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Abstract. We construct a Rankin Selberg integral to represent the exterior cube L function
L�p;L3; s� of an automorphic cuspidal module p of GL6�AF � (where F is a number ¢eld).
We determine the poles of this L function and ¢nd period conditions for the special value
L�p;L3; 1=2�.We use the Siegal Weil formula.We also state an analogue of the Gross^Prasad
conjecture concerning a criterion for the nonvanishing of L�p;L3; 1=2�.
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In this paper we study certain properties of the exterior cube L-function of GL6. If F
is a number ¢eld we let p be a cuspidal representation of GL6�AF � with central char-
acter op. We let w be a character of F �nA�F . Let L3 denote the third fundamental
representation of GL6. The space of L3 is a 20-dimensional vector space and let
120 be the map of GL1 � C� into GL20�C� given by l! l � I20. In this paper we
give a Rankin Selberg integral which represents LS�p
 w;L3 
 120; s� ^ the twisted
partial L function associated to the automorphic representation p
 w of
GL6 �GL1 and the representation L3 
 120 of the L-group of GL6 �GL1 (which
is again GL6 �GL1�. Here S is a ¢nite number set of places. To simplify notations
we write LS�p;L3 
 w; s� for LS�p
 w;L3 
 120; s�.

Our global integral involves the Siegel Eisenstein series of GSp6. Since the analytic
properties of this Eisenstein series are basically the same as the Siegel Eisenstein
series of Sp6, we can apply the Siegel Weil formula as stated in [K-R]. Using [K-R]
we are able to study the analytic properties of LS�p;L3 
 w; s� and the behavior
of this L-function at s � 1=2 (the center of symmetry of the functional equation).
In Section 3 we ¢rst prove that LS�p;L3 
 w; s� can have at most a simple pole
at s � 1 (Theorem 3.2). Using [K-R] we can relate the existence of this pole to a
certain period (Theorem 3.3). In Section 4 we study the value of
LS�p;L3 
 w; 1=2�. When opw2 � 1 we relate the nonvanishing of the partial L
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function with certain periods (Theorem 4.2). In fact, in Section 4 we make a precise
conjecture concerning the conditions similar to the Gross Prasad conjecture when
LS�p;L3 
 w; 1=2� is nonvanishing.

To predict the criterion for the existence of a pole of LS�p;L3 
 w; s� we consider
more closely the representation of GL6 in L3�C6�. This is an irreducible GL6 module.
In fact there is a nondegenerate symplectic form o on L3�C6� (obtained by the
obvious pairing L3 
 L3! L6 � C) so that GL6 embeds into GSp�o� �the
similitude group of o.

We heuristically consider a cuspidal automorphic representation of GL6 �GL1 as
being classi¢ed by a homomorphism r of the (conjectured) Langlands groups LF into
GL6 �GL1. Then the L-function associated to r and the representation L3 
 120
should admit a pole at s � 1 if the image � �L3 
 120 � r��LF � admits a ¢xed vector
in L3. In particular, this means that �L3 
 120� � r�LF � is contained in the grouph�

�GL3 �GL3� j� Z2

�
�GL1

i0
which consists of all tuples

�
�g1; g2; E�; l

�
so that

l det g1 � l det g2 � 1 and E � �1
and

E�g1; g2; 1�E � �g1; g2; 1� if E=1,
�g2; g1; 1� if E=-1.

�
We note here that the above subgroup embeds into GL6 �GL1 via the map�

�g1; g2; E�; l
�
?

g1 0
0 g2

� �
� E0 ; l

� �
;

with E0 � I6 or E0 �
�
0
I3

I3
0

�
according to E � �1 or E � ÿ1. Also the above subgroup

in GL6 �GL1 is the ¢xator of a generic vector in L3�C6�. We note that the L group
of GL3�K� (relative to restriction of scalars where K=F is a degree 2 extension)
is given by the semi-direct product �GL3�C� �GL3�C�� j�WF with WF , the Weil
group of F (where WF acts on GL3 �GL3 by the map WF !WF=WK � Z2 with
Z2 £ipping the two coordinates in GL3 �GL3). In fact let iK : LGL3�K� ! GL6

given by sending �g1; g2� !
�
g1

g2

�
andWF ! Z2 as above. Thus we emphasize here

that L�L3 
 120 � r; s� has a pole at s � 1 is equivalent to the fact that r factors
through the subgroup � �0 above contained in iK �LGL3�K�� �GL1.

In this paper we give a period condition for the existence of a pole for
LS�p;L3 
 w; s� at s � 1. We require that opw2 has order 2; thus we can determine
a quadratic ¢eld K=F . The period condition in Theorem 3.3 is determined in terms
of the quadratic ¢eld K as stated above.
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We note here that if t is an automorphic cuspidal representation of GL3�AK � then
if we apply the induction functor iK to t (de¢ned above) we get by [A-C] that iK �t� is
an automorphic representation of GL6�AF �. Thus we compute

LS�iK �t�;L3 
 w; s� � xK;S�ot � wK=F ; s�LS�L2�t� 
 ts 
 wK=F ; s�;
where ot � central character of t, wK=F � w� NormK=F ; ts is the Galois twist of t
associated to s in Gal�K=F �, LS�L2�t� 
 ts 
 wK=F ; s� is the partial Rankin product
of L2�t� 
 ts � oÿ1t t_ 
 ts twisted by wK=F and zSK is the usual partial zeta function
associated to the ¢eld K . Then we see that LS�iK �t�;L3 
 w; s� admits a pole at
s � 1 if and only if ot � wK=F � 1 or otwK=F t

s � t (or ts � �otwK=F �ÿ1t). The last

statement implies that ots � ot�otwK=F �3 or �otwK=F �3
��
A�F
� 1. Thus it follows that

if d is some automorphic character on A�K so that d3 � 1 and d � otwK=F on A�F
then for b an automorphic character on A�K satisfying b =

= bs � dÿ1otwK=F we have
that �t
 b�s � t
 b. Thus iK �t
 b� (and hence iK �t� itself) is an noncuspidal
representation for GL6�F � (i.e. equivalent to an Eisenstein series). Thus
LS�iK �t�;L3 
 w; s� admits a pole at s � 1 if and only ot � wK=F � 1

At this point we also note that the meromorphic properties of L�p;L3 
 w; s� can
be determined by the Langlands Shahidi method. In contrast to the latter approach,
the advantage of the method presented here is that we give this precise location of the
possible poles and a period condition for the existence of the pole!

1. The Global Integral

Let F be a global ¢eld andA its ring of ade© les. Let p be a cusp form on GL6�A�with a
central character op. We know that p is generic. Namely, let N be the maximal
standard unipotent subgroup of GL6. Thus N consists of all upper unipotent
matrices. Given a nontrivial additive character c of FnA we de¢ne a character
cN of N by

cN �n� � c n12 � n23 � n34 ÿ n45 � n56� �;
where n � �nij� 2 N. Thus to say that p is generic means that the space of functions
generated by

Wj�g� �
Z
N�F �nN�A�

j�ng�cN �n�dn

is not identically zero. Here j 2 p and g 2 GL6�A�. We call the space of functions of
the above form the Whittaker model of p and denote it by W�p;c�.

Our construction uses the Siegel Eisenstein series on GSp6 as constructed in [G].
To describe it let

GSp6 � fg 2 GL6 : tgJg � m�g�J; m�g� a scalarg;
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where

J �

1
1

1
ÿ1

ÿ1
ÿ1

0BBBBBB@

1CCCCCCA:

LetQ � GL1 �GL3� �R denote the Siegel parabolic on GSp6. In terms of matrices we
identify GL1 �GL3 with

�a; g� ÿ! ag
g�

� �
a 2 GL1 ; g 2 GL3;

where g� is such that the above matrix is in GSp6. R can be identi¢ed with

I Y
I

� �
: Y 2M3 and tY

1
1

1

0@ 1A � 1
1

1

0@ 1AY
8<:

9=;:
De¢ne a character wp of Q�A� as follows. Let w be a unitary character of F �nA�.
De¢ne wp on GL1�A� �GL3�A� as

wp
ÿ�a; g�� � �opw3��a��opw2��det g�;

where a 2 GL1�A� and g 2 GL3�A�. We extend wp to Q�A� by letting it act trivially
on R�A�. Given s 2 C set

I�s; w� � Ind
GSp6�A�
Q�A� dsQwp;

where dQ is the modular functionQ. Given fs 2 I�s; wp�we de¢ne the Siegel Eisenstein
series as (at least for Re�s� large)

E�g; fs; w; s� �
X

g2Q�F �nGSp6�F �
fs�gg� g 2 GSp6�A� :

Denote by

w �

1
1

0 1
1 0

1
1

0BBBBBB@

1CCCCCCA 2 GSp6

and set j�g� � wgwÿ1 for g 2 GSp6. Our global integral is

I�j; fs; w; s� �
Z
Z�A�GSp6�F �nGSp6�A�

j
ÿ
j�g��Eÿg; fs; w; s�dg :
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Here Z is the center of GSp6 which is also the center of GL6. Finally de¢ne

X �r� �

1
1

1
r 1

1
1

0BBBBBB@

1CCCCCCA:

We have:

PROPOSITION 1.1. The integral I�j; fs; w; s� converges absolutely for all s 2 C
except for those s for which the Eisenstein series has a pole. For Re�s� large we have

I�j; fs; w; s� �
Z
Z�A�V �A�nGSp6�A�

Z
A
Wj

ÿ
X �r�j�g��fs�g�drdg:

where V is the maximal unipotent of GSp6 such that V � N.
Proof. The standard argument using the cuspidality of j allows us to assert that

the integralZ
Z�A�GSp6�F �nGSp6�A�

jj�j�g��jE�g; s�jdg

is ¢nite provided Re�s� is suf¢ciently large. Then we can proceed with the standard
unfolding of the Eisenstein series in the integral to obtain

I�j; fs; w; s� �
Z
Z�A�Q�F �nGSp6�A�

j
ÿ
j�g��fs�g�dg

�
Z
Z�A�GL1�F �R�A�nGSp6�A�

Z
R�F �nR�A�

j
ÿ
j�rg��fs�g�drdg:

Consider the Fourier expansion

I�j; fs; w; s� �

Z X
a;b;g2F

Z
�FnA�3

j j

1 0 0 0
1 0 0 x1

1 0 x2 x3
1

1
1

0BBBBBBBB@

1CCCCCCCCA
rg

0BBBBBBBB@

1CCCCCCCCA

2666666664

3777777775
c�ax1 � bx2 � gx3� fs�g�dxidrdg;

where r and g are integrated as before.
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We note here that by standard estimates given in [M-W] and [J-R] the series

��� �
X

W2M33�k�

�����
Z
M3;3�k�nM3;3�A�

j j
I3 Z
0 I3

� �
g

� �� �
c�tr�ZW ��dZ

�����
is dominated by a ¢nite sum of terms of the form

X
k

ck

Z
M3;3�k�nM3;3�A�

������Dk
1 � j� j

I3 X
0 I3

� �
g

� ������
2

dx

0@ 1A1=2

;

where D1 is some element in the enveloping algebra of GR here (with each ck > 0)
depending only on the K1 types in j. Thus using the fact that Dk

1 � j remains
cuspidal when j is cuspidal we have that for any m positive integer����Dk

1 � j��g�
���W supf1; dQ�g�gÿm;

where dQ is the modular function associated to the parabolic Q.
Thus we deduce that the series ��� is dominated by (for m suf¢ciently large)

supf1; dQ�g�gÿm and in turn the integralZ
Z�A�Q�F �R�A�nGSp6�A�

supf1; dQ�g�gÿmjfs�g�jdg

is ¢nite for Re�s� suf¢ciently large!
Thus we can replace j by its Fourier expansion in the integral above.
The group GL1 �GL3 acts on the root spaces x1; x2 and x3 modulo elements in R,

with two orbits. The trivial one contributes zero by cuspidality. Indeed, we obtainZ
M3�F �nM3�A�

j

 
j

 
I X

I

� �!!
dX

as an inner integral. The other orbit contributes

I�j; fs; w; s�

�
Z
Z�A�GL2�F �L�F �R�A�nGSp6�A�

Z
M3�F �nM3�A�

j j
I X

I

� �
g

� �� �
c1�X �fs�g�dxdg;

where c1 is de¢ned as follows. If

X �
x1 x2 x3
x4 x5 x6
x7 x8 x9

0@ 1A;
then c1�X � � c�x4 ÿ x8�. The stabilizer in GL1 �GL3 of c1 is GL2L which is
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embedded in GSp6 as

jgj
g

g�

1

0BB@
1CCA

1 r1 r2
1 0

1
1 0 ÿr2

1 ÿr1
1

0BBBBBB@

1CCCCCCA; �1:1�

where g 2 GL2 and r1; r2 2 F . Let L1 be the unipotent subgroup of GL6 consisting of
the matrices I6 �m1e56 �m2e46 wherem1;m2 2 F and eij, is the 6� 6matrix with one
at the �i; j� position and zero otherwise. In I�j; fs; w; s� consider the Fourier
expansion along L1�F �nL1�A� (we can substitute again the Fourier expansion by
similar arguments as used above) The above GL2�F � acts on the character group
of L1�F �nL1�A� with two orbits. It is easy to see that the trivial one contributes zero

to I�j; fs; w; s�. Let N1 � L � L1

�
I X

I

�
where X 2M3. De¢ne a character of N1 as

cN1
�n� � c

ÿ
n12 � n24 ÿ n35 � n56

�
;

where n � �nij�. Notice that cN1

�
I X

I

�
� c1�X �. Thus

I�j; fs; w; s� �
Z
Z�A�GL1�F �L2�F �V1�A�nGSp6�A�

Z
N1�F �nN1�A�

j
ÿ
j�ng��cN1

�n�fs�g�dndg :

Here GL1 � L2 is the stabilizer of cN1
in GL2L. Thus GL1 � L2 is embedded in GSp6 as

a
a

1
a

1
1

0BBBBBB@

1CCCCCCA
1

1 b
1

1 ÿb
1

1

0BBBBBB@

1CCCCCCA a 2 GL1 b 2 F : �1:2�

Also V1 is the unipotent subgroup of V de¢ned by

V1 �

1
1 0 �

1
1 0

1
1

0BBBBBB@

1CCCCCCA;

where � indicates that the above matrix is an arbitrary GSp6 matrix.
Let N2 � L2N1. Thus

I�j; fs; w; s� �
Z
Z�A�GL1�F �V �A�nGSp6�A�

Z
N2�F �nN2�A�

j
ÿ
j�ng��cN2

�n�fs�g�drdg :
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Here cN2
is a character onN2 trivially extended from cN1

. In the above inner integral
consider the Fourier expansion with respect to the unipotent group j�I �me23�. ThusZ

N2�F �nN2�A�
j
ÿ
j�ng��cN2

�n�dn

�
Z
N2�F �nN2�A�

X
a2F

Z
FnA

j
ÿ
j�X1�m�ng�

�
cN2
�n�c�am�dmdn;

where X1�m� � I �me23. Let N3 be the unipotent subgroup of N2 for which n34 � 0.
Thus

N2 � N3

1
1

1 r
1

1
1

0BBBBBB@

1CCCCCCA:

Notice that

X �r� � j

1
1

1 r
1

1
1

0BBBBBB@

1CCCCCCA:

Thus, using the left invariance property of j under rational points, we obtainZ
N3�F �nN3�A�

X
a2F

Z
�FnA�2

j X �a�j�X1�m�n�X �r�j�g�� �cN3
�n�c�am�drdmdn

One can check, using matrix multiplication that this equals (also a change of
variables is needed)Z

N3�F �nN3�A�

X
a2F

Z
�FnA�2

j j X1�m�n� �X �a� r�j�g�� �cN3
�n�drdmdn :

Collapsing the summation and integration over a an r we obtainZ
A

Z
N4�F �nN4�A�

j j�n�X �r�j�g�� �cN4
�n�dndr;
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where N4 is the unipotent subgroup of N given by all matrices of the form

1
1 �

1 0
1

1
1

0BBBBBB@

1CCCCCCA:

Also cN4
is extended trivially fromcN3

. Finally, we consider the Fourier expansion in
I�j; fs; w; s� with respect to j

ÿ
I �me43

�
with m 2 FnA. Thus

I�j; fs; w; s� �
Z Z

A

X
a2F

Z
FnA

Z
N4�F �nN4�A�

j

 
j
��

I �me43
�
n
�
X �r�j�g�

!
� cN4

�n�c�am�fs�g�dndmdrdg;

where g is integrated as before. The GL1 as de¢ned in (1.2) acts on the group char-
acter of j�I �me43� with two orbits. The trivial one contributes zero by cuspidality
whereas the open one yields the identity we need to prove. &

Let p � 
npn, w � 
nwn and I�s; wp� � 
nIn�s; wn� where the product is over all
places of F . AlsoW�p;c� � 
nW�pn;cn�. Let j and fs be factorizable vectors. Thus
j � 
njn and fs � 
nf �n�s . It follows from Proposition 1.1. that

I�j; fs; w; s� �
Y
n

In Wn; f �n�s ; wn; s
ÿ �

;

where

In Wn; f �n�s ; wn; s
ÿ � � Z

Z�Fn�V �Fn�nGSp6�Fn�

Z
Fn

Wn X �r�j�g�� �f �n�s �g�drdg

and Wj � 
nWn.
In the next section, we will study this local integral.

2. Some Local Theory

In this section, we will study the local integral obtained from the factorization of the
global integral. We shall carry out the unrami¢ed computation and prove some
nonvanishing result.

Let F be a local ¢eld. Let p be an admissible generic representation of GL6�F �with
central character op. We shall write GL6 for GL6�F � etc. Let w be a unitary character
of F �. As in the global case, we let I�s; wp� � Ind

GSp6
Q dsQwp. Thus fs 2 I�s; wp� is a

smooth function which satis¢es

fs
�
�a; g�rh

�
� �opw3��a��opw2��det g�dsQ��a; g��fs�h�
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for all �a; g� 2 GL1 �GL3, r 2 R and h 2 GSp6. Given a reductive group G we let
K�G� denote its standard maximal compact subgroup. If F is a nonarchimedean
¢eld, O will denote the ring of integers in F and p a generator of the maximal ideal
in O. We let qÿ1 � jpj. Also, if m is an unrami¢ed character of F �, let L�m; s� �
�1ÿ m�p�qÿs�ÿ1 :

Thus our aim in this section is to study the local integral

I�W ; fs; w; s� �
Z
ZVnGSp6

Z
F
W X �r�j�g�� �fs�g�drdg

where W 2 W�p;c� and fs 2 I�s; w�.
We start with:

2.1. THE UNRAMIFIED COMPUTATION

Let F be a nonarchimedean ¢eld. In this section, we assume all data to be unrami¢ed.
Thus there exists a unique W 2 W�p;c� such that W �k� �W �e� � 1 for all
k 2 K�GL6� and similarly fs 2 I�s; w� with fs�k� � fs�e� � 1 for all k 2 K�GSp6�. Thus
op and w are unrami¢ed characters.

From general theory, we may assume that p � IndGL6
B d1=2B m where B is the stan-

dard Borel subgroup of GL6, i.e. the group of upper diagonal matrices. Also m
is de¢ned as follows. There exists unrami¢ed characters mi of F � such that

m diag�t1; . . . ; t6�n� � �
Y6
i�1

mi�ti�; ti 2 F �; n 2 N :

Thus we may attach to p a semi-simple conjugacy class tp in GL6�C� whose rep-
resentative is chosen to be diag m1�p�; m2� p�; . . . ; m6�p�

ÿ �
: Next we de¢ne the local

L-function we shall study. Let L3 denote the exterior cube representation of
GL6�C�. This representation has dimension 20. De¢ne the local twisted exterior cube
L-function by

L p
 w;L3; s
ÿ � � det I ÿ L3�tp�w�p�qÿs

� �ÿ1
;

where I is the 20� 20 identity matrix. We have

L p
 w;^3; sÿ � � Y
i<j<k

1ÿ �mimjmk��p�w�p�qÿs
ÿ �ÿ1

:

We have

PROPOSITION 2.1. For all unrami¢ed data and for Re�s� large,

I�W ; fs; w; s� � L�p
 w;L3; 2sÿ 1=2�
L�opw2; 4s�L�o2

pw4; 8sÿ 2� :
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Proof. We start by writing the Iwasawa decomposition of GSp6. Let

t0 � diag�abc; ac; 1; a; cÿ1; bÿ1cÿ1� a; b; c 2 F �

be a parameterization of the maximal torus in GSp6. We have

dB0 �t0� �
��a4b6c10��; dP�t0� � ja2b4c8

��;
where B0 is the standard Borel subgroup of GSp6. We have

I�W ; fs; w; s� �
Z
�F ��3

Z
F
W

1
1

1
x 1

1
1

0BBBBBBBB@

1CCCCCCCCA
j�t0�

2666666664

3777777775
��a2b4c8��s

w�ab2c4�op�bc2�
��a4b6c10��ÿ1dxd�ad�bd�c

Here the measure on K�GSp6� is chosen so that
R
K�GSp6� dk � 1. Conjugating the

torus to the left we obtain

I�W ; fs; w; s� �
Z
�F ��3

Z
F
W j�t0�

1
1

1
x 1

1
1

0BBBBBBBB@

1CCCCCCCCA

2666666664

3777777775
��a2b4c8��s

��a5b6c10��ÿ1w�ab2c4�op�bc2�dxd�ad�bd�c

We have, for jxj > 1

1
1

1
x 1

1
1

0BBBBBB@

1CCCCCCA �
1

1
xÿ1

x
1

1

0BBBBBB@

1CCCCCCA
1

1
1 x

1
1

1

0BBBBBB@

1CCCCCCAk
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with k 2 K�GSp6�. Thus

I�W ; fs; w; s� �
Z
�F ��3

W

 
j�t0�

!��a2b4c8��s��a5b6c10��ÿ1w�ab2c4�op�bc2�d�ad�bd�c�

�
Z
�F ��3

Z
jxj>1

W j�t0�

1
1

xÿ1

x

1
1

0BBBBBBBB@

1CCCCCCCCA

1
1

1 x

1
1

1

0BBBBBBBB@

1CCCCCCCCA

0BBBBBBBB@

1CCCCCCCCA
� ��a2b4c8��s ��a5a6c10��ÿ1:
w�ab2c4�op�bc2�dxd�ad�bd�c :

Here the measure on F is chosen so that
R
jxjW 1 dx � 1. Denote

t � j�t0� � diag
ÿ
abc; ac; a; 1; cÿ1; bÿ1cÿ1

�
:

Changing variables a! ax2 c! cxÿ1 we obtain

I�W ; fs; w; s� �
Z
�F ��3

W �t�op�bc2�w�ab2c4�
��a2b4c8��s��a5b6c10��ÿ1H�a�d�ad�bd�c;

where

H�a� � 1�
Z
jxj>1

oÿ1p wÿ2jxjÿ4sc�ax�dx :

It follows as in [G] Proposition 3.1 that

H�a� � 1ÿ opw2�p�qÿ4s
1ÿ opw2�p�qÿ4s�1 1ÿ opw2�a�jaj4sÿ1opw2�p�qÿ4s�1

ÿ �
:

Let K�t� � dÿ1=2B W �t� where B is the standard Borel subgroup of GL6. Thus
dB�t� �

��a9b10c16��. Denote

d�n1; n2; n3� � diag pn1�n2�n3 ; pn1�n3 ; pn1 ; 1; pÿn3 ; pÿn2ÿn3
ÿ �

:
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Since W �t� � 0 if jaj > 1 or jbj > 1 or jcj > 1 we obtain

I�W ; fs; w; s�

� L opw2; 4sÿ 1�ÿ �
L opw2; 4s� �

X1
n1;n2;n3�0

K d�n1; n2; n3�� �w�p�n1�2n2�4n3op�p�n2�2n3�

� q�ÿ2s�1=2�n1��ÿ4s�1�n2��ÿ8s�2�n3 1ÿ �opw2��p�n1�1q�ÿ4s�1��n1�1�
ÿ �

:

Here we choose the measure on a; b and c so that
R
jEj�1 dE � 1. Let x � w�p�qÿ2s�1=2.

Thus

I�W ; fs; w; s� �L�opw2; 4sÿ 1�
L�opw2; 4s�

X1
n1;n2;n3�0 K

ÿ
d�n1; n2; n3�

��
� op�p�n2�2n3xn1�2n2�4n3 1ÿ op�p�n1�1x2�n1�1�

ÿ �
:

On the other hand, we have

L�p
 w;L3; 2sÿ 1=2� �
X1
n�0

trSn�tp�w�p�nq�ÿ2s�1=2�n;

where Sn denotes the symmetric nth power operation. Thus we need to prove the
identity

�1ÿ op�p�x2��1ÿ o2
p�p�x4�

X1
n�0

trSn�tp�xn

�
X1

n1;n2;n3�0
K
ÿ
d�n1; n2; n3�

�
op�p�n2�2n3xn1�2n2�4n3

�
1ÿ op�p�n1�1x2�n1�1�

�
:

Let eoi 1W iW 5 denote the ith fundamental representation of GL6�C�. Let
�0; . . . ; 1; . . . ; 0�, one in the ith position and zero elsewhere, denote the character
of the representationeoi evaluated at tp. We use the Casselman-Shalika formula [C-S]
to deduce that

K
ÿ
d�n1; n2; n3�

� � �n2; n3; n1; n3; n2�
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Thus we need to prove

�1ÿ op� p�x2��1ÿ o2
p� p�x4�

X1
n�0

trSn�tp�xn

�
X1

n1;n2;n3�0
�n2; n3; n1; n3; n2�op� p�n2�2n3xn1�2n2�4n3

�
1ÿ op� p�n1�1x2�n1�1�

�
:

���
It follows from the result of Brion [B] page 13 that

trSr�tp� �
X
�n2; n3; n1 � n4; n3; n2�op�p�n2�2n3�n4�2n5

where the sum is over all ni 2 N, 1W iW 5 satisfying n1 � 2n2 � 3n4 � 4n3 � 4n4 � r.
ThusX1

r�0
trSr�tp�xr �

X1
ni�0

1W iW 5

�n2; n3; n1 � n4; n3; n2�op�p�n2�2n3�n4�2n5xn1�2n2�3n4�4n3�4n4 :

At this point, we refer the reader to [G] formulas (3.4) and (3.5) and the discussion
there. One can check that the same argument there applied to our case will prove
(*). &

2.2. A NONVANISHING RESULT

In this section, we shall prove that data can be chosen so that I�W ; fs; w; s� is nonzero
at s � s0. We prove:

PROPOSITION 2.2. Let fs be a K�GSp6� standard section i.e. its restriction to
K�GSp6� is independent of s. Let W be a smooth vector in the Whittaker space
of p. Then I�W ; fs; w; s� converges absolutely for Re�s� large. If fs is K�GSp6� ¢nite
then I�W ; fs; w; s� has a meromorphic continuation to the whole complex plane.
Finally, given s0 2 C, there is a choice of W and a K�GSp6� ¢nite section fs so that
I�W ; fs; w; s� is nonzero at s � s0.

Proof. We note two facts concerning the smooth Whittaker vector W in p.
First each suchW can be expressed as a convolution of the following form. Given

W there exists a K�GL6� ¢nite functionWK and a function f 2 S�GL6� (the Schwartz
space of GL6) so that W � p�f ��WK �. In concrete terms this means

W �g� �
Z

GL6

WK �gx�f �x�dx :

Thus if we convolve any j 2 S�V � (the Schwartz space of a unipotent subgroup
V � GL6) into f then j � f 2 S�GL6�. Thus p�j��W � � p�j � f ��WK �.
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On the other hand, there is yet a more explicit way to present W (assuming p is
unitary). If g � utk is the Iwasawa decomposition of g in GL6 then we get an asymp-
totic formula:

W �tk� �
X

Fw�t; k�w�t�;

where Fw 2 S�R5 � K�GL6�� and w a toral ¢nite function onD (diagonal matrices) in
GL6. This formula is used to get estimates etc. in local Ranking Selberg integrals.

We start with the convergence. Using the Iwasawa decomposition, it is enough to
prove that

Z
�F ��3

Z
F

�����W t

1
1

1
x 1

1
1

0BBBBBB@

1CCCCCCA

26666664

37777775
�����jaj2sÿ5jbj4sÿ6jcj8sÿ10dxd�ad�bd�c

�2:1�
converges for Re�s� large. Here

t � diag�abc; ac; a; 1; cÿ1; bÿ1cÿ1�:
Set ms�a; b; c� � jaj2sÿ5jbj4sÿ6jcj8sÿ10. If F is nonarchimedean we break the x inte-
gration to jxjW r and jxj > r for large constant r. Since jxjW r is a compact set
the absolute convergence of

Z
�F ��3

Z
jxjW r

�����W t

1
1

1
x 1

1
1

0BBBBBB@

1CCCCCCA

26666664

37777775
�����ms�a; b; c�dxd�ad�bd�c

for Re�s� large follows from the asymptotic expansion of the Whittaker function
given in [J-S] Section 4. When jxj > r we get, after using the GL2 Iwasawa
decomposition

1
y 1

� �
� ÿyÿ1 1

y

� �
ky jyj > 1 ; ky 2 K�GL2�;

the contributionZ
�F ��3

Z
jxj>r
jW �t�jms�a; b; c�jxjÿ4sdxd�ad�bd�c;

which ones again converge for Re�s� large.
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If F is archimedean we write

1
y 1

� �
� �1� y2�ÿ1=2 �

�1� y2�1=2
� �

k0y y 6� 0 k0y 2 K�GL2� :

Plugging this to (2.1) we get

Z
�F ��3

Z
F

��W �tk00x���ms�a; b; c��1� x2�ÿ2sdxd�ad�bd�c;

where k00x 2 K�GL6�. Once again due to the asymptotic formula ofW given above, the
integral converges for Re�s� large. We use here that the Fw are bounded functions.

To study the meromorphic continuation we write

I�W ; fs; w; s� �
Z
ZVnGSp6

Z
F
�r�w�W � w

1
1

1 x
1

1
1

0BBBBBB@

1CCCCCCAg
0BBBBBB@

1CCCCCCAfs�g�dxdg;

where r�w�W denotes the right translation of W by w. Let eW � r�w�W . Thus

I�W ; fs; w; s� �
Z
ZVnGSp6

eW �g� Z
F
fs w

1
1

1 x
1

1
1

0BBBBBB@

1CCCCCCAg
0BBBBBB@

1CCCCCCAc�x�dxdg:

�2:2�

We shall prove the meromorphic continuation of the right hand side of (2.2). Since
fs�g� is K�GSp6� ¢nite it is enough to study the continuation of

Z
�F ��3

eW �t�m�t� Z
F
fs w

1
1

1 x
1

1

0BBBBBB@

1CCCCCCAt
0BBBBBB@

1CCCCCCAc�x�dxd�t; �2:3�

where t � diag�abc; ac; a; 1; cÿ1; bÿ1cÿ1� and m�t� � jajn1 jbjn2 jcjn3 , where ni 2 Z.
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Denote

Ws�g� �
Z
F
fs w

1
1

1 x
1

1

0BBBBBB@

1CCCCCCA
jgj
jgj

g
1

1

0BBBB@
1CCCCA

0BBBBBB@

1CCCCCCAc�x�dx;

where g 2 GL2 and jgj � det g. Thus (2.3) equalsZ
�F ��3

eW �t�ms�a; b; c�Ws
a

1

� �
dt; �2:4�

where ms�a; b; c� depends on the absolute value of a b; c to some power of s and also
on w and wp. From the de¢nition of Ws we may view it as the Whittaker model
of a GL2 induced representation.

Next we use the standard integral representation of Ws on GL2 given by

Ws
a

1

� �
�

Z
F�at; tÿ1�jtjsd��t�

� �
jajs�1=2;

where F is a Schwartz function (in S�k2�). Then we substitute this expression into
(2.4) and then with the suitable change of coordinates and use of asymptotic
expansion we express (2.4) in terms of Tate integrals (to obtain the continuation).

Finally, to ¢nish the proof of Proposition 2.2. we need to show that given s0 2 C,
data can be chosen so that I�W ; fs; w; s� is nonzero at s � s0. De¢ne, for Re�s� large,

I1�W ; w; s; k� �
Z
Z�V\GL3�nGL1�GL3

Z
F
W
�
X �r�j

�
�a; g�

�
k
�
�

� opw3�a�opw2�det g�jaj6sÿ6j det gj4sÿ4drd�adg :

Here k 2 K�GSp6� and �a; g� 2 GL1 �GL3. Thus for Re�s� large,

I�W ; fs; w; s� �
Z

GL3\K�GSp6�nK�GSp6�
I1�W ; w; s; k�fs�k�dk :

We note that I1�W ; w; s; k� admits a continuation in s and such continuation in s as
a function in k variable is locally constant (smooth in the archimedean case). In the
nonarchimedean case this follows directly from the relation between
I1�W ; w; s; k� and I�W ; fs; w; s�. In the archimedean case this point is more subtle
and we sketch a brief proof. Indeed given a smooth Whittaker function (not necess-
arily K ¢nite) W (belonging to p) we can write by the Dixmier Malliavan criterion
applied to the action of K�GSp6� on p W �PWi � ji, where Wi lies in the smooth
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Whittaker spaces of p and ji 2 C1�K�GSp6��. Here

Wi � ji�g� �
Z
K�GSp6�

Wi�gk�j�k�dk :

Then we write

I1�W ; w; s; k1� �
X

I1�Wi � ji; w; s; k1�

and we have that

I1�Wi � ji; w; s; k1�

�
Z
Z�V\GL3�nGL1�GL3

Z
F

Z
K�GSp6�

W �X �r�j��a; g�k1k�ji�k�dk
 !

�

� opw3�a�opw2�det g�jaj6sÿ6jdet gj4sÿ4drd�adg :

Then by changes of variables k! k1k and by the use of Fubini we deduce that the
above integral equalsZ
Z�V\GL3�nGL1�GL3

Z
F

"Z
K�GSp6�

W �X �r�j��a; g��k�
Z
K�GL1�GL3�

ji�kÿ11 uk�du
� �

dk

#
op w3�a��

� opw2�det g�jaj6sÿ6jdet gj4sÿ4drd�adg

�
Z
K�GSp6�

("Z
Z�V\GL3�nGL1�GL3

Z
F

W �X �r�j��a; g��k��

� opw3�a�opw2�det g�jaj6sÿ6j det gj4sÿ4drd�adg

# Z
K�GL1�GL3�

ji�kÿ11 uk�du
!)

dk:

Thus if we de¢ne

Fji
�k1; k� �

Z
K�GL1�GL3�

ji�kÿ11 uk�du

and if we choose a C1 section for the induced GSp6 module I�s; w� given by

Fji
�k1; g; s� � Fji

�k1; k��dsQwp��AGL1�GL3 �g�� ;

where AGL1�GL3 � � is the Levi component of g relative to the Iwasawa
decomposition g 2 Q�R�K�GSp6�. We note here Fji

is not necessarily a K�GSp6�
¢nite function.
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Thus with the above calculations we have shown that

I1�W ; w; s; k1� �
X

I�Wi;Fji
�k1; s�; w; s� :

Thus we have shown here each integral in the sum above admits a continuation in s
and as function in the k1 variable it is C1. For this we just adapt the method of proof
of continuation given above. We are now assumingW and Fji

are not K�GSp6� ¢nite
data in the problem. Then following the same line of arguments as above (use here
asymptotic expansion of W stated above) we reduce to an integral of the formZ

T�K�GSp6�
Few��b; c; a; c; b�; k�ew�t�ems�t� Z

F
Fji
�k1;wn�x� a

1

� �
k; s�c�x�dx

� �
d�tdk:

Here

n�x� � 1 x
0 1

� �
and

a 0
0 1

� �

belong to the internal GL2 as given in (2.3) and (2.4). Moreover ems�t� �ems�a; b; c�
depends on the absolute values of a; b and c to some power of s and also in w
and wp. Also ew is a T ¢nite function in �a; b; c� variables (Few de¢ned above in
the asymptotic expansion of W ). We note here by a similar argument as above
we can ¢nd ji 2 S�K�GSp6� �M6;3�R�� so that

Fji
�k1; g; s� � j det gjs1

Z
M3;3�R�

ji

h
k1; �0 j X �g

i
jdetX js2dX

for appropriate s1 and s2. Then we deduce that ��� becomes an integral of the form(Z
T�K�GSp6�

Fewh�b; c; a; c; b�; kiew�t�ems�a; b; c�
j

"
k1;

" 0 0 a11a

0 0 a21a

0 0 a31a

�����
a11x a12 a13
a21x a22 a23
a31x a32 a33

#
k

#
j det�A�js2 c�x�d�tdxd�Adk

)
:

Then using appropriate differential operators in the a; b; c and A variables one
checks that the integral has meromorphic continuation in s and in fact becomes
for each s (more precisely its highest order term in s expanded about any point
s0) an C1 function in the variable k1!

Assume that I�W ; fs; w; s� is zero at s � s0 for all choice of data. Since fs�k� is
independent of s we obtain that

R
I1�W ; w; s; k�s�k�dk is zero at s � s0 for all smooth

functions s on �GL3 \ K�GSp6��nK�GSp6�. Thus I1�W ; w; s; k� is zero at s � s0 for all
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W . Put k � e. Thus the meromorphic continuation of

I1�W ; w; s� �
Z
ZV\GL3nGL1�GL3

Z
F
W

 
X �r�j

�
�a; g�

�!
m1�a; g; s�drd�adg

is zero at s � s0 for all W . Here m1�a; g; s� � opw3�a�opw2�det g�jaj6sÿ6j det gj4sÿ4.
Replace W in I1�W ; w; s� by

W1�h� �
Z
F 3

W hj

1 0 0 0
1 0 0 r1

1 0 r2 r3
1

1
1

0BBBBBB@

1CCCCCCA

0BBBBBB@

1CCCCCCA

0BBBBBB@

1CCCCCCAf�r1; r2; r3�dri ;

where f is a smooth function of compact support on F 3 and h 2 GL6. Thus

I1�W1; w; s� �

Z Z
F 3

W X �r�j �a; g�

1 0 0 0
1 0 0 r1

1 0 r2 r3
1

1
1

0BBBBBBBB@

1CCCCCCCCA

0BBBBBBBB@

1CCCCCCCCA

0BBBBBBBB@

1CCCCCCCCA
f�r1; r2; r3�m1�a; g; s�drid�adg ;

where a; g and r are integrated as before. Conjugating the upper unipotent matrix to
the left, we obtain for Re�s� large

I1�W1; w; s� �
Z

W

 
X �r�j�a; g�

!bf�a�1; 0; 0�g�m1�a; g; s�drd�adg ;

where a�1; 0; 0�g indicates the usual matrix multiplication and

bf�t1; t2; t3� � Z
F 3

f�r1; r2; r3�c�r1t1 � r2t2 � rst3� dri :

The function bf�a�1; 0; 0�g� is an arbitrary smooth function on GL2LnGL1 �GL3

where GL2L is embedded in GL6 as in (1.2). Thus arguing as before we get that
the meromorphic continuation of

I2�W ; w; s� �
Z
�GL2\V �nGL2

Z
F
W

 
X �r�j�g�

!
m2�g; s�drdg

is zero at s � s0 for all W . Here m2 is the restriction of m1 to GL2. Next, replacing W
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by

W1�h� �
Z
F 2

W hj

1 r1 r2
1

1
1 ÿr2

1 ÿr1
1

0BBBBBB@

1CCCCCCA

0BBBBBB@

1CCCCCCA

0BBBBBB@

1CCCCCCAf�r1; r2�dri ;

we obtain that the meromorphic continuation of

I3�W ; w; s� �
Z
F �

Z
F
W X �r�

a
a

a
1

1
1

0BBBBBB@

1CCCCCCA

26666664

37777775m3�a; s�drd
�a

is zero for allW (m3 the restriction of m1 to center �GL3�). Finally, using the unipotent
subgroup I �me23 for X �r� and I �me34 for a we obtain, by arguing as above, that
W �e� � 0 for all W . This is a contradiction. &

3. The Analytic Properties of the Partial L-Function

In this section we study the analytic properties of the partial exterior cube L-function
on GL6. Let p � 
npn and I�s; wp� � 
nIn�s; wp�. Let S be a ¢nite set including the
archimedean places such that outside of S all data is unrami¢ed. Given a character
m � 
mn of F �nA� we denote LS�m; s� � Qn=2S Ln�mn; s� where Ln�mn; s� is the local
degree one L-function of mn. As in [G] we set

E��g; fs; w; s� � LS�opw2; 4s�LS�o2
pw

4; 8sÿ 2�E�g; fs; w; s�

and

I��j; fs; w; s� � LS�opw2; 4s�LS�o2
pw

4; 8sÿ 2�I�j; fs; w; s� :

We have:

PROPOSITION 3.1. Let fs be a standard K�GSp6� ¢nite section which is an
unrami¢ed outside of S. Then:

(a) If opw2 � 1 or o2
pw

4 6� 1 then I��j; fs; w; s� is entire.
(b) If o2

pw
4 � 1 but opw2 6� 1 then I��j; fs; w; s� can have at most a simple pole at

s � 1=4 or s � 3=4.
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Proof.To prove this we use Lemmas 5.4 and 5.5 in [G]. We use the notations there.
If s � 1 is a pole then the residue of I��j; fs; w; s� at s � 1 is zero, since it follows from
[J-R] that a cusp form on GL6 integrated over GSp6 is zero. If opw2 � 1 then arguing
as in [G] we have

Ress�3=4 I��j; fs; w; s� �
Z
Z�A�GSp6�F �nGSp6�A�

j�j�g��E�g;ef ; s1�dg :
As in [G] Lemma 5.1 formula (5.2), we can show that the above integral is zero. &

Thus as in [G] Theorem 5.6 we have:

THEOREM 3.2. Let p be a cusp form on GL6�A�. Let S be as above. Then

LS�p;L3 
 w; s� �
Y
n=2S

Ln�pn;L3 
 wn; s�

is entire unless o2
pw

4 � 1 and opw2 6� 1. In this case the L-function can have at most a
simple pole at s � 0 or s � 1.

To study the residue at s � 1 of the partial L-function let m � opw2. According to
Theorem 3.2, LS�p;L3 
 w; s� has a pole at s � 1 if m 6� 1 but m2 � 1. Assume this
is the case and suppose the partial L-function has a pole at s � 1. Then according
to our global construction we deduce that there is j 2 p and fs 2 I�s; w� such that
the residue at s � 1 of

Z
Z�A�GSp6�F �nGSp6�A�

j�g�E�g; fs; w; s�dg

is nonzero. This implies that the residue at s � 1 of

Z
Sp6�F �nSp6�A�

j�g�E�g; fs; w; s�dg

is nonzero.
To study the residue of the Eisenstein series at s � 1 we apply Corollary 6.3 in

[K-R]. Let yf�h� denote the theta function offSp12�A�. Here f 2 S�A6� the Schwartz
space on A6.

We note here that we can by class ¢eld theory associate to m a unique quadratic
¢eld Fm=F . We letO2�m� be the orthogonal group associated to the norm form associ-
ated to Fm. That is O2�m��F � is an Z2 extension of the norm one elements of F �m . In
fact, the quotient O2�m��F �nO2�m��A� is a compact quotient (since the norm form
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of Fm is a global anisotropic form). Thus the Siegel-Weil formula states ([K-R]) that

Ress�1 E�g; fs; w; s� �
Z
O2�m��F �nO2�m��A�

yf�g; h�dh :

Thus we may conclude

THEOREM 3.3. Suppose thatopw2 6� 1 buto2
pw

4 � 1. If LS�p;L3 
 w; s� has a pole at
s � 1 then there is a choice of data such that the integralZ

Sp6�F �nSp6�A�

Z
O2�m��F �nO2�m��A�

j�g�yf�g; h�dgdh

is nonzero.

Remark. We note by the comments in the introduction that we expect that the
automorphic modules pwhich have a pole at s � 1 probably come from automorphic
induction for GL3�Fm� into GL6. We have not yet checked directly that such forms
have in fact the required period (as given in Theorem 3.3) to be nonvanishing.
One possible way to check this is by use of some version of a relative trace formula
identity relating generic forms in GL6 with the coperiod condition given in Theorem
3.3 with generic forms in GL3�Fm�. We also note here that if the ¢nite set S (in
Theorem 3.3) is enlarged to S0 then the new partial L function LS0 is multiplied
by the inverse of the L-factor at a ¢nite number of places �S0 ÿ S�. Thus it is possible
that LS0 may not have a pole (the extra ¢nite places may cancel the pole of LS by a
local zero). However, it is expected that the local components pv of p in S0 ÿ S
are tempered and thus the local factor Lv�pv;L3 
 wv; s� is holomorphic for
Re�s� > 0.

4. On The Nonvanishing of the Partial L-Function at s � 1=2

We keep the same notations as in Section 3. In the section we will relate the
nonvanishing of LS�p;L3 
 w; 1=2� with a nonvanishing of certain periods. As in
Section 3 we shall apply the Siegel^Weil formula as stated in [K-R].

We shall assume that opw2 � 1. Let yf�h� denote the theta function of gSp24. In this
case we have,

PROPOSITION 4.1 ([K-R] Theorem 4.10). If Vals�1=2E�g; fs; w; s� is nonzero, then
depending on the choice of fs, it equalsZ

O4�D��F �nO4�D��A�
yf�g; h�dh or

Z
O2;2�F �nO2;2�A�

yDf�g; h�dh

for some choice of f 2 S�A12�. Here O4�D� de¢nes the orthogonal group in 4 variables
associated to the norm form of a quaternion algebra D=F and O2;2 is the split orthog-

THE EXTERIOR CUBE L-FUNCTION FOR GL�6� 265

https://doi.org/10.1023/A:1002461508749 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002461508749


onal form. Also Df is some regularization needed so that the above integral will con-
verge.

Using Proposition 4.1 we may relate the nonvanishing of LS�p;L3 
 w; 1=2� with
the nonvanishing of certain periods.

We note here that ifopw2 � 1 then the L function L�p;L3 
 w; s� is a self symmetric
L function. In particular this means L�p;L3 
 w; s� � L�p_;L3 
 wÿ1; s� provided
that opw2 � 1. Then we have

THEOREM 4.2. Suppose that opw2 � 1. If LS�p;L3 
 w; 1=2� 6� 0 then there is a
choice of data such that at least one of the following two periods is nonzero. EitherZ

Sp6�F �nSp6�A�

Z
O4�D��F �nO4�D��A�

j�g�yf�g; h�dgdh �4:1�

or

Z
SL2�F �nSL2�A�

Z
U�F �nU�A�

j

 
u

g
g

g

0@ 1A!cU �u�dudg : �4:2�

Here U is de¢ned by

U �
( I X Y

I Z
I

0@ 1A : X ;Y ;Z 2M2

)
;

where I is the 2� 2 identity matrix and M2 the group of all 2� 2matrices. Also cU is
de¢ned as cU �u� � c�tr�X � Z��.

Proof. It follows from Proposition 4.1 that if LS�p;L3 
 w; 1=2� 6� 0 then either
(4.1) is nonzero for some choice of data or thatZ

Sp6�F �nSp6�A�

Z
O2;2�F �nO2;2�A�

j�g�yDf�g; h�dgdh �4:3�

is nonzero for some choice of data. To prove the Theorem we have to show that if
(4.2) is zero for all j 2 p then (4.3) is zero for all choice of data. To do so we need
to consider another Eisenstein series on Sp6. Let Q be the maximal parabolic
subgroup of Sp6 whose Levi part is GL2 � SL2. Consider the induced representation

I�s� � Ind
Sp6�A�
Q�A� dsQ and for Fs 2 I�s� let E1�g;Fs� denote the corresponding Eisenstein

series. It follows from [K-R] Lemma 5.5.6, that there is a point s � s0 and a constant
c 6� 0 such thatZ

O2;2�F �nO2;2�A�
yDf�g; h�dh � cVals�s0E1�g;Fs� :
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To prove our Theorem, it is enough to show that if (4.2) is zero for all choice of data
then the integralZ

Sp6�F �nSp6�A�
j�g�E1�g;Fs�dg �4:4�

is zero for all j 2 p, Fs 2 I�s� and s 2 C. Let V denote the unipotent radial of Q. In
matrices

V �
( I X Y

I X�

I

0@ 1A : X ;Y 2M2

)

and X� and Y is such that the above matrix is in Sp6. Unfolding (4.4) we obtain

Z
GL2�F ��SL2�F �V �A�nSp6�A�

Z
V �F �nV �A�

j

" I X Y
I X�

I

0@ 1Ag#Fs�g�dvdg:

The group GL2 � SL2 is embedded in Sp6 (and GL6) as

�g; h� !
g

h
g�

0@ 1Ag 2 GL2 ; h 2 SL2

and g� is such that the above matrix is in Sp6. Let V1 � V be the unipotent subgroup
of GL6 de¢ned by

V1 � f
I X Y

I X�

I

0@ 1A ; X ;Y 2M2g:

The group GL2 as de¢ned above acts onV1=V by scalar of the determinant and hence
the above integral equals

Z
GL2�F ��SL2�F �V �A�nSp6�A�

Z
V1�F �nV1�A�

j

I X Y

I X�

I

0B@
1CAg

264
375Fs�g�dv1dg�

�
Z

SL2�F ��SL2�F �V �A�nSp6�A�

Z
V1�F �nV1�A�

j

" I X Y

I X�

I

0B@
1CAg#ec�Y �Fs�g�dv1dg :

�4:5�

In both cases Y 2M2 and if Y � y1
y3

y2
y4

� �
then ec�Y � � c�y1 ÿ y4�. Consider the ¢rst
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summand in (4.5). It equals

X
n

Z Z
M2�F �nM2�A�

j

" I X � T Y
I X�

I

0@ 1Ag#n�T �Fs�g�dTdv1dg :

Here T 2M2, n is summed over all characters of T and v1 and g are integrated as
before. The group GL2�F � � SL2�F � acts on the group characters of T with three
orbit characterized by the rank of T . The contribution from the trivial orbit is zero
since we obtain as an integral

Z
M2�F ��M2�F �nM2�A��M2�A�

j

" I T Y
I 0

I

0@ 1A#dTdY :

By cuspidality of j this is zero. For the rank one orbit we choose as representative the

character cT
t1
t3

t2
t4

� �
� c�t3�. It is not hard to check that the unipotent group

n
1 z

1

ÿ �o
� SL2 is in the stabilizer of cT inside SL2. We thus obtain

Z
M3�F �nM3�A�

j

"
I Z

I

� �#
dZ

as an inner integral and hence, by cuspidality, we get zero contribution. Finally, for

the rank two case, we choose cT
t1
t3

t2
t4

� �
� c�t1 � t4�. The stabilizer in GL2 � SL2

is SLD
2 i.e. the group SL2 embedded diagonally. Hence the contribution to the ¢rst

summand of (4.5) from this orbit is

Z
SLD

2 �F �V �A�nSp6�A�

Z
U�F �nU�A�

j

" I T Y
I X

I

0@ 1Ag#c�trT �ec�X �Fs�g�dudg :

Thus we obtain as an inner integration

Z
SLD

2 �F �nSLD
2 �A�

Z
U�F �nU�A�

j

" I T Y
I X

I

0@ 1A h
h

h�

0@ 1Ag#c�trT �ec�X �dudh :

Denote g � diagf1; 1; 1; 1;ÿ1; 1g. Since, for g 2 SL2, g� � ÿ1
1

� �
g
ÿ1

1

� �
, the

above integral equals

Z
j

" I T Y
I X

I

0@ 1Ag h
h

h

0@ 1Agg#c�trT �ec�X �dudh :
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Conjugating g to the left and changing variables in X we obtain

Z
j

" I T Y
I X

I

0@ 1A h
h

h

0@ 1Agg#c�tr�T � X ��dudh :

Thus we obtain (4.2) as an inner integral which is zero by our assumption.

Next consider the second summand of (4.5). De¢ne

w �
0 I
I 0

I

0@ 1A :
Conjugating by w the integral equals

Z
SL2�F ��SL2�F �V �A�nSp6�A�

Z
V1�F �nV1�A�

j
I 0 X�

I Y
I

0@ 1A I
X I

I

0@ 1Awg
24 35ec�Y �Fs�g�dv1dg :

Consider the Fourier expansion

X
n

Z Z
M2�F �nM2�A�

j
I 0 X� � T

I Y
I

0@ 1A I
X I

I

0@ 1Awg
24 35c�trY �n�T �Fs�g�dTdv1dg ;

where n over all characters of M2�F �nM2�A� and v1 and g are integrated as before.
Given n we can ¢nd L 2M2�F � such that the above integral equals

X
n

Z Z
M2�F �nM2�A�

j

" I 0 T
I Y

I

0@ 1A I
X � L I

I

0@ 1Awg#ec�Y �Fs�g�dTdXdYdg :

Here we used the fact that j is left invariant under rational points and also need a
suitable change of variables. (For similar computations see in Section one the dis-
cussion involving X �a�). Thus to prove our Theorem, it is enough to show that

Z Z
M2�F ��M2�F �nM2�A��M2�A�

j

" I T
I Y

I

0@ 1A h
g

g�

0@ 1A#ec�Y �dTdYdgdh

is zero for all j 2 p. Here g and h are integrated over SL2�F �nSL2�A�. Applying a
Fourier expansion to the above integral it equals

X
n

Z Z
U�F �nU�A�

j
I Z T

I Y
I

0@ 1A h
g

g�

0@ 1A24 35ec�Y �n�Z�dZdTdYdhdg:

As before, the group SL2 � SL2 acts on the group character of Z. It is not hard to
check that all orbits corresponding to the rank zero and rank one orbits contributes
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zero by cuspidality. As for the rank two, under the action of SL2�F � � SL2�F �, there
are in¢nite number of orbits. We can parametrize them by the characters

ca�Z� � ca

� z1 z2
z3 z4

� ��
� c�az1 � z4�

with a 2 F �. Thus the above equals

X
a2F �

Z
Sa�F �nSL2�A��SL2�A�

Z
U�F �nU�A�

j

" I Z T
I Y

I

0@ 1A h
g

g�

0@ 1A#ec�Y �ca�Z�dudhdg:

Here Sa is the stabilizer of ca in SL2�F � � SL2�F �. Thus

Sa � aÿ1

1

� �
h

a
1

� �
; h

� �

where h 2 SL2. Denote r�a� � diag�a; 1; 1; 1; 1; 1�. A change of variables in Z implies
that the above equals

X
a2F �

Z
Sa�F �nSL2�A��SL2�A�

Z
U�F �nU�A�

j

I Z T

I Y

I

0B@
1CAr�a� h

g

g�

0B@
1CA

264
375ec�Y �c�trZ�dudgdh :

As before we can change variables in Y to obtain

XZ
j

" I Z T
I Y

I

0@ 1Ar�a� h
g

g

0@ 1Ag#c�tr�Y � Z��dudgdh :

Conjugating r�a� to the right and changing variables in h we obtain (4.2) as an inner
integration. This shows that (4.4) is zero for all choice of data.

This completes the proof of the Theorem. &

Remark. We note here that if we can extend the validity of the Siegel formula
(stated in Proposition 4.1) when g 2 GSp6�A� then in formulae (4.1) and (4.2)
we can replace Sp6�A� by GSp6�A� in (4.1) and SL2�A� by GL2�A� and the outer
integration is given over ZAGSp6�F �nGSp6�A� and ZAGL2�F �nGL2�A�. Moreover
in the respective integrals (4.1) and (4.2) we must also have the character w. In par-
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ticular then (4-2) is replaced by the period

�j� �
Z
ZAGL2�F �nGL2�A�

Z
U�F �nU�A�

j u
g

g
g

0@ 1A0@ 1AcU �u�w�det g�dudg : ���

With this period as the starting point we can make a conjecture concerning the
relation of the nonvanishing of the restricted L function LS�p;L3 
 w; 1=2� to the
nonvanishing of the above period.

In fact for each quaternion algebra D=F we consider the group GL3�D�. Then we
have an analogue of the group U . In fact let U�D� be the upper triangular subgroup
in GL3�D� given by

1 x y
0 1 z
0 0 1

0@ 1A���x; y; z 2 D

8<:
9=;

Then we de¢ne the Whittaker type character on U�D� as given by

1 x y
0 1 z
0 0 1

0@ 1A ÿ!cD
U

cD�x� z� ;

where cD is a character given on the vectorspace of the quaternion algebra D.
Thus for an automorphic cuspidal representation t of GL3�D� we consider the

period �j 2 t�

�j� �
Z
ZAD��F �nD��A�

Z
UD�F �nUD�A�

j u
g

g
g

0@ 1A0@ 1AcD
U �u�w�ND�g��dud�g ���D

(assuming t has central character ot so that otw2 � 1 and ND the corresponding
reduced norm on D�).

Thus there is an analogue of the Gross Prasad conjecture for this example. We
know that since GL3�D� is an inner form of GL6�F �, this implies that there exists
an automorphic functorial lifting between GL3�D� and GL6�F �. In particular we
know that an irreducible cuspidal module s of GL3�D��A� lifts to an irreducible
cuspidal automorphic s0 of GL6. (The modules s and s0 agree at all the places
GL3�Dv� � GL6). Moreover at the rami¢ed places (where GL3�Dv� 6� GL6� there
is a local character identity between sv and s0v. In any case given p automorphic
cuspidal in GL6�A� (with central character op satisfying opw2 � 1) we let pD be
a cuspidal automorphic module on GL3�D�A�� which lifts to p. (pD may not exist).

Then the analogue of the Gross-Prasad conjecture is the following statement.

CONJECTURE.LS�p;L3 
 w; 1=2� 6� 0 if and only if there exists a unique quaternion
algebra D so that
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(i) ���D�j� 6� 0 for some j 2 pD ;

(ii) ���D0 �j0� � 0 for all j0 2 pD
0
with D0 6� D (here D0 may in fact be the split form

M2;2�F � and the period ���D is given as above).

In this case, a more quantitative version of the conjecture is expected which relates
the special value LS�p;L3 
 w; 1=2� with the ¢nite positive sum of terms of the form
j���D�ji�j2 (where ji runs over a basis of an appropriate ¢nite dimensional subspace
of p).

Remark. We note here that when opw2 6� 1 but �opw2�2 � 1 we can also relate the
nonvanishing of LS�p;L3 
 w; 1=2� to the nonvanishing of a certain period. Speci¢-
cally the period condition will involve a Siegel formula relating Sp3 to O�3; 1� (where
the quadratic character opw2 dictates the choice of O�3; 1�).
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