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ABSTRACT. Bulk aerodynamic methods have been shown to perform poorly8

in computing turbulent heat fluxes at glacier surfaces during shallow katabatic9

winds. Katabatic surface layers have different wind shear and flux profiles to10

the surface layers for which the bulk methods were developed, potentially in-11

validating their use in these conditions. In addition, eddy covariance-derived12

turbulent heat fluxes are unlikely to be representative of surface conditions13

when eddy covariance data are collected close to the wind speed maximum.14

Here we utilize two months of eddy covariance and meteorological data mea-15

sured at three different heights (1m, 2m, and 3m) at Kaskawulsh Glacier in16

the Yukon, Canada, to re-examine the performance of bulk methods relative to17

eddy covariance-derived fluxes under different near-surface flow regimes. We18

propose a new set of processing methods for one-level eddy covariance data to19

ensure the validity of calculated fluxes during highly variable flows and low-20

level wind speed maxima, which leads to improved agreement between eddy21

covariance-derived and modelled fluxes across all flow regimes, with the best22

agreement (correlation > 0.9) 1m above the surface. Contrary to previous23

studies, these results show that adequately processed eddy covariance data24

collected at or above the wind speed maximum can provide valid estimates of25

surface heat fluxes.26
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INTRODUCTION27

Turbulent heat fluxes have been observed to be important contributors to the surface energy balance of28

mountain glaciers (e.g. Hock and Holmgren, 1996; Greuell and Smeets, 2001; Fitzpatrick and others, 2017).29

Variation in the magnitude of the turbulent heat fluxes will, therefore, have a substantial influence on30

surface melt rates, highlighting the need for accurate estimation of these energy terms in ablation models.31

One of the key uncertainty sources when it comes to modelling turbulent heat fluxes is their parameteri-32

zation through bulk aerodynamic methods. The performance of these bulk methods has been evaluated in33

relatively few glacier studies (e.g., Hay and Fitzharris, 1988; Hock, 1998; Denby and Greuell, 2000; Conway34

and Cullen, 2013; Radić and others, 2017), most of which highlighted a gap in our understanding of why35

and when these methods fail. In order to narrow uncertainties in projections of glacier melt, it is therefore36

necessary to narrow uncertainties in the modelling of turbulent heat fluxes.37

38

Due to their simplicity and reliance only on standard meteorological measurements at one height (of-39

ten 2 m) above the surface, the bulk methods have been the most commonly used models for deriving40

turbulent heat fluxes at glacier surfaces (Guo and others, 2011; MacDougall and Flowers, 2011; Conway41

and Cullen, 2013; Fitzpatrick and others, 2017; Steiner and others, 2018). In their foundation, the bulk42

methods assume flat, homogeneous surfaces with logarithmic wind speed profiles and turbulent fluxes that43

are near-constant in height (varying by less than 10 %) within the surface boundary layer (Stull, 1988).44

Since the near-logarithmic wind profiles are observed only during neutral atmospheric stability conditions45

(Stull, 1988), corrections are commonly applied to adjust the turbulent fluxes for non-neutral stratifica-46

tion. The theories and empirical data used for developing these corrections were obtained from studies47

over non-glacierized and flat terrain (e.g. Monin and Obukhov, 1954; Dyer, 1974; Holtslag and De Bruin,48

1988; Beljaars and Holtslag, 1991), and generally assume that turbulence generation will be suppressed49

(enhanced) in stable (unstable) conditions.50

51

The structure of a surface boundary layer at sloping glacier surfaces can differ greatly from that of52

a stable surface layer over a flat surface (van der Avoird and Duynkerke, 1999). Sloping glacier surfaces53

under stable conditions during summer promote strong positive local air temperature gradients that drive54

persistent, negatively buoyant downslope winds, known as katabatic or glacier winds (Ball, 1956; Manins55
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and Sawford, 1979). Katabatic winds are characterized by strong near-surface wind shear, large tempera-56

ture gradients, and a shallow wind speed maximum (WSM) which can be below the standard measurement57

height (2 m) on even relatively gentle slopes (e.g. ∼4° in Denby, 1999). Wind shear, represented in the bulk58

method through friction velocity (u∗), will diminish to zero as the height of a wind maximum is approached59

(Denby and Greuell, 2000). The closer to the surface a WSM is, the shallower the constant (variations less60

than 10 %) momentum flux layer will be, limiting the region in which the theory will be valid (Denby and61

Smeets, 2000). Although the stability-based corrections in the bulk methods can correct for the effect of62

strong stability, they cannot account for the presence of a WSM, leading to a relatively poor performance63

of these methods during shallow katabatic flows (Fitzpatrick and others, 2017; Radić and others, 2017).64

These findings led to questioning of the validity of standard parameterizations in the bulk methods and to65

a development of potential alternative parameterizations (Radić and others, 2017).66

67

To evaluate the bulk methods in simulating heat fluxes it is necessary to have reference measurements68

representing the true fluxes. In the absence of direct measurements of turbulent heat exchanges with the69

surface, the sensible (latent) heat fluxes are calculated as a covariance of high frequency measurements of70

wind speed and temperature (water vapor) through the eddy covariance method. Eddy covariance (EC) is71

a common technique in micrometeorology that requires relatively complex data processing as well as sensor72

maintenance to ensure that the key assumptions underpinning these techniques are being met (Foken and73

others, 2012). However, the installation and power requirements of the EC sensors, along with difficulties74

in fulfilling the necessary measurement assumptions, have limited the use of EC systems at glacier surfaces75

and the length of usable datasets where measurements exist.76

77

The EC community has developed a set of best practices to improve the robustness of EC-derived fluxes78

and ensure consistency between various studies (e.g. Lee and others, 2004; Aubinet and others, 2012). The79

validity of the EC method is based on the assumption that the flow is fully turbulent and that measured80

fluctuations are solely attributed to eddy motion (Foken and others, 2012). The temporal averaging window81

from which the covariance is calculated must be short enough to avoid contamination by non-turbulent82

motions, but also long enough to capture motions of large eddies. In many applications, the spectral gap83

separating turbulent motions from changes in mean flow is assumed to be approximately 30 min (Stull,84

1988). Thus 30 min is the most commonly chosen interval length for the covariance calculations. However,85
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in the presence of strong stratification and low wind speeds, as is often the case at glacier surfaces, the86

spectral gap can be on the order of minutes (Vickers and Mahrt, 2003; Mott and others, 2020; Nicholson87

and Stiperski, 2020). Furthermore, the optimal interval length is shown to be highly dependent on flow88

characteristics (Sun and others, 2018), while covariances assessed from a highly variable flow show strong89

sensitivity to the choice of the interval length, even at a scale of minutes or seconds (Mahrt and others,90

2015).91

92

The established best practices for EC data processing, such as the use of constant 30 min interval lengths93

over the observational period, have been generally adopted as a standard at glacier surfaces (e.g. Conway94

and Cullen, 2013; Fitzpatrick and others, 2017). However, flow conditions and turbulence characteristics at95

glacier surfaces can vary substantially over a melting season, with mean near-surface wind speeds spanning96

an order of magnitude. Furthermore, constant interval lengths cannot account for conditions that change97

during the 30 min interval, such as a sudden burst of cross-glacier wind or a shallow wind speed maximum98

moving past the sensor height. Additionally, because the constant flux layer is suppressed during shallow99

katabatic winds, EC-derived turbulent heat fluxes are unlikely to be representative of surface conditions100

when measurements are collected close to the WSM, which can be at or below the standard measurement101

height of 2 m. These observations highlight the need for further improvements of processing methods for102

EC data at glacier sites.103

104

A key motivation for this study is to address the understudied role of EC processing methods in deriving105

the turbulent heat fluxes at glacier surfaces. Our first objective is to improve the processing methods to106

ensure the validity of calculated fluxes for conditions such as highly variable flow and low-level wind speed107

maxima. Our second objective is to re-examine the performance of the most commonly used bulk methods108

relative to the EC-derived fluxes under different near-surface flow regimes. To address these objectives, we109

utilize a two month EC and meteorological dataset measured at three different heights (1 m, 2 m, and 3 m)110

at a glacier site in the Yukon, Canada. The improved EC data processing methods are aimed to ensure111

that: (1) the covariances are derived from the interval lengths optimized as a function of flow character-112

istics displayed throughout the observational period, and (2) the EC-derived fluxes are representative of113

surface conditions, i.e. those well below the wind speed maxima. In developing these methods, we prioritize114

their applicability to one-level EC measurements, thus making the methods independent of multi-level EC115
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measurements or any type of atmospheric profiling of wind and temperature.116

117

STUDY SITE118

The Kaskawulsh Glacier is a large, ∼50 km long, temperate mountain glacier in Kluane National Park119

that drains from the St. Elias Icefields in the Yukon, Canada. The St. Elias Icefields are the largest120

non-polar icefields, and melting in this region is responsible for roughly 9 % of observed sea level rise in the121

latter half of the twentieth century (Arendt and others, 2002). The St. Elias Mountains are characterized122

by substantial topographic variations, with Canada’s second tallest mountain located less than 20 km123

from sea level. This pronounced orography generates strong environmental gradients of temperature and124

precipitation from the Gulf of Alaska to the Yukon interior. Kaskawulsh Glacier accounts for roughly 9 %125

of glacier ice volume in the Yukon (Farinotti and others, 2019). The glacier has an estimated geodetic mass126

balance of −0.46 m water equivalent per year between 2007-2018 (Young and others, 2021), which is in line127

with the average rate of glacier thinning for this region (Berthier and others, 2010). Between 1956-2007,128

the glacier’s terminus retreated by 655 m (Foy and others, 2011). Its meltwater contributed to Łhú’áán129

Män (Kluane Lake) through Ä’äy Chú (Slims River) until 2016 when its retreating terminus rerouted runoff130

into the Gulf of Alaska (Shugar and others, 2017). This rerouting has caused the Yukon’s largest lake to131

drop by multiple metres and has increased the dust output from the now-empty Slims River, agitated by132

the persistent down-glacier katabatic winds (Bachelder and others, 2020). The size of Kaskawulsh Glacier133

facilitates the study of katabatic winds, as large glaciers produce relatively frequent and strong winds due134

to their larger fetch and consequent resistance to disturbances from other wind systems (Ohata, 1989).135

DATA136

Measurements137

An automated weather station was installed near the confluence of the north and central arms of Kaskawulsh138

Glacier (60°45.517’N, 139°07.513’W) at an altitude of 1666m above sea level (fig. 1). The automated139

weather station was comprised of two quadpods separated by approximately 5 m perpendicular to the140

glacier flow-line. Continuous measurements using a set of meteorological sensors at multiple heights above141

the glacier surface were made from June 30 to August 27, 2019. The local slope angle is 1.4°, and our mi-142

https://doi.org/10.1017/jog.2024.39 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.39


Lord-May and Radić: Calculating Fluxes on Glaciers 6

Table 1. Instrumentation used in this study and their manufacturer-stated accuracy. Sensors installed on Main

I collected low frequency measurements (1 Hz and slower) and those installed on Main II collected high frequency

measurements (20 Hz).

Variable Sensor Location Manufacturer-

(height above surface) Stated-Accuracy

Wind speed & direction Young 05103ap wind monitor 2 m, 3 m (Main I) ±0.3 m/s, ±3°

Air temperature & humidity Rotronic HC2 Probe + shield with a fan 1 m, 2 m, 3 m (Main I) ±0.1 °C, ±0.8 %

Liquid precipitation Texas Electronics tipping bucket gauge Main I ±1 % (up to 10 mm/h)

Radiation fluxes Kipp & Zonen CNR4 radiometer 1 m (Main I) <5 % (pyranometer)

<10 % (pyrgeometer)

Turbulence: Campbell Scientific IRGASON: 1 m (Main II)

3D wind Sonic anemometer ±1 mm/s

Sonic temperature Sonic anemometer ±0.025 °C

Specific humidity Open path gas analyser ±3.5× 10−3 g/m3

Turbulence: Gill R3-50: 2 m, 3 m (Main II)

3D wind Sonic anemometer ±0.01 m/s

Sonic temperature Sonic anemometer ±0.01 °C

Ice temperature Thermistor array (custom-made) Main I ±0.1 °C

Surface height Campbell Scientific SR50A sonic ranger Separate infrastructure ±0.01 m

near Main II

Station tilt Turck inclinometer 1 m (Main I) ±0.5°
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Fig. 1. (Left) Map of confluence of the north and central arms on Kaskawulsh Glacier with the regional map in the

bottom right corner. The automated weather station (AWS) is indicated by a white circle and the primary direction

of glacier flow is indicated by two arrows. (Right) Setup of the field installation including Main I and Main II and

the data-logger structure with solar panels.

crotopography surveys indicate that the surface roughness is approximately homogeneous in all directions143

within 500 m of the site. The measurements allowed for the estimate of surface melting through a surface144

energy balance (SEB) model accounting for all relevant fluxes: net shortwave and longwave radiation,145

turbulent heat fluxes, flux into the snow/ice and flux due to rain.146

147

One quadpod (Main I) recorded meteorological variables, and the other (Main II) recorded 20 Hz EC148

measurements (fig. 1). Main I was equipped with aspirated temperature and humidity sensors installed149

at 1 m, 2 m, and 3 m, wind sensors at 2 m and 3 m, a four-component radiometer, a rain gauge, and a150

thermistor array drilled to an initial depth of 4 m, with thermistor spacing of 25 cm in the upper 1 m, and151

1 m in the lower 3 m. Thermistor measurements were made every 30 s and averaged over 30 min. All other152

meteorological measurements were made every second and averaged every minute. Main II had three sonic153

anemometors sensors installed at 1 m, 2 m, and 3 m, all operating at a frequency of 20 Hz. An IRGASON154

anemometer, which also has an open path sensor for detecting fluctuations in water vapor, was installed155

at a height of 1 m, oriented directly up-glacier to reduce flow interference by the quadpod and minimize156

flow distortion effects observed by Horst and others (2016). Two Gill R3-50 anemometers were installed157
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at heights of 2 m and 3 m. Prior to their installation in the field, the three sensors were tested for any158

biases in their measurements when simultaneously operating at the same site and at the same height. At159

Main II, the IRGASON was aligned parallel with the primary axis of the glacier, and the Gill anemometers160

were each placed at a 60° offset to minimize the interference between the sensors and crossarms. A final161

structure was equipped with two SR50 ultrasonic distance sensors to measure surface lowering. Campbell162

Scientific CR3000 dataloggers for both stations were installed approximately 5 m down-glacier from the163

two quadpods on a separate infrastructure to minimize any interference in measurements. A camera was164

installed in the vicinity of the station to record the conditions at the site every three hours throughout the165

observational period.166

167

All the sensors were installed over relatively homogeneous terrain. Bare ice was exposed under the168

sensors for the entire campaign. The station operated autonomously over the observational period, with169

no need for manual readjustments or maintenance. Because of the robustness of the quadpods, the surface170

melting caused minimal effects on the alignment or tilt of the sensors as detected by the inclinometer (total171

change of 3° over two months). At the infrastructure with the dataloggers (fig. 1), the shading from the172

logger boxes caused inhomogeneous melting resulting in a localized hummocky surface.173

174

METHODS175

Our methods can be summarized as follows: first, we perform a clustering analysis to establish the most176

prevalent near-surface flow regimes, based on the multi-level measurements of wind and temperature at177

the study site. Second, we investigate the impact of EC data processing on the calculated turbulent heat178

fluxes. In particular, we investigate the use of different methods in determining the optimal interval length179

for calculating covariances, and we propose a filtering method for detecting EC data representative of180

surface conditions, i.e. those well below the WSM. Thirdly, we model the turbulent heat fluxes using the181

most commonly utilized aerodynamic bulk methods at glacier surfaces. We aim to quantify the effect that182

processing and filtering of EC data has on the EC-derived fluxes, as well as on the evaluation of modelled183

fluxes. This analysis is performed over the whole observational period and for each of the identified near-184

surface flow regimes. Throughout this paper, fluxes are defined in accordance with glaciological convention:185

positive (negative) fluxes denote a flux directed toward (outward) the surface.186
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187

Identification of near-surface flow regimes188

We aim to identify near-surface flow regimes as characterized by mean profiles of wind speed and tem-189

perature in the first 3 m above the surface. To do so, we cluster the standard (30 min) measurements of190

wind speed and temperature from the three measurement heights. Prior to the clustering, the dataset is191

‘compressed’ to variables that carry the bulk of the variance over the whole observational period. This192

‘compression’ is achieved through principal component analysis (PCA), a standard method for dimension-193

ality reduction and identification of dominant modes of variability within a dataset (Hsieh, 2009). PCA194

is applied to the whole dataset consisting of 30 min averages of: downslope wind, cross-slope wind, and195

temperature at 1m, 2m, and 3m, as well as the gradients (differences) of downslope wind, cross-slope wind,196

and temperature between 3m and 2m, and 2m and 1m (e.g. u3 − u2 and u2 − u1). This yields 15 total197

variables. Prior to PCA, each of the 15 variables is standardized to give zero mean and unitary standard198

deviation. Once the dominant modes of variability are identified, each represented by an eigenvector and199

principal components (PCs), we focus only on the first few modes that collectively carry the bulk (>90%)200

of the variance in the data. The PCs of these selected modes are then clustered using agglomerative hi-201

erarchical clustering with Ward’s method (Ward, 1963). The method recursively clusters data points by202

grouping the points with the highest similarity (smallest Euclidean distances) into bigger clusters while203

limiting the increase in inter-cluster variance at each step. This sequential procedure of merging smaller204

clusters into larger ones is represented by an ‘inverted tree’, or dendrogram. The initial large number of205

clusters (bottom of the inverted tree) yields smaller, more specific clusters, while the merged bigger clusters206

(top of the inverted tree) are more generic, ultimately leading to one cluster that contains all data points.207

While there is no objective way to determine the optimal number of clusters for the given dataset, a visual208

inspection of the dendrogram allows for an informed guess of the optimal number of clusters (Hsieh, 2009).209

210

Once the clusters are identified, we assign a name to each cluster or regime. Each name is associated211

with a potential driver (e.g. katabatic) or a key characteristic of each flow (e.g. downslope). To support212

the analysis of potential drivers, in addition to our meteorological observations we also look into synoptic213

sea level pressure maps reconstructed from ERA5 reanalysis (Hersbach and others, 2020) for this region.214

Note that in the absence of observed wind speed and temperature profiles above 3 m, we are limited in our215

https://doi.org/10.1017/jog.2024.39 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.39


Lord-May and Radić: Calculating Fluxes on Glaciers 10

One changepoint already established
Candidate changepoint example 1 Candidate changepoint example 2

Lorem ipsum

Little change in distributions.
Reject changepoint.

Signi�cant change in distributions for T.
Accept changepoint.

? ?

Fig. 2. Simplified schematic example of changepoint detection applied on a set of two variables (u, T ). Here we

assume one changepoint has already been established (top panel) and test two candidate changepoints. For visual

clarity, only the two-dimensional (u, T ) distributions are shown, while in the study we use the four-dimensional data

(u, v, w, and T ) at each of the three heights.

analysis to provide a more in-depth flow regime characterization.216

EC data processing: interval length217

EC data are used to compute sensible heat flux (QH) through covariance of high frequency vertical wind

speed (w) and potential temperature (θ),

QH = −ρacpw′θ′, (1)

where the prime denotes the turbulent component (as a deviation from the temporal mean) and the overbar218

denotes a temporal mean. ρa is air density and cp = 1005 Jkg−1K−1 is the specific heat capacity of air.219

Note that the negative sign is added so that the sign of the flux agrees with the glaciological convention220

(positive flux into the surface) while still defining positive w′ as directed away from the surface. The221

raw (20 Hz) data underwent a series of preprocessing steps using the EddyPro data package (Fratini and222
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Mauder, 2014) as outlined in Fitzpatrick and others (2017). The primary components of this preprocessing223

are spike removal (Vickers and Mahrt, 1997), planar fit coordinate rotation (Wilczak and others, 2001),224

and the Schotanus correction to account for effects of humidity (Schotanus and others, 1983). We applied225

additional preprocessing to account for high frequency and low frequency flux loss, following the methods226

of Ibrom and others (2007) and Moncrieff and others (2004), respectively.227

228

First, we focus on the choice of interval length and temporal averaging window over which the covariance

is calculated. A generalized procedure to accommodate for a spectral gap separating turbulent motions

from changes in mean flow is to split 30-minute periods with n samples (observations) into m subsamples,

split at locations in the timeseries τ1:m = (τ1, . . . , τm) and calculate the block-average covariance as (Howell

and Mahrt, 1997),

ζ ′µ′ = 1
n

m+1∑
i=1

(τi − τi−1)ζ ′µ′(τi−1:τi) , (2)

where ζ and µ can be any of u, v and w (three components of the wind speed vector), or θ. The sub-229

script (τi−1 : τi) denotes a covariance calculated between τi−1 and τi. The most common approach is230

to calculate fluxes over a fixed window length, i.e. duration ∆τ over which the measurements are taken231

(∆τ = τi+1 − τi), often set to 30 minutes. Here, we test three approaches for setting the subinterval length232

or the averaging window, and we refer to these methods as: (1) 30 min intervals, (2) Multiresolution-Flux233

Decomposition (MRD), and (3) Changepoint Detection (CPD):234

235

30min intervals: Covariances are calculated using ∆τ = 30 min. Most calculations of turbulent fluxes236

from EC data on glaciers employ this method (e.g., Cassano and others, 2001; Conway and Cullen, 2013;237

Litt and others, 2017; Radić and others, 2017).238

239

MRD: This method was originally introduced by Howell and Mahrt (1997) as a data analysis tool to240

assess time scales that are dominant contributors to the flux. Rather than setting a fixed 30 min interval,241

the MRD method determines the optimal average length scale ∆τ from the time-scale-dependent contri-242

butions to covariance measurements. Following Vickers and Mahrt (2003), a record of 2M EC data (e.g.243

w and θ) points is partitioned into averages containing 1, 2, 4, ..., 2M consecutive data points. We truncate244

our 30 min record to 27.3 min, containing 215 = 32768 20 Hz data points. First, the lowest-order average,245

containing all 2M data points, is subtracted from the record. The next-lowest-order mode comprised of two246
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averages of 2M−1 data points is then removed. The process is repeated for each mode and can be interpreted247

as a series of successive high pass filters. At each stage, the record is split into 2M/2M−m segments, where248

m = 0, 1, 2, 3...,M . The filtered data are averaged over each of these segments, leaving a record with 2m249

data points. As an example, if applied to 20 Hz w and θ data, taking the covariance of the filtered records250

with 28 data points will yield the contribution of the 28(1/20) s= 12.8 s timescale to the calculated w′θ′.251

The iteration over m = 0, 1, ...,M generates estimates of covariance as a function of averaging timescale.252

In the ‘covariance versus timescale’ plot, the zero-crossing of the covariance curve indicates the optimal253

gap scale ∆τ for calculating the covariances for the entire observational period. The assumption is that254

covariances calculated over timescales smaller than ∆τ are the result of turbulent motions while covariances255

calculated over timescales larger than ∆τ are the result of non-turbulent motions and are thus omitted.256

More succinctly, MRD can be viewed as successive applications of Haar wavelets (Howell and Mahrt, 1997).257

258

CPD: This method was originally used as a optimization technique in order to identify where statistical

properties of a time series change (Scott and Knott, 1974). We adopt it here in order to account for

potentially varying optimal interval length throughout the observational period. We apply CPD on the

high-frequency time-series of u, v, w and T to automatically isolate turbulent motions from non-constant

flow structures, such as turbulent rolls, breaking non-linear mountain waves aloft, cross slope winds, or

the shallow WSM crossing the measurement height. In CPD, a set of candidate changepoints are tested

by evaluating four-dimensional (u, v, w, T ) distributions before and after introducing the changepoint (for

schematic illustration see fig. 2). If the distributions on either side of the candidate changepoint are

sufficiently similar (according to a kernel-based cost function), the changepoint is rejected, as it likely does

not represent a change in a physical process. If the distributions on either side of the candidate changepoint

are sufficiently dissimilar (based on a threshold for the kernel-based cost function), the changepoint is

accepted. Following the notation of Killick and others (2012), we assume our data to be an array of the form

y1:n = (y1, ..., yn) where yk = (uk, vk, wk, tk)T, containing m changepoints at locations τ1:m = (τ1, ..., τm)

that are used to compute the covariance in eq. 2. The ith changepoint corresponds to the slice of data

y(τi−1+1):τi
. The principle of the method is to select the number of changepoints and their locations in

order to minimize

βf(m) +
m+1∑
i=1
C(y(τi−1+1):τi

), (3)

where βf(m) = β logm is a penalty to prevent over-fitting. C is a cost function whose value is informed
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by the expected data distributions. For example, if the distributions of data are expected to be normal

with a changing mean, then C = L2-norm is sufficient to detect the changepoints. However, as our data

do not adhere to an a priori distribution, we employ non-parametric kernel-based detection (Garreau and

Arlot, 2016; Truong and others, 2020). The original y is mapped by features φ onto a reproducing kernel

Hilbert space H implicitly through the Gaussian radial basis kernel k,

k(p, q) = exp
(
−ξ||p− q||22

)
, (4)

where ξ > 0 is the bandwidth parameter, set by the inverse median of all pairwise distances between

parameters in 12-dimensional space (our four variables measured at three heights). We select the Gaussian

kernel due to its smoothness and popularity in machine-learning applications when little is known about

the data distribution a priori (Truong and others, 2020). Regardless of the kernel chosen, the cost function

in a kernel-based detection on an interval I = τi : τi+1 is:

CI =
∑
j∈I

k
(
φ(yj)− φ(yI), φ(yj)− φ(yI)

)
. (5)

The changepoint locations are found using the pruned exact linear time algorithm (Killick and others,259

2012). Practically, a direct implementation of the pruned exact linear time algorithm is computationally260

expensive because the kernel k contains over one billion elements for each 30 min period. We find that261

coarse-graining the columns and rows of k by a factor of ten (summing over 10x10 blocks within the kernel262

to reduce its size by two orders of magnitude) speeds up the pruned exact linear time algorithm by 5-10263

times compared to current implementations (Truong and others, 2020) with no change in the method’s264

performance. We perform CPD on the 12-dimensional input data comprised of u, v, w, and T at three265

heights for ease of comparison between heights, but this technique is also applicable to EC measurements266

made at only a single height.267

268

Intercomparison of the EC-processing methods269

To analyze differences in EC-derived QH due to the three processing methods, we investigate characteristic270

sensible heat flux profiles, i.e. profiles along the three measurement heights, across the whole observational271

period and for each of the identified near-surface flow regimes. In particular, we want to examine how272
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Fig. 3. Schematic example of scatter plots for assumed downslope wind speed (u) versus assumed temperature (T )

for the case where the measurements are taken at a height below, at and above the wind speed maximum (WSM;

left panel), as well as for the case where the WSM, if present, is well above the measurement height (right panel).

Schematic profiles of wind speed (solid line) and temperature (dashed line) are also shown for the two cases. (A),

(B), and (C) show the assumed measurements below, at, and above the wind speed maximum, respectively. (E)

shows the assumed measurements close to the surface where gradients of T and u are relatively large, and (D) shows

the assumed measurements far from the surface where gradients are low.

the occurrence of different characteristic profiles varies across the processing methods. The characteristic273

profiles are identified using self-organizing maps (SOMs), an unsupervised machine learning method that274

clusters the data on a two-dimensional map (Kohonen, 1982). A general feature of such a map is that more275

similar patterns are placed closer together on the map while more dissimilar patterns are placed further276

apart. The observed 30 min flux profiles, used as input data to the SOM algorithm, are normalized by277

dividing each profile by the measured QH at 1 m such that the normalized QH(z = 1 m) is 1. Observations278

where the measured QH at 1 m is less that 5 Wm−2 are discarded to not skew the results toward the profiles279

that have a division with a small number. For consistency, if an observation is discarded for one process-280

ing technique, then the corresponding observation is also discarded for the other two processing techniques.281

282

EC data filtering: detection of a WSM from one-level measurements283

As mentioned earlier, the presence of a WSM close to the measurement height, as is often the case during284

shallow katabatic flow, leads to a misrepresentation of surface fluxes by EC-derived fluxes (van der Avoird285
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and Duynkerke, 1999; Denby and Smeets, 2000; Finnigan, 2008). Here we introduce a method that detects286

the presence of a WSM from one-level EC measurements, so that these data segments can be omitted or287

filtered out from the calculation of covariances. The idea behind this filtering builds upon the methods288

of Grachev and others (2016) and is based on expected scatter plots of temperature versus wind speed at289

different heights relative to a WSM (below, at, and above a WSM) that is present during stable atmospheric290

conditions under which the katabatic flow develops and persists (see fig. 3 for schematic illustration). We291

consider the following three theoretical cases for a stably stratified flow over a melting glacier surface (i.e.,292

at 0 °C) in summer where air temperature increases with height. In all the cases presented, the displacement293

of an air parcel is considered over a small vertical distance.294

1. Below the WSM (fig. 3.A): Here, wind speed, like temperature, increases with height. A parcel of295

air displaced upward and away from the glacier surface (w′ < 0) will be colder (T ′ < 0) and slower296

(u′ < 0) than its new surroundings, so u′T ′ > 0. Similarly, a parcel of air displaced downward and297

toward the glacier (w′ > 0) will be warmer (T ′ > 0) and faster (u′ > 0) than its new surroundings, so298

again u′T ′ > 0. The positive covariance between u′ and T ′ implies that the outline of the u′−T ′ scatter299

cloud can be approximated by an ellipse that has a positive angle (ϑ) between its semi-major axis and300

the (T ′) axis. As the vertical gradient of wind speed and temperature increases, so does the ratio (η)301

between the ellipse’s semi-major and semi-minor axis (fig. 3.A relative to fig. 3.E). Thus, η is expected302

to approach 1 as the vertical gradients vanish (fig. 3.D).303

2. Above the WSM (fig. 3.C): Here, wind speed decreases with height while temperature increases with304

height. A parcel of air moving upward and away from the glacier surface will be colder (T ′ < 0) and305

faster (u′ > 0) than its new surroundings, so u′T ′ < 0. A parcel of air moving downward and toward306

the glacier will be warmer (T ′ > 0) and slower (u′ < 0) than its surroundings, so again u′T ′ < 0. The307

outline of the scatter cloud of u′ − T ′ measurements can be approximated by an ellipse with ϑ < 0°308

and η > 1. Here, we implicitly assume temperature stratification above the jet is not strong enough to309

suppress turbulence.310

3. Near the WSM (fig. 3.B): Here, a parcel of air displaced upward and away from the glacier surface311

will be colder than its new surroundings (T ′ < 0), but its horizontal speed will experience a negligible312

change (u′ ≈ 0) because ∂u
∂z = 0 at the WSM. Similarly, a parcel of air displaced downward and toward313

the glacier surface will display T ′ > 0 and u′ ≈ 0 relative to its new surroundings. In both cases,314
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u′T ′ ≈ 0, implying an ellipse with ϑ ≈ 0. However, the presence of a temperature gradient will produce315

an ellipse with η > 1.316

We hypothesize that the measurements representative of surface conditions are those taken below the

WSM (case 1 above) and therefore should be detected by the following characteristics: a positive covariance

(u′T ′ > 0), positive angle ϑ between the ellipse’s semi-major axis and the horizontal axis (ϑ > 0), and a

semi-major to semi-minor axis ratio greater than unity (η > 1). We introduce thresholds on positive values

of ϑ and η, or in other words:

0° < ϑlow <ϑ < ϑhigh < 90°,

1 < ηlow <η,

(6)

where ϑlow = 25°, ϑhigh = 65°, and ηlow = 1.3 are selected after testing a range of values on our data. The317

selection of these threshold values is based on striking a balance between data quality and data retention.318

Selecting more strict criteria (e.g., narrowing the range of acceptable ϑ and η) further improves data quality319

but reduces data quantity.320

321

Evaluation of bulk methods322

Our objective here is to evaluate the most commonly-used aerodynamic bulk methods in their estimates323

of turbulent heat fluxes using the EC-derived fluxes as our reference data. At its core, a bulk aerodynamic324

method is rooted in gradient transport theory or K theory, in which the turbulent fluxes of momentum325

and sensible heat (QH) are proportional to the time-averaged vertical gradients of wind speed (u) and tem-326

perature (T ), respectively (Stull, 1988). The multi-level meteorological measurements, as collected in this327

study, would allow for the application of a profile ‘bulk’ method that relies on differences between two-level328

measurements. This profile ‘bulk’ method, however, is known for large errors (Denby and Smeets, 2000;329

Hock, 2005), a result that is also corroborated by our data (not shown). Thus we focus only on the bulk330

methods based on one-level meteorological measurements. Although there are many variants of the bulk331

method, mainly related to the stability corrections used, the three most often employed on glacier surfaces332

are those tested by Fitzpatrick and others (2017): the bulk method without any stability corrections, the333

bulk method with stability corrections using the bulk Richardson number (hereafter the ‘bulk Richardson334

method’), and the bulk method with stability corrections using the Obukhov length. Initially, we evaluated335

https://doi.org/10.1017/jog.2024.39 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.39


Lord-May and Radić: Calculating Fluxes on Glaciers 17

all three methods against the EC-derived fluxes, but for the brevity of the paper we choose to focus on336

the method that overall performed the best, which is the bulk Richardson method. The bulk Richardson337

correction has the additional advantage of relying only on mean meteorological variables and not Obukhov338

length L, which has been criticized for use on glaciers beyond serving as a proxy for local stability through339

z/L (e.g. Grisogono and others, 2007; Monti and others, 2014). We note that all conclusions based on the340

results with this method also hold for the other two methods.341

342

The bulk method for deriving QH at glacier surfaces is based on the mixing-length theory by Prandtl

(1935), which assumes that friction velocity (u∗) and wind speed (u) at a given measurement height z are

linearly related by a dimensionless exchange coefficient Cv,

u∗ = Cv(z)u(z), (7)

while the expression for sensible heat flux QH is derived as:

QH = ρacP
1

PrCt(z)u∗(T (z)− T0). (8)

Here, Pr is the Prandtl number (Pr = 0.7, from Pope (2000)), Ct is the dimensionless exchange coefficient for

temperature, T0 is the temperature at the glacier surface (often set to 0 °C), and T (z) is the temperature

at measurement height z. u∗ is the modelled friction velocity from eq. 7. The dimensionless exchange

coefficients for momentum (Ci = Cv) and temperature (Ci = Ct) are modelled as

Ci = κ/ ln(z/z0,i), (9)

where κ = 0.4 is the von Kármán constant, z0,v is the roughness length for momentum, and z0,T is the

roughness length for temperature. The roughness lengths are derived from our EC data following Radić

and others (2017). We derive a separate roughness length for each measurement height and for each

EC processing and filtering technique, as the roughness lengths are fitting parameters that represent the

dynamic effects of the surface on momentum and heat transfer, and thus are not necessarily directly related

to the true surface roughness (Sun and others, 2020). z0,v is calculated from eq. 7 and eq. 9 as

z0,v = z exp(−κu/u∗), (10)
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where u∗ is calculated from the EC data as

u∗ =
4
√
u′w′

2 + v′w′
2
. (11)

Similarly, z0,T is calculated from eq. 8, incorporating the expression for QH as derived from the EC data

(eq. 1) and using the EC-derived u∗:

z0,T = z exp
(
κu∗(T (z)− T0)/w′θ′

)
. (12)

The above expressions for z0,v and z0,T theoretically hold for neutral stability, and thus the EC data are343

filtered to ensure that u∗ and QH are only considered during near-neutral conditions. The stability is344

assessed through the EC-derived Obukhov length L, and we omit strongly stable and unstable conditions345

by restricting measurements to |z/L| < 0.1. In addition to this filter, a series of other filtering steps is346

applied to ensure high quality data. For completeness, we list the filters briefly here, but refer the reader347

to Radić and others (2017) for a more detailed explanation of the filters. The filtering steps employed are:348

1. Wind direction filter: Restrict incident wind direction to ±45° of the central axis of the EC sensor.349

2. Temperature filter: Restrict measurements to T (z) > 1 °C as errors in deriving roughness lengths are350

comparatively large for small temperature gradients.351

3. Realistic value filter: restrict z0,v and z0,T to between 10−7 m and 1m.352

These filtering steps are applied to all EC-derived fluxes, regardless of the processing method used (30 min,353

MRD, or CPD) prior to calculating the roughness lengths.354

355

To account for the suppression of turbulence and reduction of flux due to the prevalent strong near-

surface stratification, we employ the bulk Richardson correction when calculating eq. 8. Following Webb

and others (1980), the exchange coefficients of eq. 9 become

Ci = κ/ ln(z/z0,i)(1− 5Rib), (13)
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where Rib is the bulk Richardson number, calculated as:

Rib = gz(T (z)− T0)
T (z)u(z)2 , (14)

with temperature expressed in Kelvin, and gravitational acceleration g = 9.81 ms−2. To evaluate the per-356

formance of the modelled QH relative to EC-derived QH , we compute a root-mean-square error (RMSE),357

correlation (r), and mean bias error (MBE) for each of the three heights. The EC-derived QH and u∗, as358

well as the roughness lengths, are calculated using the three processing methods (30 min averages, 1 min359

averages, and CPD) as well as the ellipse filtering method for the presence of the WSM. All fluxes are360

averaged to 30 min for ease of comparison with previous studies, regardless of the processing method used.361

362

To assess uncertainties due to measurement errors in the calculations of roughness lengths and sensible363

heat flux we follow the standard methods for error propagation of multivariate functions (Bevington and364

others, 1993). To quantify error in the roughness lengths, we assume constant measurement errors in u and365

T of δu = 0.3 m s−1 and δT = 0.1 °C, respectively (table 1). From Laubach and Kelliher (2004), we assume366

relative errors in measured u∗ and w′θ′ of 5 %. Once we quantify the relative errors in roughness lengths367

for each 30 min interval, we determine the mean relative error in z0,v and z0,T for the whole observational368

period. These errors, together with the errors in u and T , are then propagated in the calculation for QH369

(eq. 8).370

RESULTS371

Clusters of flow regimes372

For a summary of the meteorological conditions observed over the study period, we refer to fig. S1 and373

accompanying text. Here we first present the results of our clustering algorithm, as the evaluation of374

measured and modelled fluxes will be performed across these clusters, as well as for the entire observa-375

tional period. The first four of the 15 modes of PCA are found to explain 97 % of the variance in the376

mean data, enabling a significant reduction of dimensionality (fig. S2). The first mode (explaining 58 % of377

variance) is mainly represented by the variability in the downslope wind speed (u) and temperature (T )378

at all three measurement heights. The first mode displays positively correlated downslope wind speed and379

wind shear, temperature, and temperature gradient. The second mode (19 % of variance) shows downslope380
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Fig. 4. Mean vertical profiles of wind speed (top panel) and temperature (middle panel) for each of the six flow

regimes (clusters). Frequency of occurrence (f) of each regime over the observational record is above each column.

Shaded regions show the standard deviation derived from the measurements associated with each cluster. Number of

times (counts) each regime is observed as a function of time of day (bottom panel). Black lines are the raw counts and

colored lines show the smoothed curves (running averages). Time of day is given in local time (Mountain Standard

Time, UTC −7 h).
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wind speed and wind shear anticorrelated with temperature and temperature gradient. The third mode381

(11 % of variance) shows correlated cross-slope wind and wind shear, and the fourth mode (8 % of variance)382

shows anticorrelated temperature and temperature gradient. Although we perform PCA on u, v, and T at383

three heights and two finite differences per variable, we find similar results – in terms of wind speed and384

temperature carrying the bulk of the variance – when only inputting into PCA one measurement height385

and one finite difference per variable. The variance percentages differ slightly (up to 5% for the first mode),386

but the key features of each eigenvector are the same. Similar results are obtained when the same analysis387

is performed on mean values in each subinterval established through MRD and CPD. We initially included388

slope-normal velocity w as an input variable, but after analyzing the results, found that variations in w389

between regimes were small and not significant until higher-order modes, which explained little variance.390

Therefore, we omit w in the interest of simplicity.391

392

Performing hierarchical clustering on the data in the four-dimensional principal component space pro-393

duces six clusters, where the number of optimal clusters is determined from the dendrogram (fig. S3).394

For each regime (cluster) we plot the cluster-averaged wind profile and temperature profile, as well as the395

distribution of each cluster’s occurrence within a day (fig. 4). Downslope flow primarily originates from396

the northern arm of the glacier (fig. 1). Below we list the six regimes with their assigned names and briefly397

describe their key characteristics. The clusters are listed in descending order according to their frequency398

of occurrence over the observational period.399

‘Downslope’ regime: the most frequent regime (34 % of data points associated with this cluster) is400

characterized by persistent downslope winds (with mean 2 m wind speed of 4.0 ms−1) with moderate401

near-surface temperature gradients (mean gradient of 2.5 °C between 1 m and the surface). This402

regime occurs primarily (57% of the time) between midnight and noon (fig. 4).403

‘Strong downslope’ regime: the second most frequent regime (22 % of data) is most prominent between404

noon and midnight during clear-sky conditions. The regime displays strong downslope winds (mean405

2 m wind speed of 5.7 ms−1) and strong near-surface temperature gradients (mean gradient of 5.4 °C406

between 1 m and the surface) with small temperature gradients above 1 m (fig. 4). According to our407

ellipse filtering method applied to the data from this and the ‘downslope’ regime, the presence of a408

WSM is not detected within the first 3 m above the surface. However, this does not mean that the409

two regimes are not associated with deeper katabatic flow.410
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‘Katabatic’ regime: the third-most prevalent regime shows occasional ellipse-flattening at 3 m (ϑ <411

25° observed in 41 % of this regime), implying the presence of a nearby WSM not far above 3 m.412

This regime exhibits moderate temperature gradients (mean gradient of 3.4 °C between 1 m and the413

surface) with low wind speeds (mean 2 m wind speed of 2.0 ms−1; fig. 4). Due to the ellipse flattening414

indicating the presence of a WSM above 3 m, relatively weak winds, and strong temperature gradient,415

we call this regime katabatic.416

‘Cold synoptic’ regime: this regime (11 % of data) occurs during episodes associated with storm417

conditions (rainfall and snowfall) that took place in the middle of August. This regime is characterized418

by low wind speeds (mean 2 m wind speed of 1.8 ms−1) and a constant-with-height air temperature of419

approximately 0 °C (fig. 4). We label this regime as ‘cold synoptic’ since it coincides with the passage420

of cold fronts according to the synoptic pressure maps for this region (not shown).421

‘Shallow katabatic’ regime: this regime (9 % of data) is characterized by a WSM below 3 m and422

strong temperature gradients across the WSM (mean gradient of 3.4 °C between 1 m and 2 m; fig. 4).423

Two thirds of all shallow katabatics are observed between noon and midnight. An example of how424

CPD and ellipse flattening is used to observe the presence of a WSM in this regime is shown in fig.425

S4.426

‘Upslope’ regime: upslope flow accounts for the remainder of the data (5 % of data) and occurs most427

often late at night (fig. 4). This regime is only observed on seven days, with wind direction exclu-428

sively up-glacier, strong near-surface wind gradients and moderate temperature gradients. Note that429

because of the alignment of the IRGASON sensor to measure downslope wind, the EC measurements430

at 1 m are likely not valid for this regime.431

We also test the use of different numbers of clusters according to the same dendrogram (fig. S3).432

Adding a seventh and eighth cluster splits the cold synoptic regime into three different regimes that only433

vary slightly in incident wind direction and temperature profile. These clusters occur infrequently and434

do not meet the ellipse filtering conditions or the general data quality filters of Radić and others (2017).435

Collapsing to five regimes instead of six aggregates upslope flow and cold synoptic regimes, despite one436

having neutral and the other stable stratification. Further collapsing to four clusters combines downslope437

and katabatic regimes, even though the latter shows the presence of a WSM near 3 m, so important infor-438

mation is lost by selecting fewer than six regimes. Thus, six is the optimal number of clusters required to439
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Fig. 5. Six clusters (#1 to #6), presented as a 2x3 self organizing map (SOM), of sensible heat flux profiles

computed from the data with all three eddy covariance (EC) processing methods: 30 min, multiresolution flux de-

composition (MRD), and changepoint detection (CPD). The SOM is calculated using profiles from all three processing

techniques, but the frequency of occurrence of each cluster is calculated separately for each processing technique. The

three percentages above each cluster present the frequency of occurrence of that cluster for 30 min, MRD, and CPD

processing, when read from left-to-right. The profiles with shaded grey backgrounds are those deemed theoretically

unphysical as the flux increases with increasing measurement height, either from 1 m to 2 m, or from 2 m to 3 m.

capture the dominant flow regimes in our measurements.440

441

Fluxes from processed EC data442

We process the EC data using the three methods with different interval lengths for covariance calculation443

(30 min, MRD and CPD) in order to derive sensible heat fluxes. MRD finds an optimal interval length of444

1 min in our measurements (fig. S5). In CPD, 30 min records are split, on average, into 10 subintervals,445

with two records that are split into 20 subintervals and two records that are not subdivided at all. The446

shortest subinterval is 12.5 s long, while the average subinterval is 3 min long (see fig. S6 for the distribu-447

tion of subintervals). The temporal variability in the optimal interval length is most pronounced in the448

‘katabatic’ and ‘shallow katabatic’ flow regimes, with averages of 14.0 and 12.7 subintervals per 30 min449

record, respectively. The variability is least pronounced in the ‘downslope’ and ‘strong downslope’ flow450
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Table 2. Median percentage change of sensible heat flux between heights, as calculated with the three flux process-

ing methods (30 min, MRD, CPD) for six identified flow regimes. Negative (positive) percentages denote a decrease

(increase) with increasing height. Shaded cells indicate that the difference between the compared fluxes is statistically

significant at a significance level of 0.05, as assessed by the two-sample t-test for equality of the means.

Processing Heights Downslope Strong Katabatic Cold Shallow Upslope

Method Compared Downslope Synoptic Katabatic

30 min 2 m→3 m −7.6 % −7.6 % 9.6 % −4.3 % 8.7 % 1.1 %

1 m→2 m 12.2 % 15.6 % 12.4 % 37.8 % −15.4 % 39.0 %

MRD 2 m→3 m −14.6 % −9.6 % −7.5 % −8.8 % −0.9 % −2.2 %

1 m→2 m 7.8 % 8.1 % 8.3 % 20.7 % −7.1 % 31.5 %

CPD 2 m→3 m −11.2 % −3.6 % −7.9 % −11.2 % −11.1 % −1.1 %

1 m→2 m −14.2 % −15.3 % −2.5 % 8.8 % −12.5 % 18.2 %
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Fig. 6. Differences in EC-derived sensible heat fluxes between 3 m and 2 m (black) and between 2 m and 1 m (red).

EC data are processed with 30 min method (top), MRD 1 min interval length (middle), and CPD (bottom). Fluxes

are smoothed with a 1-day moving average. Grey shading indicates periods where the flux at 2 m exceeds the flux

at 1 m by more than 10 %, provided the absolute value of the flux at 1 m exceeds 5 Wm−2.
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Fig. 7. Comparison of EC-derived sensible heat fluxes between 2 m and 3 m (top) and 1 m and 2 m (bottom) using

1 min MRD-derived interval length (left) and variable CPD interval lengths (right). Grey dots show all 30 min records

and pink dots show 30 min records that pass the ellipse filtering criteria. Statistical metrics (RMSE in Wm−2, mean

relative bias error (MRBE), and correlation coefficient r) are shown for both cases.
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regimes, with averages of 6.9 and 7.4 subintervals per 30 min record, respectively. In the case of the ‘cold451

synoptic’ regime, the standard 30 min method yields similar 30 min fluxes as MRD (1 min interval length)452

and CPD. Applying MRD to each flow regime provides similar results (fig. S8). The ‘katabatic’ and453

‘shallow katabatic’ flow regimes exhibit height-dependent gap scales and suggest a shorter mean averaging454

window, while the gap scales from the ‘downslope’ and ‘strong downslope’ regimes are longer and show455

little height dependence.456

457

Next, we examine how the characteristic profiles of measured sensible heat flux depend on the flux458

processing method using SOMs. After testing different numbers of clusters (size of the SOM), we settle on459

a 2x3 SOM, i.e. a map showing six characteristic flux profiles determined from all three processing methods460

(fig. 5). We expect theoretically physical profiles of sensible heat flux in the surface layer to show either461

a very small dependence on height, or a monotonic decrease with increasing height. Clusters (nodes) #2462

and #6 of the SOM fit these criteria of a physical flux profile, with node #2 showing a small dependence463

on height and node #6 showing a monotonic decrease (fig. 5). The remaining profiles are theoretically464

unphysical, with nodes #1 and #3 showing non-monotonic flux profiles, and nodes #4 and #5 showing465

fluxes that increase significantly as a function of height. Thus, we hypothesize that these profiles are likely466

observed due to inadequate EC data processing when determining EC-derived QH . As each observation467

is associated with one cluster (characteristic flux profile), we calculate the frequency of occurrence of each468

cluster across the dataset from each processing method separately. For 30 min averages, only 33 % of all469

observations are associated with the theoretically physical profiles (22 % with node #2 and 11 % with node470

#6). For the MRD method, 46 % of all observations are associated with the theoretically physical profiles471

(34 % with node #2 and 12 % with node #6). Finally, when processing fluxes with CPD, 76 % of all472

observations are associated with the theoretically physical profiles (53 % with node #2 and 23 % with node473

#6).474

475

To further look into the differences in profiles across the three processing methods, we analyze differences476

in the daily running mean ofQH between a pair of heights, i.e. QH(3 m)−QH(2 m), andQH(2 m)−QH(1 m),477

over the whole observational period (fig. 6). Calculating fluxes with the 30 min method, the positive gra-478

dient of QH between 1 m and 2 m has a maximum of 31.2 Wm−2. In comparison, using MRD gives a479

maximum positive gradient of 15.2 Wm−2, and processing with CPD gives a maximum positive gradient of480
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4.6 Wm−2. The percentage increase of QH between 1 m and 2 m exceeds 10 % for 36.0 % of the record when481

processing with 30 min averages, 28.6 % of the record when processing with 1 min averages, and 5.7 % of482

the record when CPD is used.483

484

We also compare the percentage change of sensible heat flux with height when fluxes are averaged across485

each of the six identified flow regimes (table 2). Looking across all the regimes, the 30 min method yields486

heat fluxes that, on average, increase between 1 m and 2 m, but decrease between 2 m and 3 m. A similar487

pattern with a maximum flux at 2 m is observed when EC data are processed with the MRD method (1 min488

interval length). When data are processed using CPD, fluxes are found to decrease monotonically with489

height in the downslope, strong downslope, katabatic, and shallow katabatic regimes. According to the490

CPD method, the differences in QH between heights is shown to be statistically significant (to a significance491

level of 0.05) in each of these four regimes except between 1 m and 2 m in the katabatic regime. The cold492

synoptic regime does not show a statistically significant difference in QH between heights. However, we493

note that the mean sensible heat flux in the cold synoptic regime is approximately 3 Wm−2, so the small494

absolute differences in QH present as large relative differences. The upslope regime shows a statistically495

significant flux increase between 1 m and 2 m for all processing methods, but the flow in the upslope regime496

at 1 m is obstructed by the quadpod, making the EC-derived QH at 1 m likely erroneous.497

498

Fluxes from filtered EC data499

Here, we present the results of our ellipse filtering method that ensures the EC-derived fluxes are represen-500

tative of surface fluxes: The ellipse filtering is computed with both MRD and CPD at each measurement501

height. Applying ellipse filtering criteria on EC data processed with ϑlow = 25°, ϑhigh = 65°, ηlow = 1.3502

retains 52 %, 42 %, and 34 % of the high frequency data at 1 m, 2 m, and 3 m, respectively, for both CPD503

and MRD. Here, the ellipse filtering omits the following data scatters: scatters with negative ellipse angle504

(corresponding to fig. 3.C), flat ellipse angle (fig. 3.B), or ambiguous ellipse angle because η ≈ 1 (fig. 3.D).505

This filter additionally omits data with vertical ellipse orientation (wind speed varies while temperature506

does not), and more ambiguous wind-temperature scatters that do not resemble an ellipse (e.g., η = 1,507

ϑ = 0). Examples of the characteristic u′ − T ′ scatters from our EC measurements are presented in fig.508

S7 in the supplementary material, where T ′ and u′ are computed as deviations from the 30 min means.509
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Although the percentage of total data that pass the ellipse filtering criteria is similar between MRD and510

CPD, the two methods do not agree on which 30 min records pass the filtering criteria. For example, the511

overlapping 30 min records for which at least 25 min of the record pass the ellipse filtering criteria for both512

CPD and MRD occurs 82 % of the time at 1 m, 88% at 2 m and 92% at 3 m. We also analyze how well513

the identified periods with WSM height below 3 m, according to the ellipse filtering method, agree with514

those from standard wind speed measurements at three heights. We find that for 97% of those time seg-515

ments, according to the ellipse filtering method, the measured wind profiles also indicate a WSM below 3 m.516

517

As the goal of ellipse filtering is to ensure measurements reflect surface conditions, we expect measure-518

ments that pass ellipse filtering to have fluxes which are roughly constant in height (variations less than519

10 %), which is one of the conditions defining a surface boundary layer (Stull, 1988). Here, we compare520

the EC-derived QH , and its variability with height, as derived with and without the ellipse filtering. Using521

MRD (1 min interval length), the relative mean bias error between QH at 2 m and 3 m without the data522

filtering is 22.5 %, while after the filtering it is decreased to 10.2 % (fig. 7). For the CPD method, the523

same relative MBE is decreased from 28.4 % to 3.4 %, implying that the ellipse filtering is more effective524

when applied with CPD than with the MRD method. When applied to measured QH between 1 m and525

2 m, both MRD and CPD produce relative mean bias error of less than 10 %, although MRD yields fluxes526

that reach maximum values among the three heights at 2 m, while for CPD the maximum fluxes are ob-527

served at 1 m, as is theoretically expected. These findings imply that CPD with ellipse filtering is the528

most successful among the methods in identifying the data whose fluxes vary by less than 10 % in the first529

3 m above the surface. In the following analysis, we restrict the use of ellipse filtering to CPD intervals only.530

531

Over the observational period, the difference between the mean energy available for surface melting, as532

assessed by a surface energy balance model at our site (see Supplementary Material for details), increases533

by 0.2% when the EC-derived QH is used with CPD method at 1 m relative to the EC-derived QH with534

standard 30 min method at 2 m. At daily scales, however, the difference in EC data processing can lead to535

a difference in estimated melt energy by up to 5%, while at hourly scales the difference can be up to 20%.536

We also compared the modelled melt to the observed melt as inferred from the surface lowering measured537

by the SR50 sonic rangers. Relative to the standard (30 min) EC-derived QH at 2 m, we find that the538

improved (CPD with ellipse filtering) estimate of QH at 2 m can reduce the bias between modelled and539
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Fig. 8. Scatter plots of 30 min averaged u versus EC-derived u∗, each at 1 m (bottom), 2 m (middle), and 3 m (top)

for the four EC processing techniques: 30 min, MRD (1 min), CPD, and ellipse-filtered CPD. Grey points indicate

all data and pink points denote the data that pass the filtering criteria of Radić and others (2017, percentage given

by np). In the fourth column, np is the percentage of data that pass the filtering of Radić and others (2017) and

the ellipse filtering criteria. The dashed black line shows the average u∗ for each bin interval of u, with a bin width

of ∆u = 0.5 ms−1. The red line shows the trendline derived from a linear regression on the pink points, while a

coefficient of determination (R2) for the fit is indicated in the bottom-right corner of each plot.

observed melt by 10-25% at sub-daily scales.540

Modelled versus EC-derived fluxes541

In this section, we show the results of the bulk method evaluation, first performed over the whole dataset542

and then across the six flow regimes. We start, however, by analyzing the relationship between measured543

wind speed (u) and EC-derived friction velocity (u∗) because the bulk method for assessing the momentum544

flux is grounded in this relationship. According to eq. 7, there should be a linear relationship between the545

two variables, with the slope equal to the dimensionless exchange coefficient Cv. We assess when the u−u∗546

scatter resembles this linear relationship depending on the processing method used (30 min, MRD, CPD,547

and CPD with ellipse filtering) at each measurement height (fig. 8). The results show that the linear fit548

to u − u∗ scatter is performs worse as the measurement height increases from 1 m to 3 m (fig. 8). At all549

heights, however, the linear fit substantially improves if ellipse filtering is applied to the CPD-processed550

data (R2 improving by at least 20 % relative to 30 min averages).551
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Fig. 9. Probability density function (PDF) of EC-derived momentum (z0,v; red) and temperature (z0,T , blue)

roughness lengths for four EC processing techniques at 1 m (bottom), 2 m (middle), and 3 m (top). The vertical

dashed line denotes the mean in log-space and temporal variability is given by ± one standard deviation.

552

Next, we compute the roughness lengths z0,v (eq. 10) and z0,T (eq. 12) from the data that pass the553

filters listed in the Methods section. At 1 m, the mean logarithmic z0,v ranges between 10−2.8 m and554

10−3.1 m depending on processing method used (fig. 9). Above 1 m, estimates of z0,v vary more, ranging555

between 10−2.5 m and 10−3.5 m, depending on the EC processing technique and height. The mean z0,T varies556

between 10−4.8 m and 10−5.2 m among the three heights. The scatter (standard deviation from the loga-557

rithmic mean) in momentum and temperature roughness length increases with height for all EC processing558

techniques. When testing the performance of the bulk method in simulating sensible heat fluxes, for each559

height and each EC processing method we use the mean estimates of log z0,v and log z0,T as derived in fig. 9.560

561

We calculate the mean relative error, i.e. the ratio in the error of roughness length to the roughness562

length, δz0
z0

, where δz0 is derived through the propagation of errors as explained in the Methods section. For563

momentum, the mean δz0,v

z0,v
varies between 0.60 and 0.75 depending on measurement height and processing564

technique selected, with no height nor processing technique providing a systematic advantage over any565

other. A standard deviation in the relative error, as assessed over the whole observational period, varies566

between 0.1 and 0.25. A mean momentum roughness length of z0,v = 0.001 m with a mean relative error567
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Fig. 10. Modelled versus observed (EC-derived) 30 min sensible heat flux at 1 m (bottom), 2 m (middle), and 3 m

(top). Solid lines are the bin-averaged QH , calculated by averaging the modelled fluxes that fall within each 5 Wm−2

bin of observed fluxes. Dashed lines are the 1:1 lines. Light grey vertical lines show propagated measurement error.

Root-mean-square error (RMSE, Wm−2), mean bias error (MBE, in Wm−2), and correlation (r) are shown for each

case.

of 0.75 can be expressed as 10−3.0±0.7 m. The mean δz0,T

z0,T
varies between 0.45 and 0.6, with a standard568

deviation in the relative error ranging between 0.05 and 0.15. We note that the magnitude of the errors in569

z0,v and z0,T is of the same order of magnitude as the temporal variability (one standard deviation) in our570

EC-derived roughness lengths (fig. 9). We use the mean relative error of 0.69 for z0,v and 0.51 for z0,T in571

the assessment of errors in modelled QH by the bulk method.572

573

The evaluation of the bulk Richardson method in simulating QH over the whole observational period574

(eq. 13) shows the worst performance when the standard 30 min covariances are used at each height (fig. 10).575

QH is overestimated at each height, with the largest overestimation (MBE = 13.0 Wm−2) at 3 m, followed576

by 2 m (MBE = 7.8 Wm−2), and then by 1 m (MBE = 4.3 Wm−2). As EC-processing complexity increases577

(from 30 min to MRD to CPD to ellipse-filtered CPD), the overestimation in QH decreases at all heights, to578

a minimum of 7.1 Wm−2, 3.0 Wm−2, and 0.6 Wm−2 at 3 m, 2 m, and 1 m respectively when applying ellipse-579

filtered CPD. A similar trend is observed in RMSE: the error decreases closer to the surface (e.g., from580

27.1 Wm−2 at 3 m to 14.1 Wm−2 at 1 m using 30 min averages) and as EC-processing complexity increases581

(e.g., from 14.1 Wm−2 using 30 min averages to 4.8 Wm−2 using ellipse-filtered CPD at 1 m). Similarly, the582
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Fig. 11. Modelled versus observed (EC-derived) 30 min sensible heat fluxes in each of the six flow regimes at all

three heights. Ellipse-filtered CPD is used for the EC-derived fluxes. Dashed line shows the 1:1 line. Light grey

vertical lines plotted for each point show estimated uncertainty in the modelled QH . Statistical metrics (RMSE in

Wm−2, MBE in Wm−2, and r) are shown for each case.

correlation coefficient (r) also increases closer to the surface and with increasing EC-processing complexity,583

with the smallest values of r = 0.76 at 3 m for the 30 min method, and the highest values of r = 0.98 at584

1 m for CPD and ellipse-filtered CPD.585

586

In each of the regimes, the correlation between EC-derived and modelled QH increases as the mea-587

surement height drops from 3 m to 1 m (fig. 11). In the ‘downslope’ and ‘strong downslope’ regimes, both588

RMSE and MBE between EC-derived and modelled QH decrease as the height drops from 3 m to 1 m, while589

in the ‘katabatic’ and ‘shallow katabatic’ regimes, only RMSE decreases as the height drops, although we590

note that there are very few records that pass the ellipse filtering criteria in the shallow katabatic regime591

at 2 m and 3 m. Although the absolute MBE increases slightly closer to the surface in the katabatic regime592

(0.4 Wm−2 at 2 m to −1.3 Wm−2 at 1 m), the correlation improves significantly (from 0.34 at 2 m to 0.78593

at 1 m).594
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DISCUSSION595

EC data processing and filtering596

In the comparison of three methods for covariance calculations (30 min, MRD, and CPD), we find that597

CPD best identifies appropriate flux window lengths for the whole observational period, as well as for the598

near-surface flow regimes. As our results demonstrate, the CPD processing yields profiles of heat fluxes599

that best agree with the theoretically expected profiles in the surface boundary layer. According to the600

clustering analysis with the SOMs (fig. 5), CPD yields the largest number of observations that resemble601

the theoretically expected characteristic profiles of QH . This result is also corroborated by analyzing the602

differences (and their statistical significance) in QH across the three measurement heights for each of the603

flow regimes. The same analysis also reveals that the conventional 30 min method for covariance calculation604

consistently performs the worst, i.e. yielding the smallest number of, and the least similarity with, the605

theoretically expected characteristic profiles of QH . While MRD performs better than the 30 min method,606

corroborating previous findings at glacier surfaces (e.g., Nicholson and Stiperski, 2020; Mott and others,607

2020), CPD is still the preferred method for several reasons, listed below.608

609

Firstly, in the presence of non-logarithmic wind speed profiles, (unfiltered) EC-derived fluxes are ex-610

pected to be highest near the surface and decrease as a function of height closer to the WSM. This the-611

oretically expected profile is most consistently observed with CPD, i.e. highest fluxes derived at 1 m and612

lowest fluxes measured at 3 m. On the other hand, MRD consistently calculates a flux that is maximized613

at 2 m. This finding is consistent across all flow regimes, except ‘shallow katabatic’. Although there have614

been reported differences in EC-derived fluxes between IRGASON and Gill sonic anemometers (e.g., Wang615

and others, 2016), we did not find any systematic bias during our sensor calibration and testing. Applying616

the correction from the previously reported differences between the two sensors (Wang and others, 2016)617

to the MRD data does not remove the unphysical flux maximum at 2 m. If these unphysical profiles are618

indeed an artifact due to measurements from different sensor manufacturers, then CPD may be a promising619

approach to circumvent this type of bias, but more targeted research is needed on this subject.620

621

Secondly, CPD gives varying optimal lengths throughout the observational period, while MRD pro-622

vides only one optimal length. As MRD calculates an optimal interval length in the frequency domain and623
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CPD calculates an optimal interval length in the time domain, CPD is better suited to operations that624

act in the time domain, such as computing time-varying fluxes. To enable MRD to detect more than one625

optimal length, we test the application of the method separately to each of the six flow regimes and derive626

regime-specific optimal averaging lengths. By doing so, however, we encounter some practical challenges627

in determining the optimal length from the MRD curves due to the absence of their ‘zero-crossings’ (fig.628

S8). In addition, some of the MRD-determined optimal interval lengths are counter-intuitive. For example,629

MRD determines the optimal interval length at 1 m to be 1 min for the cold synoptic regime, and 15 min for630

the strong downslope regime. However, in terms of reducing both MBE and RMSE in QH between heights,631

the strong downslope regime benefits more than the cold synoptic regime if covariances are calculated with632

1 min intervals (instead of 30 min).633

634

Another question which has not yet been directly addressed in previous studies is the representation635

of true surface heat fluxes by EC-derived fluxes at glacier surfaces. While some studies have deployed EC636

sensors at roughly 1 m above the glacier surface (Munro, 1989) assuming that measurements closer to the637

surface better represent true surface fluxes, many used the standard height of 2 m above the surface. Our638

results demonstrate that 1 m EC-derived fluxes are indeed more representative of surface fluxes than 2 m639

EC-derived fluxes due to the presence of shallow WSM at this site. We also conclude that 3 m EC-derived640

fluxes are the least representative of surface conditions. However, we advise caution in installing an EC641

sensor at 1 m above the surface, especially in conditions where: the surface is particularly rough and the642

sensor path length is large (Burba, 2013), the sensor cannot be positioned to avoid flow distortions (e.g.643

Geissbühler and others, 2000; Horst and others, 2016), or the post-processing steps to avoid frequency loss644

substantially reduce the amount of valid data (e.g. Moncrieff and others, 2004; Ibrom and others, 2007).645

Nevertheless, as we demonstrate that with our ellipse filtering method, it is possible to process the EC646

data, collected at or above the WSM, to obtain EC-derived fluxes that are representative of surface fluxes.647

The ellipse filtering method works best in combination with the CPD averaging method, as determined by648

the similarity in EC-derived fluxes among the three heights.649

650

We find that the visual guide of ellipses of u′ − T ′ scatter, as proposed by our filtering method, more651

clearly identifies WSM presence when compared to only looking at u′T ′ as in Grachev and others (2016),652

especially when using EC data from only one measurement height. Since Grachev and others (2016) sug-653

https://doi.org/10.1017/jog.2024.39 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.39


Lord-May and Radić: Calculating Fluxes on Glaciers 35

gested that both multilevel measurements of u′w′ and u′T ′ could be used to determine the height of the654

WSM, we additionally test the use of the ellipse filtering applied to u′−w′ scatter. We find that the results655

from u′ − w′, in terms of the detection of a WSM presence, do not always agree with the results from656

u′ − T ′, and more importantly do not always agree with wind profile measurements from standard wind657

sensors at our site. In comparison, these instances of disagreement between the WSM (below 3 m) detected658

through ellipse filtering on u′ − T ′ and through the measured wind profiles are rare (< 3% occurence).659

Recent high-resolution simulations of sub- and super-critical jets by Salinas and others (2021) show zones660

of negative shear production above and below the WSM in which u′w′ and ∂u
∂z are anticorrelated. These661

simulations may serve as an explanation for the observed poorer performance of filtering on u′−w′ scatter662

relative to u′ − T ′ scatter, although further analysis is required to confirm if negative shear production is663

being detected in our data.664

665

While the ellipse filtering method ensures that EC-derived fluxes are representative of the surface fluxes,666

the method can substantially reduce the amount of high-quality data obtained. The reduction in data is667

especially striking for the shallow katabatic regime: only 22% of EC-derived fluxes at 1 m are representative668

of surface fluxes. For the same conditions, 2 m (3 m) fluxes are representative of the surface only 4% (2%)669

of the time. On the other hand, in the strong downslope flow regime, 76%, 68%, and 57% of EC-derived670

fluxes are representative of surface fluxes, at 1 m, 2 m, and 3 m, respectively. By its design, ellipse filtering671

will retain more observations with higher fluxes during strong wind regimes and discard low fluxes during672

weak winds with near-surface WSM. Overall, the use of CPD with ellipse filtering, relative to the standard673

30 min method with no filtering, can lead to a difference in estimated melt energy by up to 20% on sub-daily674

scales. This difference is similar to the reported error in the SEB closure that used the standard 30 min675

covariance calculation in deriving QH at several mid-latitude glaciers (Fitzpatrick and others, 2019). Thus,676

at sub-daily timescales, the use of CPD with ellipse filtering can improve the assessment of sensible heat677

fluxes and simulation of surface melt.678

679

Bulk method performance680

The correct representation of surface fluxes by adequately processed EC data enables some new insights681

in the performance of the bulk methods. A few previous studies found that the standard bulk method682
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overestimates u∗ during shallow katabatics (e.g., Radić and others, 2017). This result is not surprising, as683

EC-derived u∗ approaches zero at the WSM. We show here that the EC-derived u∗ close to the WSM is684

not representative of the surface u∗, which features in the bulk method estimate of QH . The bulk method685

is designed to represent u∗ near the surface and not u∗ near the WSM. Thus, the systematic overestimation686

of sensible heat fluxes observed in previous studies is likely attributed to their reference data not being687

representative of the surface conditions, and not a failure in the bulk method as was previously proposed688

(e.g., Conway and Cullen, 2013; Radić and others, 2017). Although we derived these results using the689

bulk Richardson method, our key conclusions do not change when other commonly-used bulk methods690

are applied: Regardless of the flow regime, the bulk method performance in simulating QH is better if691

the measurements of temperature and wind speed are taken at 1 m above the glacier surface instead of692

at the standard 2 m height. More importantly, even for the measurement heights above 1 m and in the693

vicinity of a WSM, the bulk method is shown to perform well as long as the reference EC-derived fluxes694

are adequately processed, i.e. with the use of CPD and ellipse filtering.695

696

While improved processing of EC-derived heat fluxes leads to a better match with the modelled fluxes697

for each of the flow regimes, some biases between modelled and observed fluxes still remain. In particular,698

the bulk method overestimates QH during the ‘downslope’ and ‘strong downslope’ regimes, with the largest699

overestimation for measurements taken at 3 m. Likely, the overestimation stems from the misalignment of700

the observed scatter trend between u and u∗ and the linear relationship assumed by eq. 7. The observed701

linear trendline in the u − u∗ scatter does not have zero intercept as expected by eq. 7 and the mixing-702

length theory. Instead, the u − u∗ scatter would be better suited to a piece-wise linear, or ‘hockey stick’,703

fit where u∗ is roughly constant as u increases from zero until some velocity threshold is reached and then704

linearly increases with u beyond this velocity threshold. The ‘hockey-stick’ fit in u − u∗ scatter has been705

observed previously over non-glaciated surfaces (often above 10 m) and is attributed to the suppression706

of turbulence generation due to strong stratification (e.g., Sun and others, 2012, 2015; Freundorfer and707

others, 2019; Grisogono and others, 2020; Sun and others, 2020). Since the linear fit in the u− u∗ scatter708

determines the value of Cv in eq. 7 which then features in the calculation of QH in eq. 8, it is possible709

to empirically adjust this fit to a piecewise-linear fit that better represents the ‘hockey stick’ pattern and710

thus improve the calculations of Cv and QH . We attempted this bias correction, which led to a decrease711

in MBE for QH to <3 Wm−2 from the original 13 Wm−2 observed at 3 m using 30 min mithout without712
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ellipse filtering. However, as the bias correction is empirical and likely site-specific, for ease of comparison713

with previous studies and with little understanding of what physically drives this bias, we refrain from714

proposing these corrections to glacier sites in general.715

716

The roughness lengths at ice-exposed glacier surfaces have been shown to vary substantially from one717

location to the next (e.g. van den Broeke and others, 2005; Brock and others, 2010). As an important718

control on turbulent flux generation, the roughness lengths require accurate representation in the bulk719

method. Our EC-derived z0,v = 10−2.8±0.7 m and z0,T = 10−5.0±0.7 m, using the 30 min method for pro-720

cessing EC data at 2 m, are in line with previous findings over glaciers with bare ice exposed (e.g., Munro,721

1989; Brock and others, 2006; Fitzpatrick and others, 2019). The ratio of z0,v/z0,T ≈ 100 is also consistent722

with previous findings (Hock, 2005). Nevertheless, the estimates of roughness lengths are shown to vary723

by up to an order of magnitude depending on the measurement height and the EC processing method724

used. For example, using CPD with ellipse filtering applied to data at 2 m yields z0,v = 10−3.4±0.6 m and725

z0,T = 10−5.2±0.6 m. We note that the temporal variability (one standard deviation) in these estimates726

across the whole observational period is of the same order or larger than the uncertainty of individual727

30 min estimates of z0,v and z0,T . The relatively large temporal variability, especially for z0,v, is likely728

due to the fact that z0,v reflects the total dynamic effect of the surface on momentum transfer, and thus729

may not represent solely the physical surface roughness that is relatively constant over the observational730

period (Sun and others, 2020). As EC-derived roughness lengths are the most commonly used reference731

values when evaluating other techniques for deriving z0,v, such as those developed from photogrammetry732

and remote sensing (Fitzpatrick and others, 2019), the relatively large sensitivity in z0,v to the choice of733

EC data processing method and measurement height should be taken into consideration.734

735

CONCLUSIONS736

The primary objectives of this study are to: (1) improve the EC data processing methods, targeted for737

one-level measurements, to ensure the validity of calculated fluxes for conditions such as highly variable738

flow and low-level wind speed maxima, and (2) evaluate the most commonly used bulk methods relative to739

the EC-derived fluxes under different near-surface flow regimes. To that end, standard meteorological and740

EC measurements were collected at three different heights (1 m, 2 m, and 3 m) at a site on the Kaskawulsh741
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Glacier in the Yukon over a two-month period in summer 2019. We summarize our key findings as follows:742

The length of the time window over which covariances between wind speed and temperature are743

computed from EC data has a substantial impact on the EC-derived fluxes at hourly and daily744

scales. By intercomparing the three methods – standard 30 min method, 1 min interval length as745

derived by Multiresolution-Flux Decomposition (MRD), and our proposed Changepoint Detection746

(CPD) method – we find that the CPD method best determines the optimal averaging window that747

varies throughout the observational period and produces physically realistic near-surface profiles of748

sensible heat flux. Although the difference between MRD and CPD is small for observations taken749

at 1 m, the differences are larger at 2 m and 3 m. As most previous studies on glaciers have installed750

sonic anemometers at or above 2 m, CPD may be able to improve the flux measurements of these751

previous studies.752

We propose a filtering method applied to one-level EC data to ensure EC-derived fluxes are computed753

from measurements representative of surface conditions. The filtering method can successfully remove754

the data ‘contaminated’ by the presence of the wind speed maximum at or in the vicinity of the755

measurement height.756

With the CPD and filtering methods applied to the EC data, the agreement between modelled and757

EC-derived sensible heat fluxes is substantially improved relative to standard processing methods,758

at each measurement height. This agreement also holds during the shallow katabatic flow regime,759

directly contradicting previous findings which highlighted the failure of the bulk method and asked760

for improved theory. We show that the standard theory works provided EC data are adequately761

processed, and provide a processing procedure to ascertain when the bulk method can be relied762

upon, even in the presence of highly variable wind speed and a maximum wind speed at or below the763

measurement height.764

EC measurements taken at 1 m above the surface more frequently pass our filtering criteria than765

those at 2 m or 3 m, implying that measurements at 1 m are more representative of surface conditions.766

Relative to the measurement heights above, the bulk method at 1 m shows the least scatter, the best767

correlation, and the smallest bias from the reference EC-derived fluxes for the whole observational768

period, as well as for different flow regimes.769
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Our results highlight that future assessments of turbulent heat fluxes on glaciers should prioritize ade-770

quate EC data processing that goes beyond the standard practices initially established for non-glacierized771

flat terrain. Although the results presented in this study show an improvement in both deriving turbulent772

heat fluxes from EC data and establishing a better agreement between EC-derived fluxes and those mod-773

elled through bulk methods, it remains to be seen how transferable these findings are to other glaciers.774

As Kaskawulsh is a very large mountain glacier, we suspect the observed near-surface flow regimes to775

differ from those at smaller mountain glaciers, and we suggest a similar analysis be performed prior to a776

long-term installation of EC systems at glacier surfaces.777
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APPENDIX972

AWS Automated weather station
CPD Changepoint detection
EC Eddy covariance
MBE Mean bias error
MRBE Mean relative bias error
MRD Multiresolution-flux decomposition
PCA Principal component analysis
PDF Probability density function
RMSE Root-mean-square error
SOM Self organizing map
WSM Wind speed maximum
C Cost function
Ct Heat exchange coefficient
Cv Momentum exchange coefficient
cp Specific heat capacity of air
g Gravitational acceleration
k Radial basis kernel
L Obukhov length
Pr Prandtl number
QH Sensible heat flux
R2 Coefficient of determination
Rib Bulk Richardson number
r Correlation coefficient
T Air temperature
T0 Surface temperature
u Downslope wind speed
u∗ Friction velocity
v Cross-slope wind speed
w Slope-normal wind speed
z Slope-normal coordinate
z0,v Momentum roughness length
z0,t Temperature roughness length
δ_ measurement error
η Covariance ellipse eccentricity
θ Potential temperature
ϑ Covariance ellipse angle
κ von Kármán constant
ξ Radial basis kernel bandwidth parameter
ρa Air density
τ Elements in time series
φ Feature maps

Table 3. Definitions of abbreviations and variables
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