i_{K}(\tau)$ itself) is an noncuspidal representation for $\mathrm{GL}_{6}(F)$ (i.e. equivalent to an Eisenstein series). Thus $L^{S}\left(i_{K}(\tau), \Lambda^{3} \otimes \chi, s\right)$ admits a pole at $s=1$ if and only $\omega_{\tau} \circ \chi_{K / F}=1$

At this point we also note that the meromorphic properties of $L\left(\pi, \Lambda^{3} \otimes \chi, s\right)$ can be determined by the Langlands Shahidi method. In contrast to the latter approach, the advantage of the method presented here is that we give this precise location of the possible poles and a period condition for the existence of the pole!

1. The Global Integral

Let F be a global field and \mathbb{A} its ring of adèles. Let π be a cusp form on $\operatorname{GL}_{6}(\mathbb{A})$ with a central character ω_{π}. We know that π is generic. Namely, let N be the maximal standard unipotent subgroup of GL_{6}. Thus N consists of all upper unipotent matrices. Given a nontrivial additive character ψ of $F \backslash \mathbb{A}$ we define a character ψ_{N} of N by

$$
\psi_{N}(n)=\psi\left(n_{12}+n_{23}+n_{34}-n_{45}+n_{56}\right)
$$

where $n=\left(n_{i j}\right) \in N$. Thus to say that π is generic means that the space of functions generated by

$$
W_{\varphi}(g)=\int_{N(F) \backslash N(\mathbb{A})} \varphi(n g) \psi_{N}(n) \mathrm{d} n
$$

is not identically zero. Here $\varphi \in \pi$ and $g \in \mathrm{GL}_{6}(\mathbb{A})$. We call the space of functions of the above form the Whittaker model of π and denote it by $\mathcal{W}(\pi, \psi)$.

Our construction uses the Siegel Eisenstein series on GSp_{6} as constructed in [G]. To describe it let

$$
\mathrm{GSp}_{6}=\left\{g \in \mathrm{GL}_{6}:{ }^{t_{g}} g g=\mu(g) J, \mu(g) \text { a scalar }\right\}
$$

where

$$
J=\left(\begin{array}{llllll}
& & & & & 1 \\
& & & & & 1 \\
& & & & 1 & \\
& & -1 & & & \\
-1 & & & & &
\end{array}\right)
$$

Let $Q=\left(\mathrm{GL}_{1} \times \mathrm{GL}_{3}\right) R$ denote the Siegel parabolic on GSp_{6}. In terms of matrices we identify $\mathrm{GL}_{1} \times \mathrm{GL}_{3}$ with

$$
(\alpha, g) \longrightarrow\left(\begin{array}{cc}
\alpha g & \\
& g^{*}
\end{array}\right) \quad \alpha \in \mathrm{GL}_{1}, g \in \mathrm{GL}_{3}
$$

where g^{*} is such that the above matrix is in $\mathrm{GSp}_{6} . R$ can be identified with

$$
\left\{\left(\begin{array}{ll}
I & Y \\
& I
\end{array}\right): \quad Y \in M_{3} \quad \text { and } \quad{ }^{t} Y\left(\begin{array}{lll}
& 1 & 1 \\
1 & &
\end{array}\right)=\left(\begin{array}{lll}
& & 1 \\
& 1 &
\end{array}\right) Y\right\}
$$

Define a character χ_{π} of $Q(\mathbb{A})$ as follows. Let χ be a unitary character of $F^{*} \backslash \mathbb{A}^{*}$. Define χ_{π} on $\mathrm{GL}_{1}(\mathbb{A}) \times \mathrm{GL}_{3}(\mathbb{A})$ as

$$
\chi_{\pi}((\alpha, g))=\left(\omega_{\pi} \chi^{3}\right)(\alpha)\left(\omega_{\pi} \chi^{2}\right)(\operatorname{det} g)
$$

where $\alpha \in \mathrm{GL}_{1}(\mathbb{A})$ and $g \in \mathrm{GL}_{3}(\mathbb{A})$. We extend χ_{π} to $Q(\mathbb{A})$ by letting it act trivially on $R(\mathbb{A})$. Given $s \in \mathbb{C}$ set

$$
I(s, \chi)=\operatorname{Ind}_{Q(\mathbb{A})}^{\mathrm{GSP}_{\mathrm{A}}(\mathbb{A})} \delta_{Q}^{s} \chi_{\pi}
$$

where δ_{Q} is the modular function Q. Given $f_{s} \in I\left(s, \chi_{\pi}\right)$ we define the Siegel Eisenstein series as (at least for $\operatorname{Re}(s)$ large)

$$
E\left(g, f_{s}, \chi, s\right)=\sum_{\gamma \in Q(F) \backslash \operatorname{GSp}_{6}(F)} f_{s}(\gamma g) \quad g \in \operatorname{GSp}_{6}(\mathbb{A})
$$

Denote by

$$
w=\left(\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & & \\
& & 0 & 1 & & \\
& & 1 & 0 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right) \in \mathrm{GSp}_{6}
$$

and set $j(g)=w g w^{-1}$ for $g \in \mathrm{GSp}_{6}$. Our global integral is

$$
I\left(\varphi, f_{s}, \chi, s\right)=\int_{Z(\mathbb{A}) \operatorname{GSp}_{6}(F) \backslash \operatorname{GSp}_{6}(\mathbb{A})} \varphi(j(g)) E\left(g, f_{s}, \chi, s\right) \mathrm{d} g
$$

Here Z is the center of GSp_{6} which is also the center of GL_{6}. Finally define

$$
X(r)=\left(\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & r & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)
$$

We have:

PROPOSITION 1.1. The integral $I\left(\varphi, f_{s}, \chi, s\right)$ converges absolutely for all $s \in \mathbb{C}$ except for those s for which the Eisenstein series has a pole. For $\operatorname{Re}(s)$ large we have

$$
I\left(\varphi, f_{s}, \chi, s\right)=\int_{Z(\mathbb{A}) V(\mathbb{A}) \backslash \mathrm{GSp}_{6}(\mathbb{A})} \int_{\mathbb{A}} W_{\varphi}(X(r) j(g)) f_{s}(g) \mathrm{d} r \mathrm{~d} g .
$$

where V is the maximal unipotent of GSp_{6} such that $V \subset N$.
Proof. The standard argument using the cuspidality of φ allows us to assert that the integral

$$
\int_{Z(\mathbb{A}) \mathrm{GSp}_{6}(F) \backslash \operatorname{GSp}_{6}(\mathbb{A})}|\varphi(j(g))| E(g, s) \mid \mathrm{d} g
$$

is finite provided $\operatorname{Re}(s)$ is sufficiently large. Then we can proceed with the standard unfolding of the Eisenstein series in the integral to obtain

$$
\begin{aligned}
I\left(\varphi, f_{s}, \chi, s\right) & =\int_{Z(\mathbb{A}) Q(F) \backslash \operatorname{GSp}_{6}(\mathbb{A})} \varphi(j(g)) f_{s}(g) \mathrm{d} g \\
& =\int_{Z(\mathbb{A}) \mathrm{GL}_{1}(F) R(\mathbb{A}) \backslash \operatorname{GSp}_{6}(\mathbb{A})} \int_{R(F) \backslash R(\mathbb{A})} \varphi(j(r g)) f_{s}(g) \mathrm{d} r \mathrm{~d} g .
\end{aligned}
$$

Consider the Fourier expansion
$I\left(\varphi, f_{s}, \chi, s\right)=$
$\int \sum_{\alpha, \beta, \gamma \in F} \int_{(F \backslash \mathbb{A})^{3}} \varphi\left[j\left(\left(\begin{array}{cccccc}1 & & & 0 & 0 & 0 \\ & 1 & & 0 & 0 & x_{1} \\ & & 1 & 0 & x_{2} & x_{3} \\ & & & 1 & & \\ & & & & 1 & \\ & & & & & 1\end{array}\right) r g\right] \psi\left(\alpha x_{1}+\beta x_{2}+\gamma x_{3}\right) f_{s}(g) \mathrm{d} x_{i} \mathrm{~d} r \mathrm{~d} g\right.$,
where r and g are integrated as before.

We note here that by standard estimates given in $[\mathrm{M}-\mathrm{W}]$ and $[J-R]$ the series

$$
(*)=\sum_{W \in M_{33}(k)}\left|\int_{M_{3,3}(k) \backslash M_{3,3}(\mathbb{A})} \varphi\left(j\left(\left[\begin{array}{cc}
I_{3} & Z \\
0 & I_{3}
\end{array}\right] g\right)\right) \psi(\operatorname{tr}(Z W)) \mathrm{d} Z\right|
$$

is dominated by a finite sum of terms of the form

$$
\sum_{k} c_{k}\left(\int_{M_{3,3}(k) \backslash M_{3,3}(\mathbb{A})}\left|\left(D_{\infty}^{k} * \varphi\right)\left[j\left(\begin{array}{cc}
I_{3} & X \\
0 & I_{3}
\end{array}\right) g\right]\right|^{2} \mathrm{~d} x\right)^{1 / 2}
$$

where D_{∞} is some element in the enveloping algebra of G_{R} here (with each $c_{k}>0$) depending only on the K_{∞} types in φ. Thus using the fact that $D_{\infty}^{k} * \varphi$ remains cuspidal when φ is cuspidal we have that for any m positive integer

$$
\left|\left(D_{\infty}^{k} * \varphi\right)(g)\right| \leqslant \sup \left\{1, \delta_{Q}(g)\right\}^{-m}
$$

where δ_{Q} is the modular function associated to the parabolic Q.
Thus we deduce that the series $(*)$ is dominated by (for m sufficiently large) $\sup \left\{1, \delta_{Q}(g)\right\}^{-m}$ and in turn the integral

$$
\int_{Z(\mathrm{~A}) Q(F) R(\mathrm{~A}) \backslash \operatorname{GSp}_{6}(\mathrm{~A})} \sup \left\{1, \delta_{Q}(g)\right\}^{-m}\left|f_{s}(g)\right| \mathrm{d} g
$$

is finite for $\operatorname{Re}(s)$ sufficiently large!
Thus we can replace φ by its Fourier expansion in the integral above.
The group $\mathrm{GL}_{1} \times \mathrm{GL}_{3}$ acts on the root spaces x_{1}, x_{2} and x_{3} modulo elements in R, with two orbits. The trivial one contributes zero by cuspidality. Indeed, we obtain

$$
\int_{M_{3}(F) \backslash M_{3}(\mathbb{A})} \varphi\left(j\left(\left(\begin{array}{cc}
I & X \\
& I
\end{array}\right)\right)\right) \mathrm{d} X
$$

as an inner integral. The other orbit contributes

$$
\begin{aligned}
& I\left(\varphi, f_{s}, \chi, s\right) \\
& \quad=\int_{Z(\mathbb{A}) \mathrm{GL}_{2}(F) L(F) R(\mathrm{~A}) \backslash \operatorname{GSp}_{6}(\mathbb{A})} \int_{M_{3}(F) \backslash M_{3}(\mathbb{A})} \varphi\left(j\left(\left(\begin{array}{cc}
I & X \\
& I
\end{array}\right) g\right)\right) \psi_{1}(X) f_{s}(g) \mathrm{d} x \mathrm{~d} g,
\end{aligned}
$$

where ψ_{1} is defined as follows. If

$$
X=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
x_{4} & x_{5} & x_{6} \\
x_{7} & x_{8} & x_{9}
\end{array}\right)
$$

then $\psi_{1}(X)=\psi\left(x_{4}-x_{8}\right)$. The stabilizer in $\mathrm{GL}_{1} \times \mathrm{GL}_{3}$ of ψ_{1} is $\mathrm{GL}_{2} L$ which is
embedded in GSp_{6} as

$$
\left(\begin{array}{cccc}
|g| & & & \tag{1.1}\\
& g & & \\
& & g^{*} & \\
& & & 1
\end{array}\right)\left(\begin{array}{cccccc}
1 & r_{1} & r_{2} & & & \\
& 1 & 0 & & & \\
& & 1 & & & \\
& & & 1 & 0 & -r_{2} \\
& & & & 1 & -r_{1} \\
& & & & & 1
\end{array}\right)
$$

where $g \in \mathrm{GL}_{2}$ and $r_{1}, r_{2} \in F$. Let L_{1} be the unipotent subgroup of GL_{6} consisting of the matrices $I_{6}+m_{1} e_{56}+m_{2} e_{46}$ where $m_{1}, m_{2} \in F$ and $e_{i j}$, is the 6×6 matrix with one at the (i, j) position and zero otherwise. In $I\left(\varphi, f_{s}, \chi, s\right)$ consider the Fourier expansion along $L_{1}(F) \backslash L_{1}(\mathbb{A})$ (we can substitute again the Fourier expansion by similar arguments as used above) The above $\mathrm{GL}_{2}(F)$ acts on the character group of $L_{1}(F) \backslash L_{1}(\mathbb{A})$ with two orbits. It is easy to see that the trivial one contributes zero to $I\left(\varphi, f_{s}, \chi, s\right)$. Let $N_{1}=L \cdot L_{1}\left(\begin{array}{cc}I & X \\ I\end{array}\right)$ where $X \in M_{3}$. Define a character of N_{1} as

$$
\psi_{N_{1}}(n)=\psi\left(n_{12}+n_{24}-n_{35}+n_{56}\right)
$$

where $n=\left(n_{i j}\right)$. Notice that $\psi_{N_{1}}\left(\begin{array}{cc}I & X \\ & I\end{array}\right)=\psi_{1}(X)$. Thus

$$
I\left(\varphi, f_{s}, \chi, s\right)=\int_{Z(\mathbb{A}) \mathrm{GL}_{1}(F) L_{2}(F) V_{1}(\mathbb{A}) \backslash \operatorname{GSp}_{6}(\mathbb{A})} \int_{N_{1}(F) \backslash N_{1}(\mathbb{A})} \varphi(j(n g)) \psi_{N_{1}}(n) f_{s}(g) \mathrm{d} n \mathrm{~d} g
$$

Here $\mathrm{GL}_{1} \cdot L_{2}$ is the stabilizer of $\psi_{N_{1}}$ in $\mathrm{GL}_{2} L$. Thus $\mathrm{GL}_{1} \cdot L_{2}$ is embedded in GSp_{6} as

$$
\left(\begin{array}{cccccc}
\alpha & & & & & \tag{1.2}\\
& \alpha & & & & \\
& & 1 & & & \\
& & & \alpha & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)\left(\begin{array}{cccccc}
1 & & & & & \\
& 1 & \beta & & & \\
& & 1 & & & \\
& & & 1 & -\beta & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right) \alpha \in \mathrm{GL}_{1} \quad \beta \in F
$$

Also V_{1} is the unipotent subgroup of V defined by

$$
V_{1}=\left(\begin{array}{llllll}
1 & & & & & \\
& 1 & 0 & & * & \\
& & 1 & & & \\
& & & 1 & 0 & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)
$$

where $*$ indicates that the above matrix is an arbitrary GSp_{6} matrix.
Let $N_{2}=L_{2} N_{1}$. Thus

$$
I\left(\varphi, f_{s}, \chi, s\right)=\int_{Z(\mathbb{A}) \mathrm{GL}_{1}(F) V(\mathbb{A}) \backslash \operatorname{GSp}_{6}(\mathbb{A})} \int_{N_{2}(F) \backslash N_{2}(\mathbb{A})} \varphi(j(n g)) \psi_{N_{2}}(n) f_{s}(g) \mathrm{d} r \mathrm{~d} g
$$

Here $\psi_{N_{2}}$ is a character on N_{2} trivially extended from $\psi_{N_{1}}$. In the above inner integral consider the Fourier expansion with respect to the unipotent $\operatorname{group} j\left(I+m e_{23}\right)$. Thus

$$
\begin{aligned}
& \int_{N_{2}(F) \backslash N_{2}(\mathbb{A})} \varphi(j(n g)) \psi_{N_{2}}(n) \mathrm{d} n \\
& \quad=\int_{N_{2}(F) \backslash N_{2}(\mathbb{A})} \sum_{\alpha \in F} \int_{F \backslash \mathbb{A}} \varphi\left(j\left(X_{1}(m) n g\right)\right) \psi_{N_{2}}(n) \psi(\alpha m) \mathrm{d} m \mathrm{~d} n,
\end{aligned}
$$

where $X_{1}(m)=I+m e_{23}$. Let N_{3} be the unipotent subgroup of N_{2} for which $n_{34}=0$. Thus

$$
N_{2}=N_{3}\left(\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & 1 & r & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)
$$

Notice that

$$
X(r)=j\left(\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & 1 & r & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)
$$

Thus, using the left invariance property of φ under rational points, we obtain

$$
\int_{N_{3}(F) \backslash N_{3}(\mathbb{A})} \sum_{\alpha \in F} \int_{(F \backslash \mathbb{A})^{2}} \varphi\left[X(\alpha) j\left(X_{1}(m) n\right) X(r) j(g)\right] \psi_{N_{3}}(n) \psi(\alpha m) \mathrm{d} r \mathrm{~d} m \mathrm{~d} n
$$

One can check, using matrix multiplication that this equals (also a change of variables is needed)

$$
\int_{N_{3}(F) \backslash N_{3}(\mathbb{A})} \sum_{\alpha \in F} \int_{(F \backslash \mathbb{A})^{2}} \varphi\left[j\left(X_{1}(m) n\right) X(\alpha+r) j(g)\right] \psi_{N_{3}}(n) \mathrm{d} r \mathrm{~d} m \mathrm{~d} n
$$

Collapsing the summation and integration over α an r we obtain

$$
\int_{\mathbb{A}} \int_{N_{4}(F) \backslash N_{4}(\mathbb{A})} \varphi(j(n) X(r) j(g)) \psi_{N_{4}}(n) \mathrm{d} n \mathrm{~d} r
$$

where N_{4} is the unipotent subgroup of N given by all matrices of the form

$$
\left(\begin{array}{llllll}
1 & & & & & \\
& 1 & & & * & \\
& & 1 & 0 & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)
$$

Also $\psi_{N_{4}}$ is extended trivially from $\psi_{N_{3}}$. Finally, we consider the Fourier expansion in $I\left(\varphi, f_{s}, \chi, s\right)$ with respect to $j\left(I+m e_{43}\right)$ with $m \in F \backslash \mathbb{A}$. Thus

$$
\begin{aligned}
I\left(\varphi, f_{s}, \chi, s\right) & =\iint_{\mathbb{A}} \sum_{\alpha \in F} \int_{F \backslash \mathbb{A}} \int_{N_{4}(F) \backslash N_{4}(\mathbb{A})} \varphi\left(j\left(\left(I+m e_{43}\right) n\right) X(r) j(g)\right) \\
& \times \psi_{N_{4}}(n) \psi(\alpha m) f_{s}(g) \mathrm{d} n \mathrm{~d} m \mathrm{~d} r \mathrm{~d} g,
\end{aligned}
$$

where g is integrated as before. The GL_{1} as defined in (1.2) acts on the group character of $j\left(I+m e_{43}\right)$ with two orbits. The trivial one contributes zero by cuspidality whereas the open one yields the identity we need to prove.

Let $\pi=\otimes_{v} \pi_{v}, \chi=\otimes_{v} \chi_{v}$ and $I\left(s, \chi_{\pi}\right)=\otimes_{v} I_{v}\left(s, \chi_{v}\right)$ where the product is over all places of F. Also $\mathcal{W}(\pi, \psi)=\otimes_{v} \mathcal{W}\left(\pi_{v}, \psi_{v}\right)$. Let φ and f_{s} be factorizable vectors. Thus $\varphi=\otimes_{v} \varphi_{v}$ and $f_{s}=\otimes_{v} f_{s}^{(v)}$. It follows from Proposition 1.1. that

$$
I\left(\varphi, f_{s}, \chi, s\right)=\prod_{v} I_{v}\left(W_{v}, f_{s}^{(v)}, \chi_{v}, s\right)
$$

where

$$
I_{v}\left(W_{v}, f_{s}^{(v)}, \chi_{v}, s\right)=\int_{Z\left(F_{v}\right) V\left(F_{v}\right) \backslash \operatorname{GSp}_{6}\left(F_{v}\right)} \int_{F_{v}} W_{v}(X(r) j(g)) f_{s}^{(v)}(g) \mathrm{d} r \mathrm{~d} g
$$

and $W_{\varphi}=\otimes_{\nu} W_{\nu}$.
In the next section, we will study this local integral.

2. Some Local Theory

In this section, we will study the local integral obtained from the factorization of the global integral. We shall carry out the unramified computation and prove some nonvanishing result.

Let F be a local field. Let π be an admissible generic representation of $\mathrm{GL}_{6}(F)$ with central character ω_{π}. We shall write GL_{6} for $\mathrm{GL}_{6}(F)$ etc. Let χ be a unitary character of F^{*}. As in the global case, we let $I\left(s, \chi_{\pi}\right)=\operatorname{Ind}_{Q}^{\mathrm{GSp}_{6}} \delta_{Q}^{s} \chi_{\pi}$. Thus $f_{s} \in I\left(s, \chi_{\pi}\right)$ is a smooth function which satisfies

$$
f_{s}((\alpha, g) r h)=\left(\omega_{\pi} \chi^{3}\right)(\alpha)\left(\omega_{\pi} \chi^{2}\right)(\operatorname{det} g) \delta_{Q}^{s}((\alpha, g)) f_{s}(h)
$$

for all $(\alpha, g) \in \mathrm{GL}_{1} \times \mathrm{GL}_{3}, r \in R$ and $h \in \mathrm{GSp}_{6}$. Given a reductive group G we let $K(G)$ denote its standard maximal compact subgroup. If F is a nonarchimedean field, \mathcal{O} will denote the ring of integers in F and p a generator of the maximal ideal in \mathcal{O}. We let $q^{-1}=|p|$. Also, if μ is an unramified character of F^{*}, let $L(\mu, s)=$ $\left(1-\mu(p) q^{-s}\right)^{-1}$.

Thus our aim in this section is to study the local integral

$$
I\left(W, f_{s}, \chi, s\right)=\int_{Z V \backslash \mathrm{GSp}_{6}} \int_{F} W(X(r) j(g)) f_{s}(g) \mathrm{d} r \mathrm{~d} g
$$

where $W \in \mathcal{W}(\pi, \psi)$ and $f_{s} \in I(s, \chi)$.
We start with:

2.1. THE UNRAMIFIED COMPUTATION

Let F be a nonarchimedean field. In this section, we assume all data to be unramified. Thus there exists a unique $W \in \mathcal{W}(\pi, \psi)$ such that $W(k)=W(e)=1$ for all $k \in K\left(\mathrm{GL}_{6}\right)$ and similarly $f_{s} \in I(s, \chi)$ with $f_{s}(k)=f_{s}(e)=1$ for all $k \in K\left(\mathrm{GSp}_{6}\right)$. Thus ω_{π} and χ are unramified characters.

From general theory, we may assume that $\pi=\operatorname{Ind}_{B}^{\mathrm{GL}} \delta_{B}^{1 / 2} \mu$ where B is the standard Borel subgroup of GL_{6}, i.e. the group of upper diagonal matrices. Also μ is defined as follows. There exists unramified characters μ_{i} of F^{*} such that

$$
\mu\left(\operatorname{diag}\left(t_{1}, \ldots, t_{6}\right) n\right)=\prod_{i=1}^{6} \mu_{i}\left(t_{i}\right), \quad t_{i} \in F^{*}, \quad n \in N .
$$

Thus we may attach to π a semi-simple conjugacy class t_{π} in $\mathrm{GL}_{6}(\mathbb{C})$ whose representative is chosen to be $\operatorname{diag}\left(\mu_{1}(p), \mu_{2}(p), \ldots, \mu_{6}(p)\right)$. Next we define the local L-function we shall study. Let Λ^{3} denote the exterior cube representation of $\mathrm{GL}_{6}(\mathbb{C})$. This representation has dimension 20. Define the local twisted exterior cube L-function by

$$
L\left(\pi \otimes \chi, \Lambda^{3}, s\right)=\operatorname{det}\left[I-\Lambda^{3}\left(t_{\pi}\right) \chi(p) q^{-s}\right]^{-1}
$$

where I is the 20×20 identity matrix. We have

$$
L\left(\pi \otimes \chi, \wedge^{3}, s\right)=\prod_{i<j<k}\left(1-\left(\mu_{i} \mu_{j} \mu_{k}\right)(p) \chi(p) q^{-s}\right)^{-1}
$$

We have

PROPOSITION 2.1. For all unramified data and for $\operatorname{Re}(s)$ large,

$$
I\left(W, f_{s}, \chi, s\right)=\frac{L\left(\pi \otimes \chi, \Lambda^{3}, 2 s-1 / 2\right)}{L\left(\omega_{\pi} \chi^{2}, 4 s\right) L\left(\omega_{\pi}^{2} \chi^{4}, 8 s-2\right)} .
$$

Proof. We start by writing the Iwasawa decomposition of GSp_{6}. Let

$$
t^{\prime}=\operatorname{diag}\left(a b c, a c, 1, a, c^{-1}, b^{-1} c^{-1}\right) \quad a, b, c \in F^{*}
$$

be a parameterization of the maximal torus in GSp_{6}. We have

$$
\left.\delta_{B^{\prime}} t^{\prime}\right)=\left|a^{4} b^{6} c^{10}\right|, \quad \delta_{P}\left(t^{\prime}\right)=\left|a^{2} b^{4} c^{8}\right|
$$

where B^{\prime} is the standard Borel subgroup of GSp_{6}. We have

$$
\begin{aligned}
I\left(W, f_{s}, \chi, s\right)= & \int_{\left(F^{*}\right)^{3}} \int_{F} W\left[\left(\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & x & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right) j\left(t^{\prime}\right)\right]\left|a^{2} b^{4} c^{8}\right|^{s} \\
& \chi\left(a b^{2} c^{4}\right) \omega_{\pi}\left(b c^{2}\right)\left|a^{4} b^{6} c^{10}\right|^{-1}{\mathrm{~d} x \mathrm{~d}^{*} a \mathrm{~d}^{*} b \mathrm{~d}^{*} c}
\end{aligned}
$$

Here the measure on $K\left(\mathrm{GSp}_{6}\right)$ is chosen so that $\int_{K\left(\mathrm{GSp}_{6}\right)} \mathrm{d} k=1$. Conjugating the torus to the left we obtain

$$
\begin{aligned}
I\left(W, f_{s}, \chi, s\right)= & \int_{\left(F^{*}\right)^{3}} \int_{F} W\left[j\left(t^{\prime}\right)\left(\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & x & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)\right]\left|a^{2} b^{4} c^{8}\right|^{s} \\
& \left|a^{5} b^{6} c^{10}\right|^{-1} \chi\left(a b^{2} c^{4}\right) \omega_{\pi}\left(b c^{2}\right){\mathrm{d} x \mathrm{~d}^{*} a \mathrm{~d}^{*} b \mathrm{~d}^{*} c}
\end{aligned}
$$

We have, for $|x|>1$

$$
\left(\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & x & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)=\left(\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & x^{-1} & & & \\
& & & x & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)\left(\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & 1 & x & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right) k
$$

with $k \in K\left(\mathrm{GSp}_{6}\right)$. Thus

$$
\begin{aligned}
& I\left(W, f_{s}, \chi, s\right)=\int_{\left(F^{*}\right)^{3}} W\left(j\left(t^{\prime}\right)\right)\left|a^{2} b^{4} c^{8}\right|^{s}\left|a^{5} b^{6} c^{10}\right|^{-1} \chi\left(a b^{2} c^{4}\right) \omega_{\pi}\left(b c^{2}\right) d^{*} a d^{*} b d^{*} c+ \\
& +\int_{\left(F^{*}\right)^{3}} \int_{|x|>1} W\left(j\left(t^{\prime}\right)\left(\begin{array}{llllll}
1 & & & & & \\
\\
& 1 & & & & \\
\\
& & x^{-1} & & & \\
& & & x & & \\
& & & & & 1 \\
& & & & & \\
1 & & & & & \\
& 1 & & & & \\
& & 1 & x & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & \\
& & & & & 1
\end{array}\right)\right) \\
& \times\left|a^{2} b^{4} c^{8}\right|^{s}\left|a^{5} a^{6} c^{10}\right|^{-1} \text {. } \\
& \chi\left(a b^{2} c^{4}\right) \omega_{\pi}\left(b c^{2}\right) \mathrm{d} x \mathrm{~d}^{*} a \mathrm{~d}^{*} b \mathrm{~d}^{*} c .
\end{aligned}
$$

Here the measure on F is chosen so that $\int_{|x| \leqslant 1} d x=1$. Denote

$$
t=j\left(t^{\prime}\right)=\operatorname{diag}\left(a b c, a c, a, 1, c^{-1}, b^{-1} c^{-1}\right)
$$

Changing variables $a \rightarrow a x^{2} c \rightarrow c x^{-1}$ we obtain

$$
I\left(W, f_{s}, \chi, s\right)=\int_{\left(F^{*}\right)^{3}} W(t) \omega_{\pi}\left(b c^{2}\right) \chi\left(a b^{2} c^{4}\right)\left|a^{2} b^{4} c^{8}\right|^{s}\left|a^{5} b^{6} c^{10}\right|^{-1} H(a) \mathrm{d}^{*} a \mathrm{~d}^{*} b \mathrm{~d}^{*} c,
$$

where

$$
H(a)=1+\int_{|x|>1} \omega_{\pi}^{-1} \chi^{-2}|x|^{-4 s} \psi(a x) \mathrm{d} x
$$

It follows as in [G] Proposition 3.1 that

$$
H(a)=\frac{1-\omega_{\pi} \chi^{2}(p) q^{-4 s}}{1-\omega_{\pi} \chi^{2}(p) q^{-4 s+1}}\left(1-\omega_{\pi} \chi^{2}(a)|a|^{4 s-1} \omega_{\pi} \chi^{2}(p) q^{-4 s+1}\right)
$$

Let $K(t)=\delta_{B}^{-1 / 2} W(t)$ where B is the standard Borel subgroup of GL_{6}. Thus $\delta_{B}(t)=\left|a^{9} b^{10} c^{16}\right|$. Denote

$$
d\left(n_{1}, n_{2}, n_{3}\right)=\operatorname{diag}\left(p^{n_{1}+n_{2}+n_{3}}, p^{n_{1}+n_{3}}, p^{n_{1}}, 1, p^{-n_{3}}, p^{-n_{2}-n_{3}}\right)
$$

Since $W(t)=0$ if $|a|>1$ or $|b|>1$ or $|c|>1$ we obtain

$$
\begin{aligned}
& I\left(W, f_{s}, \chi, s\right) \\
& \quad=\frac{\left.L\left(\omega_{\pi} \chi^{2}, 4 s-1\right)\right)}{L\left(\omega_{\pi} \chi^{2}, 4 s\right)} \sum_{n_{1}, n_{2}, n_{3}=0}^{\infty} K\left(d\left(n_{1}, n_{2}, n_{3}\right)\right) \chi(p)^{n_{1}+2 n_{2}+4 n_{3}} \omega_{\pi}(p)^{n_{2}+2 n_{3}} \times \\
& \quad \times q^{(-2 s+1 / 2) n_{1}+(-4 s+1) n_{2}+(-8 s+2) n_{3}}\left(1-\left(\omega_{\pi} \chi^{2}\right)(p)^{n_{1}+1} q^{(-4 s+1)\left(n_{1}+1\right)}\right)
\end{aligned}
$$

Here we choose the measure on a, b and c so that $\int_{|\epsilon|=1} d \epsilon=1$. Let $x=\chi(p) q^{-2 s+1 / 2}$. Thus

$$
\begin{aligned}
I\left(W, f_{s}, \chi, s\right)= & \frac{L\left(\omega_{\pi} \chi^{2}, 4 s-1\right)}{L\left(\omega_{\pi} \chi^{2}, 4 s\right)} \sum_{n_{1}, n_{2}, n_{3}=0}^{\infty} K\left(d\left(n_{1}, n_{2}, n_{3}\right)\right) \times \\
& \times \omega_{\pi}(p)^{n_{2}+2 n_{3}} x^{n_{1}+2 n_{2}+4 n_{3}}\left(1-\omega_{\pi}(p)^{n_{1}+1} x^{2\left(n_{1}+1\right)}\right)
\end{aligned}
$$

On the other hand, we have

$$
L\left(\pi \otimes \chi, \Lambda^{3}, 2 s-1 / 2\right)=\sum_{n=0}^{\infty} \operatorname{tr} S^{n}\left(t_{\pi}\right) \chi(p)^{n} q^{(-2 s+1 / 2) n}
$$

where S^{n} denotes the symmetric nth power operation. Thus we need to prove the identity

$$
\begin{aligned}
(1 & \left.-\omega_{\pi}(p) x^{2}\right)\left(1-\omega_{\pi}^{2}(p) x^{4}\right) \sum_{n=0}^{\infty} \operatorname{tr} S^{n}\left(t_{\pi}\right) x^{n} \\
& =\sum_{n_{1}, n_{2}, n_{3}=0}^{\infty} K\left(d\left(n_{1}, n_{2}, n_{3}\right)\right) \omega_{\pi}(p)^{n_{2}+2 n_{3}} x^{n_{1}+2 n_{2}+4 n_{3}}\left(1-\omega_{\pi}(p)^{n_{1}+1} x^{2\left(n_{1}+1\right)}\right)
\end{aligned}
$$

Let $\widetilde{\omega}_{i} 1 \leqslant i \leqslant 5$ denote the i th fundamental representation of $\mathrm{GL}_{6}(\mathbb{C})$. Let $(0, \ldots, 1, \ldots, 0)$, one in the i th position and zero elsewhere, denote the character of the representation $\widetilde{\omega}_{i}$ evaluated at t_{π}. We use the Casselman-Shalika formula [C-S] to deduce that

$$
K\left(d\left(n_{1}, n_{2}, n_{3}\right)\right)=\left(n_{2}, n_{3}, n_{1}, n_{3}, n_{2}\right)
$$

Thus we need to prove

$$
\begin{align*}
& \left(1-\omega_{\pi}(p) x^{2}\right)\left(1-\omega_{\pi}^{2}(p) x^{4}\right) \sum_{n=0}^{\infty} \operatorname{tr} S^{n}\left(t_{\pi}\right) x^{n} \\
& \quad=\sum_{n_{1}, n_{2}, n_{3}=0}^{\infty}\left(n_{2}, n_{3}, n_{1}, n_{3}, n_{2}\right) \omega_{\pi}(p)^{n_{2}+2 n_{3}} x^{n_{1}+2 n_{2}+4 n_{3}}\left(1-\omega_{\pi}(p)^{n_{1}+1} x^{2\left(n_{1}+1\right)}\right) \tag{*}
\end{align*}
$$

It follows from the result of Brion [B] page 13 that

$$
\operatorname{tr} S^{r}\left(t_{\pi}\right)=\sum\left(n_{2}, n_{3}, n_{1}+n_{4}, n_{3}, n_{2}\right) \omega_{\pi}(p)^{n_{2}+2 n_{3}+n_{4}+2 n_{5}}
$$

where the sum is over all $n_{i} \in N, 1 \leqslant i \leqslant 5$ satisfying $n_{1}+2 n_{2}+3 n_{4}+4 n_{3}+4 n_{4}=r$. Thus

$$
\sum_{r=0}^{\infty} \operatorname{tr} S^{r}\left(t_{\pi}\right) x^{r}=\sum_{\substack{n_{i}=0 \\ 1 \leqslant i \leqslant 5}}^{\infty}\left(n_{2}, n_{3}, n_{1}+n_{4}, n_{3}, n_{2}\right) \omega_{\pi}(p)^{n_{2}+2 n_{3}+n_{4}+2 n_{5}} x^{n_{1}+2 n_{2}+3 n_{4}+4 n_{3}+4 n_{4}}
$$

At this point, we refer the reader to [G] formulas (3.4) and (3.5) and the discussion there. One can check that the same argument there applied to our case will prove (*).

2.2. A NONVANISHING RESULT

In this section, we shall prove that data can be chosen so that $I\left(W, f_{s}, \chi, s\right)$ is nonzero at $s=s_{0}$. We prove:

PROPOSITION 2.2. Let f_{s} be a $K\left(\mathrm{GSp}_{6}\right)$ standard section i.e. its restriction to $K\left(\mathrm{GSp}_{6}\right)$ is independent of s. Let W be a smooth vector in the Whittaker space of π. Then $I\left(W, f_{s}, \chi, s\right)$ converges absolutely for $\operatorname{Re}(s)$ large. If f_{s} is $K\left(\mathrm{GSp}_{6}\right)$ finite then $I\left(W, f_{s}, \chi, s\right)$ has a meromorphic continuation to the whole complex plane. Finally, given $s_{0} \in \mathbb{C}$, there is a choice of W and a $K\left(\mathrm{GSp}_{6}\right)$ finite section f_{s} so that $I\left(W, f_{s}, \chi, s\right)$ is nonzero at $s=s_{0}$.

Proof. We note two facts concerning the smooth Whittaker vector W in π.
First each such W can be expressed as a convolution of the following form. Given W there exists a $K\left(\mathrm{GL}_{6}\right)$ finite function W_{K} and a function $f \in S\left(\mathrm{GL}_{6}\right)$ (the Schwartz space of $\left.\mathrm{GL}_{6}\right)$ so that $W=\pi(f)\left(W_{K}\right)$. In concrete terms this means

$$
W(g)=\int_{\mathrm{GL}_{6}} W_{K}(g x) f(x) \mathrm{d} x
$$

Thus if we convolve any $\varphi \in S(V)$ (the Schwartz space of a unipotent subgroup $\left.V \subset \mathrm{GL}_{6}\right)$ into f then $\varphi * f \in S\left(\mathrm{GL}_{6}\right)$. Thus $\pi(\varphi)(W)=\pi(\varphi * f)\left(W_{K}\right)$.

On the other hand, there is yet a more explicit way to present W (assuming π is unitary). If $g=u t k$ is the Iwasawa decomposition of g in GL_{6} then we get an asymptotic formula:

$$
W(t k)=\sum \Phi_{\chi}(t, k) \chi(t)
$$

where $\Phi_{\chi} \in S\left(\mathbb{R}^{5} \times K\left(\mathrm{GL}_{6}\right)\right)$ and χ a toral finite function on D (diagonal matrices) in GL_{6}. This formula is used to get estimates etc. in local Ranking Selberg integrals.

We start with the convergence. Using the Iwasawa decomposition, it is enough to prove that

$$
\int_{\left(F^{*}\right)^{3}} \int_{F}\left|W\left[t\left[\begin{array}{cccccc}
1 & & & & & \tag{2.1}\\
& 1 & & & & \\
& & 1 & & & \\
& & x & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)\right]\right||a|^{2 s-5}|b|^{4 s-6}|c|^{8 s-10} \mathrm{~d} x \mathrm{~d}^{*} a \mathrm{~d}^{*} b \mathrm{~d}^{*} c
$$

converges for $\operatorname{Re}(s)$ large. Here

$$
t=\operatorname{diag}\left(a b c, a c, a, 1, c^{-1}, b^{-1} c^{-1}\right)
$$

Set $\mu_{s}(a, b, c)=|a|^{2 s-5}|b|^{4 s-6}|c|^{8 s-10}$. If F is nonarchimedean we break the x integration to $|x| \leqslant r$ and $|x|>r$ for large constant r. Since $|x| \leqslant r$ is a compact set the absolute convergence of

$$
\int_{\left(F^{*}\right)^{3}} \int_{|x| \leqslant r}\left|W\left[t\left(\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & x & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)\right]\right| \mu_{s}(a, b, c) \mathrm{d} x \mathrm{~d}^{*} a \mathrm{~d}^{*} b \mathrm{~d}^{*} c
$$

for $\operatorname{Re}(s)$ large follows from the asymptotic expansion of the Whittaker function given in [J-S] Section 4. When $|x|>r$ we get, after using the GL_{2} Iwasawa decomposition

$$
\left(\begin{array}{ll}
1 & \\
y & 1
\end{array}\right)=\left(\begin{array}{cc}
-y^{-1} & 1 \\
& y
\end{array}\right) k_{y} \quad|y|>1, k_{y} \in K\left(\mathrm{GL}_{2}\right)
$$

the contribution

$$
\int_{\left(F^{*}\right)^{3}} \int_{|x|>r}|W(t)| \mu_{s}(a, b, c)|x|^{-4 s} \mathrm{~d} x \mathrm{~d}^{*} a \mathrm{~d}^{*} b \mathrm{~d}^{*} c,
$$

which ones again converge for $\operatorname{Re}(s)$ large.

If F is archimedean we write

$$
\left(\begin{array}{ll}
1 & \\
y & 1
\end{array}\right)=\left(\begin{array}{cc}
\left(1+y^{2}\right)^{-1 / 2} & * \\
& \left(1+y^{2}\right)^{1 / 2}
\end{array}\right) k_{y}^{\prime} \quad y \neq 0 \quad k_{y}^{\prime} \in K\left(\mathrm{GL}_{2}\right)
$$

Plugging this to (2.1) we get

$$
\int_{\left(F^{*}\right)^{3}} \int_{F}\left|W\left(t k_{x}^{\prime \prime}\right)\right| \mu_{s}(a, b, c)\left(1+x^{2}\right)^{-2 s} \mathrm{~d} x \mathrm{~d}^{*} a \mathrm{~d}^{*} b \mathrm{~d}^{*} c
$$

where $k_{x}^{\prime \prime} \in K\left(\mathrm{GL}_{6}\right)$. Once again due to the asymptotic formula of W given above, the integral converges for $\operatorname{Re}(s)$ large. We use here that the Φ_{χ} are bounded functions.

To study the meromorphic continuation we write

$$
I\left(W, f_{s}, \chi, s\right)=\int_{Z V \backslash \mathrm{GSp}_{6}} \int_{F}(\rho(w) W)\left(\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & & \\
& 1 & 1 & x & & \\
& & 1 & 1 & & \\
& & & & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right) g \text {) } f_{s}(g) \mathrm{d} x \mathrm{~d} g
$$

where $\rho(w) W$ denotes the right translation of W by w. Let $\widetilde{W}=\rho(w) W$. Thus

$$
I\left(W, f_{s}, \chi, s\right)=\int_{Z V \backslash \mathrm{GSp}_{6}} \tilde{W}(g) \int_{F} f_{s}\left(w\left(\begin{array}{cccccc}
1 & & & & & \tag{2.2}\\
& 1 & & & & \\
& & 1 & x & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right) g\right) \psi(x) \mathrm{d} x \mathrm{~d} g
$$

We shall prove the meromorphic continuation of the right hand side of (2.2). Since $f_{s}(g)$ is $K\left(\mathrm{GSp}_{6}\right)$ finite it is enough to study the continuation of

$$
\int_{\left(F^{*}\right)^{3}} \widetilde{W}(t) \mu(t) \int_{F} f_{s}\left(w\left(\begin{array}{ccccc}
1 & & & & \tag{2.3}\\
& 1 & & & \\
& & 1 & x & \\
& & & 1 & \\
& & & & 1
\end{array}\right) t\right) \psi(x) \mathrm{d} x \mathrm{~d}^{*} t
$$

where $t=\operatorname{diag}\left(a b c, a c, a, 1, c^{-1}, b^{-1} c^{-1}\right)$ and $\mu(t)=|a|^{n_{1}}|b|^{n_{2}}|c|^{n_{3}}$, where $n_{i} \in \mathbb{Z}$.

Denote

$$
W_{s}(g)=\int_{F} f_{s}\left(w\left(\begin{array}{ccccc}
1 & & & & \\
& 1 & & & \\
& & 1 & x & \\
& & & 1 & \\
& & & & 1
\end{array}\right)\left(\begin{array}{lllll}
|g| & & & & \\
& & |g| & & \\
& & g & & \\
& & & & 1 \\
& & & & \\
& & & & \\
& & &
\end{array}\right) \psi(x) \mathrm{d} x\right.
$$

where $g \in \mathrm{GL}_{2}$ and $|g|=\operatorname{det} g$. Thus (2.3) equals

$$
\int_{\left(F^{*}\right)^{3}} \widetilde{W}(t) \mu_{s}(a, b, c) W_{s}\left(\begin{array}{cc}
a & \tag{2.4}\\
& 1
\end{array}\right) \mathrm{d} t
$$

where $\mu_{s}(a, b, c)$ depends on the absolute value of $a b, c$ to some power of s and also on χ and w_{π}. From the definition of W_{s} we may view it as the Whittaker model of a GL_{2} induced representation.

Next we use the standard integral representation of W_{s} on GL_{2} given by

$$
W_{s}\left(\begin{array}{cc}
a & \\
& 1
\end{array}\right)=\left(\int \Phi\left(a t, t^{-1}\right)|t|^{s} d^{*}(t)\right)|a|^{s+1 / 2}
$$

where Φ is a Schwartz function (in $S\left(k^{2}\right)$). Then we substitute this expression into (2.4) and then with the suitable change of coordinates and use of asymptotic expansion we express (2.4) in terms of Tate integrals (to obtain the continuation).

Finally, to finish the proof of Proposition 2.2. we need to show that given $s_{0} \in \mathbb{C}$, data can be chosen so that $I\left(W, f_{s}, \chi, s\right)$ is nonzero at $s=s_{0}$. Define, for $\operatorname{Re}(s)$ large,

$$
\begin{aligned}
I_{1}(W, \chi, s, k)= & \int_{Z\left(V \cap \mathrm{GL}_{3}\right) \backslash \mathrm{GL}_{1} \times \mathrm{GL}_{3}} \int_{F} W(X(r) j((\alpha, g)) k) \times \\
& \times \omega_{\pi} \chi^{3}(\alpha) \omega_{\pi} \chi^{2}(\operatorname{det} g)|\alpha|^{6 s-6}|\operatorname{det} g|^{4 s-4} \mathrm{~d} r \mathrm{~d}^{*} \alpha \mathrm{~d} g
\end{aligned}
$$

Here $k \in K\left(\mathrm{GSp}_{6}\right)$ and $(\alpha, g) \in \mathrm{GL}_{1} \times \mathrm{GL}_{3}$. Thus for $\operatorname{Re}(s)$ large,

$$
I\left(W, f_{s}, \chi, s\right)=\int_{\mathrm{GL}_{3} \cap K\left(\mathrm{GSp}_{6}\right) \backslash K\left(\mathrm{GSp}_{6}\right)} I_{1}(W, \chi, s, k) f_{s}(k) \mathrm{d} k
$$

We note that $I_{1}(W, \chi, s, k)$ admits a continuation in s and such continuation in s as a function in k variable is locally constant (smooth in the archimedean case). In the nonarchimedean case this follows directly from the relation between $I_{1}(W, \chi, s, k)$ and $I\left(W, f_{s}, \chi, s\right)$. In the archimedean case this point is more subtle and we sketch a brief proof. Indeed given a smooth Whittaker function (not necessarily K finite) W (belonging to π) we can write by the Dixmier Malliavan criterion applied to the action of $K\left(\mathrm{GSp}_{6}\right)$ on $\pi W=\sum W_{i} * \varphi_{i}$, where W_{i} lies in the smooth

Whittaker spaces of π and $\varphi_{i} \in C^{\infty}\left(K\left(\mathrm{GSp}_{6}\right)\right)$. Here

$$
W_{i} * \varphi_{i}(g)=\int_{K\left(\mathrm{GSp}_{6}\right)} W_{i}(g k) \varphi(k) \mathrm{d} k
$$

Then we write

$$
I_{1}\left(W, \chi, s, k_{1}\right)=\sum I_{1}\left(W_{i} * \varphi_{i}, \chi, s, k_{1}\right)
$$

and we have that

$$
\begin{aligned}
& I_{1}\left(W_{i} * \varphi_{i}, \chi, s, k_{1}\right) \\
& =\int_{Z\left(V \cap \mathrm{GL}_{3}\right) \backslash \mathrm{GL}_{1} \times \mathrm{GL}_{3}} \int_{F}\left(\int_{K\left(\mathrm{GSp}_{6}\right)} W\left(X(r) j\left((\alpha, g) k_{1} k\right) \varphi_{i}(k) \mathrm{d} k\right) \times\right. \\
& \quad \times \omega_{\pi} \chi^{3}(\alpha) \omega_{\pi} \chi^{2}(\operatorname{det} g)|\alpha|^{6 s-6}|\operatorname{det} g|^{4 s-4} \mathrm{~d} r \mathrm{~d}^{*} \alpha \mathrm{~d} g
\end{aligned}
$$

Then by changes of variables $k \rightarrow k_{1} k$ and by the use of Fubini we deduce that the above integral equals

$$
\begin{aligned}
& \int_{Z\left(V \cap \mathrm{GL}_{3}\right) \backslash \mathrm{GL}_{1} \times \mathrm{GL}_{3}} \int_{F}\left[\int_{K\left(\mathrm{GSp}_{6}\right)} W(X(r) j((\alpha, g)) k)\left(\int_{K\left(\mathrm{GL}_{1} \times \mathrm{GL}_{3}\right)} \varphi_{i}\left(k_{1}^{-1} u k\right) d u\right) d k\right] \omega_{\pi} \chi^{3}(\alpha) \times \\
& \quad \times \omega_{\pi} \chi^{2}(\operatorname{det} g)|\alpha|^{6 s-6}|\operatorname{det} g|^{4 s-4} \mathrm{~d} r \mathrm{~d}^{*} \alpha \mathrm{~d} g \\
& =\int_{K\left(\mathrm{GSp}_{6}\right)}\left\{\left[\int_{Z\left(V \cap \mathrm{GL}_{3}\right) \backslash \mathrm{GL}_{1} \times \mathrm{GL}_{3}} \int_{F} W(X(r) j((\alpha, g)) k) \times\right.\right. \\
& \left.\left.\quad \times \omega_{\pi} \chi^{3}(\alpha) \omega_{\pi} \chi^{2}(\operatorname{det} g)|\alpha|^{6 s-6}|\operatorname{det} g|^{4 s-4} \mathrm{~d} r \mathrm{~d}^{*} \alpha \mathrm{~d} g\right]\left(\int_{K\left(\mathrm{GL}_{1} \times \mathrm{GL}_{3}\right)} \varphi_{i}\left(k_{1}^{-1} u k\right) d u\right)\right\} \mathrm{d} k .
\end{aligned}
$$

Thus if we define

$$
\mathbb{F}_{\varphi_{i}}\left(k_{1}, k\right)=\int_{K\left(\mathrm{GL}_{1} \times \mathrm{GL}_{3}\right)} \varphi_{i}\left(k_{1}^{-1} u k\right) \mathrm{d} u
$$

and if we choose a C^{∞} section for the induced GSp_{6} module $I(s, \chi)$ given by

$$
\mathbb{F}_{\varphi_{i}}\left(k_{1}, g, s\right)=\mathbb{F}_{\varphi_{i}}\left(k_{1}, k\right)\left(\delta_{Q}^{s} \chi_{\pi}\right)\left(\mathbb{A}_{\mathrm{GL}_{1} \times \mathrm{GL}_{3}}(g)\right),
$$

where $A_{\mathrm{GL}_{1} \times \mathrm{GL}_{3}}(\quad)$ is the Levi component of g relative to the Iwasawa decomposition $g \in Q(\mathbb{R}) K\left(\mathrm{GSp}_{6}\right)$. We note here $\mathbb{F}_{\varphi_{i}}$ is not necessarily a $K\left(\mathrm{GSp}_{6}\right)$ finite function.

Thus with the above calculations we have shown that

$$
I_{1}\left(W, \chi, s, k_{1}\right)=\sum I\left(W_{i}, \mathbb{F}_{\varphi_{i}}\left(k_{1}, s\right), \chi, s\right)
$$

Thus we have shown here each integral in the sum above admits a continuation in s and as function in the k_{1} variable it is C^{∞}. For this we just adapt the method of proof of continuation given above. We are now assuming W and $\mathbb{F}_{\varphi_{i}}$ are not $K\left(\mathrm{GSp}_{6}\right)$ finite data in the problem. Then following the same line of arguments as above (use here asymptotic expansion of W stated above) we reduce to an integral of the form

$$
\int_{T \times K\left(\operatorname{GSp}_{6}\right)} \Phi_{\chi}((b, c, a, c, b), k) \widetilde{\chi}(t) \widetilde{\mu}_{s}(t)\left(\int_{F} \mathbb{F}_{\varphi_{i}}\left(k_{1}, w n(x)\left(\begin{array}{cc}
a & \\
& 1
\end{array}\right) k, s\right) \psi(x) \mathrm{d} x\right) \mathrm{d}^{*} t \mathrm{~d} k
$$

Here

$$
n(x)=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)
$$

belong to the internal GL_{2} as given in (2.3) and (2.4). Moreover $\tilde{\mu}_{s}(t)=\tilde{\mu}_{s}(a, b, c)$ depends on the absolute values of a, b and c to some power of s and also in χ and w_{π}. Also $\tilde{\chi}$ is a T finite function in (a, b, c) variables $\left(\Phi_{\chi}\right.$ defined above in the asymptotic expansion of W). We note here by a similar argument as above we can find $\varphi_{i} \in S\left(K\left(\mathrm{GSp}_{6}\right) \times M_{6,3}(\mathbb{R})\right)$ so that

$$
\mathbb{F}_{\varphi_{i}}\left(k_{1}, g, s\right)=|\operatorname{det} g|^{s_{1}} \int_{M_{3,3}(\mathbb{R})} \varphi_{i}\left[k_{1},[0 \mid X] g\right]|\operatorname{det} X|^{s_{2}} \mathrm{~d} X
$$

for appropriate s_{1} and s_{2}. Then we deduce that $(*)$ becomes an integral of the form

$$
\begin{aligned}
& \left\{\int_{T \times K\left(\mathrm{GSp}_{6}\right)} \Phi_{\widetilde{\chi}}[(b, c, a, c, b), k] \widetilde{\chi}(t) \widetilde{\mu}_{s}(a, b, c)\right. \\
& \left.\quad \varphi\left[k_{1},\left[\begin{array}{ccc}
0 & 0 & a_{11} a \\
0 & 0 & a_{21} a \\
0 & 0 & a_{31} a
\end{array} \left\lvert\, \begin{array}{ccc}
a_{11} x & a_{12} & a_{13} \\
a_{21} x & a_{22} & a_{23} \\
a_{31} x & a_{32} & a_{33}
\end{array}\right.\right] k\right]|\operatorname{det}(A)|^{s_{2}} \psi(x) \mathrm{d}^{*} t \mathrm{~d} x \mathrm{~d}^{*} A \mathrm{~d} k\right\} .
\end{aligned}
$$

Then using appropriate differential operators in the a, b, c and A variables one checks that the integral has meromorphic continuation in s and in fact becomes for each s (more precisely its highest order term in s expanded about any point $\left.s_{0}\right)$ an C^{∞} function in the variable k_{1} !

Assume that $I\left(W, f_{s}, \chi, s\right)$ is zero at $s=s_{0}$ for all choice of data. Since $f_{s}(k)$ is independent of s we obtain that $\int I_{1}(W, \chi, s, k) \sigma(k) \mathrm{d} k$ is zero at $s=s_{0}$ for all smooth functions σ on $\left(\mathrm{GL}_{3} \cap K\left(\mathrm{GSp}_{6}\right)\right) \backslash K\left(\mathrm{GSp}_{6}\right)$. Thus $I_{1}(W, \chi, s, k)$ is zero at $s=s_{0}$ for all
W. Put $k=e$. Thus the meromorphic continuation of

$$
I_{1}(W, \chi, s)=\int_{Z V \cap \mathrm{GL}_{3} \backslash \mathrm{GL}_{1} \times \mathrm{GL}_{3}} \int_{F} W(X(r) j((\alpha, g))) \mu_{1}(\alpha, g, s) \mathrm{d} r \mathrm{~d}^{*} \alpha \mathrm{~d} g
$$

is zero at $s=s_{0}$ for all W. Here $\mu_{1}(\alpha, g, s)=\omega_{\pi} \chi^{3}(\alpha) \omega_{\pi} \chi^{2}(\operatorname{det} g)|\alpha|^{6 s-6}|\operatorname{det} g|^{4 s-4}$. Replace W in $I_{1}(W, \chi, s)$ by

$$
W_{1}(h)=\int_{F^{3}} W\left(h j\left(\left(\begin{array}{cccccc}
1 & & & 0 & 0 & 0 \\
& 1 & & 0 & 0 & r_{1} \\
& & 1 & 0 & r_{2} & r_{3} \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)\right) \phi\left(r_{1}, r_{2}, r_{3}\right) \mathrm{d} r_{i}\right.
$$

where ϕ is a smooth function of compact support on F^{3} and $h \in \mathrm{GL}_{6}$. Thus

$$
\begin{aligned}
& I_{1}\left(W_{1}, \chi, s\right)= \\
& \iint_{F^{3}} W\left(X(r) j(\alpha, g)\left(\begin{array}{cccccc}
1 & & & 0 & 0 & 0 \\
& 1 & & 0 & 0 & r_{1} \\
& & 1 & 0 & r_{2} & r_{3} \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)\right) \phi\left(r_{1}, r_{2}, r_{3}\right) \mu_{1}(\alpha, g, s) \mathrm{d} r_{i} \mathrm{~d}^{*} \alpha \mathrm{~d} g,
\end{aligned}
$$

where α, g and r are integrated as before. Conjugating the upper unipotent matrix to the left, we obtain for $\operatorname{Re}(s)$ large

$$
I_{1}\left(W_{1}, \chi, s\right)=\int W(X(r) j(\alpha, g)) \widehat{\phi}(\alpha(1,0,0) g) \mu_{1}(\alpha, g, s) \mathrm{d} r \mathrm{~d}^{*} \alpha \mathrm{~d} g
$$

where $\alpha(1,0,0) g$ indicates the usual matrix multiplication and

$$
\widehat{\phi}\left(t_{1}, t_{2}, t_{3}\right)=\int_{F^{3}} \phi\left(r_{1}, r_{2}, r_{3}\right) \psi\left(r_{1} t_{1}+r_{2} t_{2}+r_{s} t_{3}\right) \mathrm{d} r_{i}
$$

The function $\widehat{\phi}(\alpha(1,0,0) g)$ is an arbitrary smooth function on $\mathrm{GL}_{2} L \backslash \mathrm{GL}_{1} \times \mathrm{GL}_{3}$ where $\mathrm{GL}_{2} L$ is embedded in GL_{6} as in (1.2). Thus arguing as before we get that the meromorphic continuation of

$$
I_{2}(W, \chi, s)=\int_{\left(\mathrm{GL}_{2} \cap V\right) \backslash \mathrm{GL}_{2}} \int_{F} W(X(r) j(g)) \mu_{2}(g, s) \mathrm{d} r \mathrm{~d} g
$$

is zero at $s=s_{0}$ for all W. Here μ_{2} is the restriction of μ_{1} to GL_{2}. Next, replacing W
by

$$
W_{1}(h)=\int_{F^{2}} W\left(h j\left(\left(\begin{array}{cccccc}
1 & r_{1} & r_{2} & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & & 1 & & -r_{2} \\
& & & & 1 & -r_{1} \\
& & & & & 1
\end{array}\right)\right) \phi\left(r_{1}, r_{2}\right) \mathrm{d} r_{i}\right.
$$

we obtain that the meromorphic continuation of

$$
I_{3}(W, \chi, s)=\int_{F^{*}} \int_{F} W\left[X(r)\left(\begin{array}{cccccc}
a & & & & & \\
& a & & & & \\
& & a & & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)\right] \mu_{3}(a, s) \mathrm{d} r \mathrm{~d}^{*} a
$$

is zero for all W (μ_{3} the restriction of μ_{1} to center $\left.\left(\mathrm{GL}_{3}\right)\right)$. Finally, using the unipotent subgroup $I+m e_{23}$ for $X(r)$ and $I+m e_{34}$ for a we obtain, by arguing as above, that $W(e)=0$ for all W. This is a contradiction.

3. The Analytic Properties of the Partial L-Function

In this section we study the analytic properties of the partial exterior cube L-function on GL_{6}. Let $\pi=\otimes_{v} \pi_{v}$ and $I\left(s, \chi_{\pi}\right)=\otimes_{v} I_{v}\left(s, \chi_{\pi}\right)$. Let S be a finite set including the archimedean places such that outside of S all data is unramified. Given a character $\mu=\otimes \mu_{v}$ of $F^{*} \backslash A^{*}$ we denote $L^{S}(\mu, s)=\prod_{v \notin S} L_{v}\left(\mu_{v}, s\right)$ where $L_{v}\left(\mu_{v}, s\right)$ is the local degree one L-function of μ_{v}. As in [G] we set

$$
E^{*}\left(g, f_{s}, \chi, s\right)=L_{S}\left(\omega_{\pi} \chi^{2}, 4 s\right) L_{S}\left(\omega_{\pi}^{2} \chi^{4}, 8 s-2\right) E\left(g, f_{s}, \chi, s\right)
$$

and

$$
I^{*}\left(\varphi, f_{s}, \chi, s\right)=L_{S}\left(\omega_{\pi} \chi^{2}, 4 s\right) L_{S}\left(\omega_{\pi}^{2} \chi^{4}, 8 s-2\right) I\left(\varphi, f_{s}, \chi, s\right)
$$

We have:

PROPOSITION 3.1. Let f_{s} be a standard $K\left(\mathrm{GSp}_{6}\right)$ finite section which is an unramified outside of S. Then:
(a) If $\omega_{\pi} \chi^{2}=1$ or $\omega_{\pi}^{2} \chi^{4} \neq 1$ then $I^{*}\left(\varphi, f_{s}, \chi, s\right)$ is entire.
(b) If $\omega_{\pi}^{2} \chi^{4}=1$ but $\omega_{\pi} \chi^{2} \neq 1$ then $I^{*}\left(\varphi, f_{s}, \chi, s\right)$ can have at most a simple pole at $s=1 / 4$ or $s=3 / 4$.

Proof. To prove this we use Lemmas 5.4 and 5.5 in [G]. We use the notations there. If $s=1$ is a pole then the residue of $I^{*}\left(\varphi, f_{s}, \chi, s\right)$ at $s=1$ is zero, since it follows from [J-R] that a cusp form on GL_{6} integrated over GSp_{6} is zero. If $\omega_{\pi} \chi^{2}=1$ then arguing as in [G] we have

$$
\operatorname{Res}_{s=3 / 4} I^{*}\left(\varphi, f_{s}, \chi, s\right)=\int_{Z(\mathbb{A}) \mathrm{GSp}_{6}(F) \backslash \operatorname{GSp}_{6}(\mathbb{A})} \varphi(j(g)) E\left(g, \tilde{f}, s_{1}\right) \mathrm{d} g
$$

As in [G] Lemma 5.1 formula (5.2), we can show that the above integral is zero.

Thus as in [G] Theorem 5.6 we have:

THEOREM 3.2. Let π be a cusp form on $\operatorname{GL}_{6}(\mathbb{A})$. Let S be as above. Then

$$
L^{S}\left(\pi, \Lambda^{3} \otimes \chi, s\right)=\prod_{v \notin S} L_{v}\left(\pi_{v}, \Lambda^{3} \otimes \chi_{v}, s\right)
$$

is entire unless $\omega_{\pi}^{2} \chi^{4}=1$ and $\omega_{\pi} \chi^{2} \neq 1$. In this case the L-function can have at most a simple pole at $s=0$ or $s=1$.

To study the residue at $s=1$ of the partial L-function let $\mu=\omega_{\pi} \chi^{2}$. According to Theorem 3.2, $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, s\right)$ has a pole at $s=1$ if $\mu \neq 1$ but $\mu^{2}=1$. Assume this is the case and suppose the partial L-function has a pole at $s=1$. Then according to our global construction we deduce that there is $\varphi \in \pi$ and $f_{s} \in I(s, \chi)$ such that the residue at $s=1$ of

$$
\int_{Z(\mathbb{A}) \operatorname{GSp}_{6}(F) \backslash \operatorname{GSp}_{6}(\mathbb{A})} \varphi(g) E\left(g, f_{s}, \chi, s\right) \mathrm{d} g
$$

is nonzero. This implies that the residue at $s=1$ of

$$
\int_{\mathrm{Sp}_{6}(F) \backslash \mathrm{Sp}_{6}(\mathbb{A})} \varphi(g) E\left(g, f_{s}, \chi, s\right) \mathrm{d} g
$$

is nonzero.
To study the residue of the Eisenstein series at $s=1$ we apply Corollary 6.3 in $[\mathrm{K}-\mathrm{R}]$. Let $\theta_{\phi}(h)$ denote the theta function of $\widetilde{\operatorname{Sp}}_{12}(\mathbb{A})$. Here $\phi \in S\left(\mathbb{A}^{6}\right)$ the Schwartz space on \mathbb{A}^{6}.

We note here that we can by class field theory associate to μ a unique quadratic field F_{μ} / F. We let $O_{2}(\mu)$ be the orthogonal group associated to the norm form associated to F_{μ}. That is $O_{2}(\mu)(F)$ is an \mathbb{Z}_{2} extension of the norm one elements of F_{μ}^{*}. In fact, the quotient $O_{2}(\mu)(F) \backslash O_{2}(\mu)(\mathbb{A})$ is a compact quotient (since the norm form
of F_{μ} is a global anisotropic form). Thus the Siegel-Weil formula states ([K-R]) that

$$
\operatorname{Res}_{s=1} E\left(g, f_{s}, \chi, s\right)=\int_{O_{2}(\mu)(F) \backslash O_{2}(\mu)(\mathbb{A})} \theta_{\phi}(g, h) \mathrm{d} h
$$

Thus we may conclude
THEOREM 3.3. Suppose that $\omega_{\pi} \chi^{2} \neq 1$ but $\omega_{\pi}^{2} \chi^{4}=1$. If $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, s\right)$ has a pole at $s=1$ then there is a choice of data such that the integral

$$
\int_{\mathrm{Sp}_{6}(F) \backslash \mathrm{Sp}_{6}(\mathbb{A})} \int_{O_{2}(\mu)(F) \backslash O_{2}(\mu)(\mathbb{A})} \varphi(g) \theta_{\phi}(g, h) \mathrm{d} g \mathrm{~d} h
$$

is nonzero.

Remark. We note by the comments in the introduction that we expect that the automorphic modules π which have a pole at $s=1$ probably come from automorphic induction for $\mathrm{GL}_{3}\left(F_{\mu}\right)$ into GL_{6}. We have not yet checked directly that such forms have in fact the required period (as given in Theorem 3.3) to be nonvanishing. One possible way to check this is by use of some version of a relative trace formula identity relating generic forms in GL_{6} with the coperiod condition given in Theorem 3.3 with generic forms in $\mathrm{GL}_{3}\left(F_{\mu}\right)$. We also note here that if the finite set S (in Theorem 3.3) is enlarged to S^{\prime} then the new partial L function $L^{S^{\prime}}$ is multiplied by the inverse of the L-factor at a finite number of places $\left(S^{\prime}-S\right)$. Thus it is possible that $L^{S^{\prime}}$ may not have a pole (the extra finite places may cancel the pole of L_{S} by a local zero). However, it is expected that the local components π_{v} of π in $S^{\prime}-S$ are tempered and thus the local factor $L_{v}\left(\pi_{v}, \Lambda^{3} \otimes \chi_{v}, s\right)$ is holomorphic for $\operatorname{Re}(s)>0$.

4. On The Nonvanishing of the Partial L-Function at $\boldsymbol{s}=\mathbf{1 / 2}$

We keep the same notations as in Section 3. In the section we will relate the nonvanishing of $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, 1 / 2\right)$ with a nonvanishing of certain periods. As in Section 3 we shall apply the Siegel-Weil formula as stated in [K-R].
We shall assume that $\omega_{\pi} \chi^{2}=1$. Let $\theta_{\phi}(h)$ denote the theta function of $\widetilde{\mathrm{Sp}_{24}}$. In this case we have,

PROPOSITION 4.1 ([K-R] Theorem 4.10). If $\mathrm{Val}_{s=1 / 2} E\left(g, f_{s}, \chi, s\right)$ is nonzero, then depending on the choice of f_{s}, it equals

$$
\int_{O_{4}(D)(F) \backslash O_{4}(D)(A)} \theta_{\phi}(g, h) \mathrm{d} h \quad \text { or } \quad \int_{O_{2,2}(F) \backslash O_{2,2}(\mathrm{~A})} \theta_{\Delta \phi}(g, h) \mathrm{d} h
$$

for some choice of $\phi \in S\left(\mathbb{A}^{12}\right)$. Here $O_{4}(D)$ defines the orthogonal group in 4 variables associated to the norm form of a quaternion algebra D / F and $O_{2,2}$ is the split orthog-
onal form. Also $\Delta \phi$ is some regularization needed so that the above integral will converge.

Using Proposition 4.1 we may relate the nonvanishing of $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, 1 / 2\right)$ with the nonvanishing of certain periods.

We note here that if $\omega_{\pi} \chi^{2}=1$ then the L function $L\left(\pi, \Lambda^{3} \otimes \chi, s\right)$ is a self symmetric L function. In particular this means $L\left(\pi, \Lambda^{3} \otimes \chi, s\right)=L\left(\pi^{\vee}, \Lambda^{3} \otimes \chi^{-1}, s\right)$ provided that $\omega_{\pi} \chi^{2}=1$. Then we have

THEOREM 4.2. Suppose that $\omega_{\pi} \chi^{2}=1$. If $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, 1 / 2\right) \neq 0$ then there is a choice of data such that at least one of the following two periods is nonzero. Either

$$
\begin{equation*}
\int_{\mathrm{Sp}_{6}(F) \backslash \mathrm{Sp}_{6}(\mathbb{A})} \int_{O_{4}(D)(F) \backslash O_{4}(D)(\mathbb{A})} \varphi(g) \theta_{\phi}(g, h) \mathrm{d} g \mathrm{~d} h \tag{4.1}
\end{equation*}
$$

or

$$
\int_{\mathrm{SL}_{2}(F) \backslash \mathrm{SL}_{2}(\mathbb{A})} \int_{U(F) \backslash U(\mathbb{A})} \varphi\left(u\left(\begin{array}{lll}
g & & \tag{4.2}\\
& g & \\
& & g
\end{array}\right)\right) \psi_{U}(u) \mathrm{d} u \mathrm{~d} g
$$

Here U is defined by

$$
U=\left\{\left(\begin{array}{ccc}
I & X & Y \\
& I & Z \\
& & I
\end{array}\right): X, Y, Z \in M_{2}\right\}
$$

where I is the 2×2 identity matrix and M_{2} the group of all 2×2 matrices. Also ψ_{U} is defined as $\psi_{U}(u)=\psi(\operatorname{tr}(X+Z))$.

Proof. It follows from Proposition 4.1 that if $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, 1 / 2\right) \neq 0$ then either (4.1) is nonzero for some choice of data or that

$$
\begin{equation*}
\int_{\mathrm{Sp}_{6}(F) \backslash \operatorname{Sp}_{6}(\mathbb{A})} \int_{O_{2,2}(F) \backslash O_{2,2}(\mathbb{A})} \varphi(g) \theta_{\Delta \phi}(g, h) \mathrm{d} g \mathrm{~d} h \tag{4.3}
\end{equation*}
$$

is nonzero for some choice of data. To prove the Theorem we have to show that if (4.2) is zero for all $\varphi \in \pi$ then (4.3) is zero for all choice of data. To do so we need to consider another Eisenstein series on Sp_{6}. Let Q be the maximal parabolic subgroup of Sp_{6} whose Levi part is $\mathrm{GL}_{2} \times \mathrm{SL}_{2}$. Consider the induced representation $I(s)=\operatorname{Ind}_{Q(\mathbb{A})}^{\mathrm{Sp}_{6}(\mathbb{A})} \delta_{Q}^{s}$ and for $F_{s} \in I(s)$ let $E_{1}\left(g, F_{s}\right)$ denote the corresponding Eisenstein series. It follows from [K-R] Lemma 5.5.6, that there is a point $s=s_{0}$ and a constant $c \neq 0$ such that

$$
\int_{O_{2,2}(F) \backslash O_{2,2}(\mathbb{A})} \theta_{\Delta \phi}(g, h) \mathrm{d} h=c \mathrm{Val}_{s=s_{0}} E_{1}\left(g, F_{s}\right)
$$

To prove our Theorem, it is enough to show that if (4.2) is zero for all choice of data then the integral

$$
\begin{equation*}
\int_{\mathrm{Sp}_{6}(F) \backslash \mathrm{Sp}_{6}(\mathbb{A})} \varphi(g) E_{1}\left(g, F_{s}\right) \mathrm{d} g \tag{4.4}
\end{equation*}
$$

is zero for all $\varphi \in \pi, F_{s} \in I(s)$ and $s \in \mathbb{C}$. Let V denote the unipotent radial of Q. In matrices

$$
V=\left\{\left(\begin{array}{ccc}
I & X & Y \\
& I & X^{*} \\
& & I
\end{array}\right): X, Y \in M_{2}\right\}
$$

and X^{*} and Y is such that the above matrix is in Sp_{6}. Unfolding (4.4) we obtain

$$
\int_{\mathrm{GL}_{2}(F) \times \mathrm{SL}_{2}(F) V(\mathbb{A}) \backslash \mathrm{Sp}_{6}(\mathbb{A})} \int_{V(F) \backslash V(\mathbb{A})} \varphi\left[\left(\begin{array}{ccc}
I & X & Y \\
& I & X^{*} \\
& & I
\end{array}\right) g\right] F_{s}(g) \mathrm{d} v \mathrm{~d} g .
$$

The group $\mathrm{GL}_{2} \times \mathrm{SL}_{2}$ is embedded in Sp_{6} (and GL_{6}) as

$$
(g, h) \rightarrow\left(\begin{array}{ccc}
g & & \\
& h & \\
& & g^{*}
\end{array}\right) g \in \mathrm{GL}_{2}, h \in \mathrm{SL}_{2}
$$

and g^{*} is such that the above matrix is in Sp_{6}. Let $V_{1} \supset V$ be the unipotent subgroup of GL_{6} defined by

$$
V_{1}=\left\{\left(\begin{array}{ccc}
I & X & Y \\
& I & X^{*} \\
& & I
\end{array}\right), X, Y \in M_{2}\right\}
$$

The group GL_{2} as defined above acts on V_{1} / V by scalar of the determinant and hence the above integral equals

$$
\begin{align*}
& \int_{\mathrm{GL}_{2}(F) \times \mathrm{SL}_{2}(F) V(\mathbb{A}) \backslash \mathrm{Sp}_{6}(\mathbb{A})} \int_{V_{1}(F) \backslash V_{1}(\mathbb{A})} \varphi\left[\left(\begin{array}{ccc}
I & X & Y \\
& I & X^{*} \\
& & I
\end{array}\right) g\right] F_{s}(g) \mathrm{d} v_{1} \mathrm{~d} g+ \\
& \quad+\int_{\mathrm{SL}_{2}(F) \times \mathrm{SL}_{2}(F) V(\mathbb{A}) \backslash \mathrm{Sp}_{6}(\mathbb{A})} \int_{V_{1}(F) \backslash V_{1}(\mathbb{A})} \varphi\left[\left(\begin{array}{ccc}
I & X & Y \\
& I & X^{*} \\
& & I
\end{array}\right) g\right] \tilde{\psi}(Y) F_{s}(g) \mathrm{d} v_{1} \mathrm{~d} g \tag{4.5}
\end{align*}
$$

In both cases $Y \in M_{2}$ and if $Y=\left(\begin{array}{ll}y_{1} & y_{2} \\ y_{3} & y_{4}\end{array}\right)$ then $\tilde{\psi}(Y)=\psi\left(y_{1}-y_{4}\right)$. Consider the first
summand in (4.5). It equals

$$
\sum_{v} \iint_{M_{2}(F) \backslash M_{2}(\mathbb{A})} \varphi\left[\left(\begin{array}{ccc}
I & X+T & Y \\
& I & X^{*} \\
& & I
\end{array}\right) g\right] v(T) F_{s}(g) \mathrm{d} T \mathrm{~d} v_{1} \mathrm{~d} g
$$

Here $T \in M_{2}, v$ is summed over all characters of T and v_{1} and g are integrated as before. The group $\mathrm{GL}_{2}(F) \times \mathrm{SL}_{2}(F)$ acts on the group characters of T with three orbit characterized by the rank of T. The contribution from the trivial orbit is zero since we obtain as an integral

$$
\int_{M_{2}(F) \times M_{2}(F) \backslash M_{2}(\mathrm{~A}) \times M_{2}(\mathrm{~A})} \varphi\left[\left(\begin{array}{ccc}
I & T & Y \\
& I & 0 \\
& & I
\end{array}\right)\right] \mathrm{d} T \mathrm{~d} Y
$$

By cuspidality of φ this is zero. For the rank one orbit we choose as representative the character $\psi_{T}\left(\begin{array}{cc}t_{1} & t_{2} \\ t_{3} & t_{4}\end{array}\right)=\psi\left(t_{3}\right)$. It is not hard to check that the unipotent group $\left\{\left(\begin{array}{cc}1 & z \\ & 1\end{array}\right)\right\}$ $\subset \mathrm{SL}_{2}$ is in the stabilizer of ψ_{T} inside SL_{2}. We thus obtain

$$
\int_{M_{3}(F) \backslash M_{3}(\mathbb{A})} \varphi\left[\left(\begin{array}{cc}
I & Z \\
& I
\end{array}\right)\right] \mathrm{d} Z
$$

as an inner integral and hence, by cuspidality, we get zero contribution. Finally, for the rank two case, we choose $\psi_{T}\left(\begin{array}{cc}t_{1} & t_{2} \\ t_{3} & t_{4}\end{array}\right)=\psi\left(t_{1}+t_{4}\right)$. The stabilizer in $\mathrm{GL}_{2} \times \mathrm{SL}_{2}$ is SL_{2}^{Δ} i.e. the group SL_{2} embedded diagonally. Hence the contribution to the first summand of (4.5) from this orbit is

$$
\int_{\mathrm{SL}_{2}^{\wedge}(F) V(\mathbb{A}) \backslash \mathrm{Sp}_{6}(\mathbb{A})} \int_{U(F) \backslash U(\mathbb{A})} \varphi\left[\left(\begin{array}{ccc}
I & T & Y \\
& I & X \\
& & I
\end{array}\right) g\right] \psi(\operatorname{tr} T) \tilde{\psi}(X) F_{s}(g) \mathrm{d} u \mathrm{~d} g
$$

Thus we obtain as an inner integration

$$
\int_{\mathrm{SL}_{2}^{\Delta}(F) \backslash \mathrm{SL}_{2}^{\Delta}(\mathbb{A})} \int_{U(F) \backslash U(\mathbb{A})} \varphi\left[\left(\begin{array}{ccc}
I & T & Y \\
& I & X \\
& & I
\end{array}\right)\left(\begin{array}{lll}
h & & \\
& h & \\
& & h^{*}
\end{array}\right) g\right] \psi(\operatorname{tr} T) \tilde{\psi}(X) \mathrm{d} u \mathrm{~d} h
$$

Denote $\gamma=\operatorname{diag}\{1,1,1,1,-1,1\}$. Since, for $g \in \mathrm{SL}_{2}, g^{*}=\left(\begin{array}{cc}-1 & \\ & 1\end{array}\right) g\left(\begin{array}{ll}-1 & \\ & 1\end{array}\right)$, the

above integral equals above integral equals

$$
\int \varphi\left[\left(\begin{array}{ccc}
I & T & Y \\
& I & X \\
& & I
\end{array}\right) \gamma\left(\begin{array}{lll}
h & & \\
& h & \\
& & h
\end{array}\right) \gamma g\right] \psi(\operatorname{tr} T) \tilde{\psi}(X) \mathrm{d} u \mathrm{~d} h
$$

Conjugating γ to the left and changing variables in X we obtain

$$
\int \varphi\left[\left(\begin{array}{ccc}
I & T & Y \\
& I & X \\
& & I
\end{array}\right)\left(\begin{array}{lll}
h & & \\
& h & \\
& & h
\end{array}\right) \gamma g\right] \psi(\operatorname{tr}(T+X)) \mathrm{d} u \mathrm{~d} h
$$

Thus we obtain (4.2) as an inner integral which is zero by our assumption.
Next consider the second summand of (4.5). Define

$$
w=\left(\begin{array}{ccc}
0 & I & \\
I & 0 & \\
& & I
\end{array}\right)
$$

Conjugating by w the integral equals

$$
\int_{\mathrm{SL}_{2}(F) \times \mathrm{SL}_{2}(F) V(\mathbb{A}) \backslash \mathrm{Sp}_{6}(\mathbb{A})} \int_{V_{1}(F) \backslash V_{1}(\mathbb{A})} \varphi\left[\left(\begin{array}{ccc}
I & 0 & X^{*} \\
& I & Y \\
& & I
\end{array}\right)\left(\begin{array}{ccc}
I & & \\
X & I & \\
& & I
\end{array}\right) w g\right] \tilde{\psi}(Y) F_{s}(g) \mathrm{d} v_{1} \mathrm{~d} g .
$$

Consider the Fourier expansion
$\sum_{v} \iint_{M_{2}(F) \backslash M_{2}(\mathrm{~A})} \varphi\left[\left(\begin{array}{ccc}I & 0 & X^{*}+T \\ & I & Y \\ & & I\end{array}\right)\left(\begin{array}{ccc}I & & \\ X & I & \\ & & I\end{array}\right) w g\right] \psi(\operatorname{tr} Y) v(T) F_{s}(g) \mathrm{d} T \mathrm{~d} v_{1} \mathrm{~d} g$,
where v over all characters of $M_{2}(F) \backslash M_{2}(\mathbb{A})$ and v_{1} and g are integrated as before. Given v we can find $L \in M_{2}(F)$ such that the above integral equals

$$
\sum_{v} \iint_{M_{2}(F) \backslash M_{2}(\mathbb{A})} \varphi\left[\left(\begin{array}{ccc}
I & 0 & T \\
& I & Y \\
& & I
\end{array}\right)\left(\begin{array}{ccc}
I & & \\
X+L & I & \\
& & I
\end{array}\right) w g\right] \tilde{\psi}(Y) F_{s}(g) \mathrm{d} T \mathrm{~d} X \mathrm{~d} Y \mathrm{~d} g
$$

Here we used the fact that φ is left invariant under rational points and also need a suitable change of variables. (For similar computations see in Section one the discussion involving $X(\alpha)$). Thus to prove our Theorem, it is enough to show that

$$
\iint_{M_{2}(F) \times M_{2}(F) \backslash M_{2}(\mathbb{A}) \times M_{2}(\mathbb{A})} \varphi\left[\left(\begin{array}{lll}
I & & T \\
& I & Y \\
& & I
\end{array}\right)\left(\begin{array}{lll}
h & & \\
& g & \\
& & g^{*}
\end{array}\right)\right] \tilde{\psi}(Y) \mathrm{d} T \mathrm{~d} Y \mathrm{~d} g \mathrm{~d} h
$$

is zero for all $\varphi \in \pi$. Here g and h are integrated over $\mathrm{SL}_{2}(F) \backslash \mathrm{SL}_{2}(\mathbb{A})$. Applying a Fourier expansion to the above integral it equals

$$
\sum_{v} \iint_{U(F) \backslash U(\mathbb{A})} \varphi\left[\left(\begin{array}{ccc}
I & Z & T \\
& I & Y \\
& & I
\end{array}\right)\left(\begin{array}{lll}
h & & \\
& g & \\
& & g^{*}
\end{array}\right)\right] \tilde{\psi}(Y) v(Z) \mathrm{d} Z \mathrm{~d} T \mathrm{~d} Y \mathrm{~d} h \mathrm{~d} g
$$

As before, the group $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$ acts on the group character of Z. It is not hard to check that all orbits corresponding to the rank zero and rank one orbits contributes
zero by cuspidality. As for the rank two, under the action of $\mathrm{SL}_{2}(F) \times \mathrm{SL}_{2}(F)$, there are infinite number of orbits. We can parametrize them by the characters

$$
\psi_{\alpha}(Z)=\psi_{\alpha}\left(\left(\begin{array}{ll}
z_{1} & z_{2} \\
z_{3} & z_{4}
\end{array}\right)\right)=\psi\left(\alpha z_{1}+z_{4}\right)
$$

with $\alpha \in F^{*}$. Thus the above equals

$$
\sum_{\alpha \in F^{*}} \int_{S_{\alpha}(F) \backslash \mathrm{SL}_{2}(\mathbb{A}) \times \mathrm{SL}_{2}(\mathrm{~A})} \int_{U(F) \backslash U(\mathbb{A})} \varphi\left[\left(\begin{array}{ccc}
I & Z & T \\
& I & Y \\
& & I
\end{array}\right)\left(\begin{array}{ccc}
h & & \\
& g & \\
& & g^{*}
\end{array}\right)\right] \tilde{\psi}(Y) \psi_{\alpha}(Z) \mathrm{d} u \mathrm{~d} h \mathrm{~d} g .
$$

Here S_{α} is the stabilizer of ψ_{α} in $\mathrm{SL}_{2}(F) \times \mathrm{SL}_{2}(F)$. Thus

$$
S_{\alpha}=\left(\left(\begin{array}{cc}
\alpha^{-1} & \\
& 1
\end{array}\right) h\left(\begin{array}{ll}
\alpha & \\
& 1
\end{array}\right), h\right)
$$

where $h \in \mathrm{SL}_{2}$. Denote $r(\alpha)=\operatorname{diag}(\alpha, 1,1,1,1,1)$. A change of variables in Z implies that the above equals

$$
\begin{aligned}
& \sum_{\alpha \in F^{*}} \int_{S_{\alpha}(F) \backslash \mathrm{SL}_{2}(\mathbb{A}) \times \mathrm{SL}_{2}(\mathbb{A})} \int_{U(F) \backslash U(\mathbb{A})} \\
& \quad \varphi\left[\left(\begin{array}{rrr}
I & Z & T \\
& I & Y \\
& & I
\end{array}\right) r(\alpha)\left(\begin{array}{lll}
h & & \\
& g & \\
& & g^{*}
\end{array}\right)\right] \tilde{\psi}(Y) \psi(\operatorname{tr} Z) \mathrm{d} u \mathrm{~d} g \mathrm{~d} h
\end{aligned}
$$

As before we can change variables in Y to obtain

$$
\sum \int \varphi\left[\left(\begin{array}{ccc}
I & Z & T \\
& I & Y \\
& & I
\end{array}\right) r(\alpha)\left(\begin{array}{lll}
h & & \\
& g & \\
& & g
\end{array}\right) \gamma\right] \psi(\operatorname{tr}(Y+Z)) \mathrm{d} u \mathrm{~d} g \mathrm{~d} h
$$

Conjugating $r(\alpha)$ to the right and changing variables in h we obtain (4.2) as an inner integration. This shows that (4.4) is zero for all choice of data.

This completes the proof of the Theorem.

Remark. We note here that if we can extend the validity of the Siegel formula (stated in Proposition 4.1) when $g \in \operatorname{GSp}_{6}(\mathbb{A})$ then in formulae (4.1) and (4.2) we can replace $\operatorname{Sp}_{6}(\mathbb{A})$ by $\operatorname{GSp}_{6}(\mathbb{A})$ in (4.1) and $\operatorname{SL}_{2}(\mathbb{A})$ by $\mathrm{GL}_{2}(\mathbb{A})$ and the outer integration is given over $Z_{\mathbb{A}} \mathrm{GSp}_{6}(F) \backslash \mathrm{GSp}_{6}(\mathbb{A})$ and $Z_{\mathbb{A}} \mathrm{GL}_{2}(F) \backslash \mathrm{GL}_{2}(\mathbb{A})$. Moreover in the respective integrals (4.1) and (4.2) we must also have the character χ. In par-
ticular then (4-2) is replaced by the period

$$
(\varphi)=\int_{Z_{\mathbb{A}} \mathrm{GL}_{2}(F) \backslash \mathrm{GL}_{2}(\mathbb{A})} \int_{U(F) \backslash U(\mathbb{A})} \varphi\left(u\left(\begin{array}{lll}
g & & \tag{*}\\
& g & \\
& & g
\end{array}\right)\right) \psi_{U}(u) \chi(\operatorname{det} g) \mathrm{d} u \mathrm{~d} g
$$

With this period as the starting point we can make a conjecture concerning the relation of the nonvanishing of the restricted L function $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, 1 / 2\right)$ to the nonvanishing of the above period.

In fact for each quaternion algebra D / F we consider the group $\mathrm{GL}_{3}(D)$. Then we have an analogue of the group U. In fact let $U(D)$ be the upper triangular subgroup in $\mathrm{GL}_{3}(D)$ given by

$$
\left\{\left.\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, z \in D\right\}
$$

Then we define the Whittaker type character on $U(D)$ as given by

$$
\left(\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right) \xrightarrow{\psi^{D}} \psi_{D}(x+z),
$$

where ψ_{D} is a character given on the vectorspace of the quaternion algebra D.
Thus for an automorphic cuspidal representation τ of $\mathrm{GL}_{3}(D)$ we consider the period ($\varphi \in \tau$)
$(\varphi)=\int_{Z_{\mathbb{A}} D^{*}(F) \backslash D^{*}(\mathbb{A})} \int_{U_{D}(F) \backslash U_{D}(\mathbb{A})} \varphi\left(u\left(\begin{array}{lll}g & & \\ & g & \\ & & g\end{array}\right)\right) \psi_{U}^{D}(u) \chi\left(N_{D}(g)\right) \mathrm{d} u \mathrm{~d}^{*} g \quad(*)_{D}$
(assuming τ has central character ω_{τ} so that $\omega_{\tau} \chi^{2}=1$ and N_{D} the corresponding reduced norm on D^{*}).

Thus there is an analogue of the Gross Prasad conjecture for this example. We know that since $\mathrm{GL}_{3}(D)$ is an inner form of $\mathrm{GL}_{6}(F)$, this implies that there exists an automorphic functorial lifting between $\mathrm{GL}_{3}(D)$ and $\mathrm{GL}_{6}(F)$. In particular we know that an irreducible cuspidal module σ of $\mathrm{GL}_{3}(D)(\mathbb{A})$ lifts to an irreducible cuspidal automorphic σ^{\prime} of GL_{6}. (The modules σ and σ^{\prime} agree at all the places $\mathrm{GL}_{3}\left(D_{v}\right) \cong \mathrm{GL}_{6}$). Moreover at the ramified places (where $\mathrm{GL}_{3}\left(D_{v}\right) \neq \mathrm{GL}_{6}$) there is a local character identity between σ_{v} and σ_{v}^{\prime}. In any case given π automorphic cuspidal in $\mathrm{GL}_{6}(\mathbb{A})$ (with central character ω_{π} satisfying $\omega_{\pi} \chi^{2}=1$) we let π^{D} be a cuspidal automorphic module on $\mathrm{GL}_{3}(D(\mathbb{A}))$ which lifts to π. (π^{D} may not exist).

Then the analogue of the Gross-Prasad conjecture is the following statement.
CONJECTURE. $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, 1 / 2\right) \neq 0$ if and only if there exists a unique quaternion algebra D so that
(i) $(*)_{D}(\varphi) \neq 0$ for some $\varphi \in \pi^{D}$;
(ii) $(*)_{D^{\prime}}\left(\varphi^{\prime}\right)=0$ for all $\varphi^{\prime} \in \pi^{D^{\prime}}$ with $D^{\prime} \neq D$ (here D^{\prime} may in fact be the split form $M_{2,2}(F)$ and the period $(*)_{D}$ is given as above).

In this case, a more quantitative version of the conjecture is expected which relates the special value $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, 1 / 2\right)$ with the finite positive sum of terms of the form $\left|(*)_{D}\left(\varphi_{i}\right)\right|^{2}$ (where φ_{i} runs over a basis of an appropriate finite dimensional subspace of π).

Remark. We note here that when $\omega_{\pi} \chi^{2} \neq 1$ but $\left(\omega_{\pi} \chi^{2}\right)^{2}=1$ we can also relate the nonvanishing of $L^{S}\left(\pi, \Lambda^{3} \otimes \chi, 1 / 2\right)$ to the nonvanishing of a certain period. Specifically the period condition will involve a Siegel formula relating Sp_{3} to $\mathrm{O}(3,1)$ (where the quadratic character $\omega_{\pi} \chi^{2}$ dictates the choice of $\left.\mathrm{O}(3,1)\right)$.

References

[A-C] Arthur, J. and Clozel, L.: Simple Algebras, Base Change and the Advanced Theory of the Trace Formulas, Ann. of Math. Stud. 120, Princeton Univ. Press, 1989.
[B] Brion, M.: Invariante d'un sous-groupe unipotent maximal d'un groupe semi-simple, Ann. Inst. Fourier (Grenoble) 33(1) (1983), 1-27.
[C-S] Casselman, W. and Shalika, J.: The Unramified Principal Series of p-adic groups II: The Whittaker function, Compositio Math. 41 (1980), 207-231.
[G] Ginzburg, D.: On spin L-functions for orthogonal groups, Duke Math. J. 77 (1995), 753-798.
[J-R] Jacquet, H. and Rallis, S.: Symplectic periods, J. reine angew. Math. 423 (1992), 175-197.
[J-S] Jacquet, H. and Shalika, J.: Exterior square L-functions, In: L. Closel and J. S. Milne (eds), Automorphic Forms, Shimura Varieties and L-functions, Vol. 2, Academic Press, New York, 1990.
[K-R] Kudla, S. and Rallis, S.: A regularized Siegel-Weil formula: the first term identity, Ann. of Math. 140 (1994), 1-80.
[M-W] Moeglin, C. and Waldspurger, J.-L.: Spectral Decomposition of Eisenstein Series, Cambridge Tracts in Math. 113, Cambridge Univ. Press, 1995.
[S] Soudry, D.: On the Archimedean theory of Rankin-Selberg convolutions for $\mathrm{SO}(2 \ell+1) \times \mathrm{GL}_{n}$, Ann. Sci. Ecole Norm. Sup. 28 (1995), 161-224.

[^0]: *Both authors are supported by a grant from the U.S.A.-Israel Binational Science Foundation.

