THE NUMBER OF GENERATORS OF A LINEAR p-GROUP

I. M. ISAACS

Let G be a finite p-group, having a faithful character χ of degree f. The object of this paper is to bound the number, $d(G)$, of generators in a minimal generating set for G in terms of χ and in particular in terms of f. This problem was raised by D. M. Goldschmidt, and solved by him in the case that G has nilpotence class 2. (See [1, Lemma 2.8].) We obtain the following results:

Theorem A. Let χ be a faithful character of the p-group, G. Let $f=\chi(1)$ and let s be the number of linear constituents of χ. Then
(a) $d(G) \leqq(3 / p)(f-s)+s$. Also,
(b) if $p \geqq 3$ and G is non-abelian, then $d(G) \leqq f-p+3$.

Theorem B. Let G be a p-group and let $\chi \in \operatorname{Irr}(G)$ be faithful. Then

$$
d(G) \leqq \frac{f+(f / p)+2 p-4}{p-1}
$$

It is shown by examples that the inequalities in Theorem A are best possible, and the one in Theorem B is nearly so.

1. Suppose χ is a faithful character of the p-group, G, and that $\chi=\psi+\lambda$, where λ is linear. Let $N=\operatorname{Ker} \psi$ so that λ_{N} is faithful and hence N is cyclic. It follows that $d(G) \leqq d(G / N)+1$. By repeated application of this argument, we see that in order to prove Theorem A (a), it suffices to assume that χ has no linear constituents and show that $d(G) \leqq 3 f / p$. Observe that part (b) of this theorem follows immediately from (a).

We would like to use reasoning similar to this in order to reduce the problem of bounding $d(G)$ to the situation of Theorem B, namely where χ is irreducible. In general, G is a subdirect product of the irreducible linear groups determined by the irreducible constituents of a faithful character. Unfortunately, if N_{1}, $N_{2} \triangleleft G$ with $N_{1} \cap N_{2}=1$, it does not follow that $d(G) \leqq d\left(G / N_{1}\right)+$ $d\left(G / N_{2}\right)$. In order to overcome this difficulty we need to strengthen the theorem we are trying to prove.

Definition 1 . Let G be a p-group and let $U \subseteq G$. Then

$$
d_{G}(U)=d(U /(U \cap \Phi(G)))
$$

Received August 30, 1971. This research was supported by NSF Grant GP-29432.

Instead of assuming that χ is faithful on G and bounding $d(G)$, we shall assume $U \triangleleft G$ and χ is a character of G with χ_{U} faithful and we shall bound $d_{G}(U)$. Since $d_{G}(G)=d(G)$, the new problem includes the old one.

Lemma 2. Let G be a p-group with $U \subseteq G$.
(a) If $U \subseteq H \subseteq G$, then $d_{G}(U) \leqq d_{H}(U)$ and $d_{G}(U) \leqq d_{G}(H)$.
(b) If $V \subseteq U$ and $V \triangleleft G$, then $d_{G}(U)=d_{G}(V)+d_{G / V}(U / V)$.

Proof. (a). Since $H / H \cap \Phi(G)$ is elementary, $\Phi(H) \subseteq \Phi(G)$ and $U \cap \Phi(H) \subseteq U \cap \Phi(G)$. It follows that $d_{H}(U) \geqq d_{G}(U)$. Also, $d_{G}(U)=$ $d(U \Phi(G) / \Phi(G)) \leqq d(H \Phi(G) / \Phi(G))=d_{G}(H)$.
(b). Let $A=U \cap V \Phi(G)$. Then $U \supseteq A \supseteq U \cap \Phi(G)$ and $d_{G}(U)=$ $d(U / A)+d(A /(U \cap \Phi(G)))$. Now $A=V(U \cap \Phi(G))$ and hence $A /(U \cap \Phi(G)) \cong V /(V \cap \Phi(G))$. Thus $d\left(A /(U \cap \Phi(G))=d_{G}(V)\right.$. Finally, we have $(U / V) \cap \Phi(G / V)=(U \cap V \Phi(G)) / V=A / V$. Therefore, $d_{G / V}(U / V)=d((U / V) /(A / \mathrm{V}))=d(U / A)$. The proof is complete.

Corollary 3. Let G be a p-group and let $U=N_{0} \supseteq N_{1} \supseteq \ldots \supseteq N_{n}=1$ where $N_{i} \triangleleft G$ for $1 \leqq i \leqq n$. Then

$$
d_{G}(U)=\sum_{i=1}^{n} d_{G / N_{i}}\left(N_{i-1} / N_{i}\right)
$$

Proof. Repeated application of part (b) of the lemma yields the result.
Next, we wish to establish appropriate bounds when $\chi(1)=p$. The following lemma is well known and is stated here without proof.

Lemma 4. Let $A \triangleleft G$ be abelian with G / A cyclic. Let $A g$ be a generator of G / A. Then
(a) $G^{\prime}=\left\{a^{-1} a^{g} \mid a \in A\right\}$ and
(b) $\left|G^{\prime}\right||A \cap \mathbf{Z}(G)|=|A|$.

If χ is a character of a group, G, then $\operatorname{det} \chi$ is the linear character of G obtained by taking the determinant of any representation of G which affords χ.

Lemma 5. Let G be a p-group with abelian $A \triangleleft G$ such that G / A is cyclic. Let $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=p^{e}$ and suppose χ_{A} is faithful. Then
(a) $d_{G}(A) \leqq e+1$.

Also,
(b) if $\operatorname{det} \chi_{A}=1_{A}$, then $d_{G}(A) \leqq e$, and
(c) if A has exponent $\leqq p^{e}$ then $d_{G}(A) \leqq e$.

Proof. Let $Z=\mathbf{Z}(G) \cap A$. By Lemma 4, we have $\left|A: G^{\prime}\right|=|Z|$. Since χ is irreducible, we have $Z(\operatorname{Ker} \chi) / \operatorname{Ker} \chi$ is cyclic and thus Z is cyclic since χ_{A} is faithful. If $|Z| \leqq p^{e}$, then $|A /(A \cap \Phi(G))| \leqq\left|A: G^{\prime}\right| \leqq p^{e}$ and $d(A) \leqq e$. Therefore, (c) follows.

Now $\chi_{z}=p^{e} \lambda$ where λ is a faithful character of Z. We have $\operatorname{det} \chi_{z}=\lambda^{p e}$ and hence if $\operatorname{det} \chi_{z}=1_{z}$, it follows that $|Z| \leqq p^{e}$, and (b) now follows.

To prove (a), let C be the cyclic group of automorphisms of A induced by G / A. Since χ_{A} is faithful, C permutes the set of linear constituents of χ_{A} faithfully. This action is transitive, and hence regular and $|C| \leqq \chi(1)$. Let $\theta(a)=\Pi_{\sigma \in C} a^{\sigma}$ for $a \in A$. Then θ is an endomorphism of A and $\theta(a)=\theta\left(a^{g}\right)$ for $g \in G$. It follows that $G^{\prime} \subseteq \operatorname{Ker} \theta=K$. It is clear that $\theta(A) \subseteq Z$ and since $|A: K|=|\theta(A)|$ and $\left|A: G^{\prime}\right|=|Z|$, we have $\left|K: G^{\prime}\right|=|Z: \theta(A)|$ and $A / K \cong \theta(A)$ is cyclic. If $Z=\langle z\rangle$, then $\theta(z)=z^{|C|}$ and hence $|Z: \theta(A)| \leqq$ $|C| \leqq p^{e}$. It follows that $|K: K \cap \Phi(G)| \leqq p^{e}$ and $d_{G}(K) \leqq e$. Since $d_{G / K}(A / K) \leqq 1$, we have $d_{G}(A) \leqq e+1$ and the proof is complete.

Lemma 6. Let G be a p-group with $\chi \in \operatorname{Irr}(G)$ and $\chi(1)=p$. Let $U \triangleleft G$ and suppose χ_{U} is faithful. Then
(a) $d_{G}(U) \leqq 3$. Also,
(b) $d_{G}(U) \leqq 2$ if U is abelian, $\operatorname{det} \chi_{U}=1_{U}$ or U has exponent p, and
(c) $d_{G}(U) \leqq 1$ if U is abelian and either $\operatorname{det} \chi_{U}=1_{U}$ or U has exponent p.

Proof. Use induction on $|G|$. If there exists $H \subset G$ with $U \subseteq H$ and χ_{H} irreducible, then the result follows since $d_{G}(U) \leqq d_{H}(U)$. Supposing, then, that $U \subset G$, we may assume that the restriction of χ to every maximal subgroup containing U is reducible. It follows that χ vanishes on $G-U \Phi(G)$ and hence $\left[\chi_{U \Phi(G)}, \chi_{U \Phi(G)}\right]=|G: U \Phi(G)|$. If $|G: U \Phi(G)|>p$, then $\left[\chi_{U}\right.$, $\left.\chi_{U}\right]=p^{2}$ and $\chi_{U}=p \lambda$, where λ is a faithful linear character of U. In this case U is cyclic and $d_{G}(U) \leqq 1$.

Under the assumption that $U \subset G$, the remaining case is where $|G: U \Phi(G)|=p, G / U$ is cyclic, and U is abelian. In this case, Lemma 5 yields $d_{G}(U) \leqq 2$ and $d_{G}(U) \leqq 1$ if $\operatorname{det} \chi_{U}=1_{U}$ or U has period p.

The only remaining case is where $U=G$. Here χ is faithful, and there exists an abelian subgroup A of index p (since χ is a monomial character). By the earlier cases, $d_{G}(A) \leqq 2$ and $d_{G}(A) \leqq 1$ if $\operatorname{det} \chi_{A}=1_{A}$ or A has exponent p. The result now follows since $d_{G}(G)=d_{G}(A)+1$.
2. In this section we prove Theorems A and B by working with irreducible characters, χ, of G which are faithful upon restriction to $U \triangleleft G$. In order to obtain the desired bound we introduce another parameter and prove a somewhat stronger theorem.

Theorem 7. Let G be a p-group, $\chi \in \operatorname{Irr}(G)$ and $U \triangleleft G$ with χ_{U} faithful. Let $\chi(1)=f$ and let r be the number of (not necessarily distinct) irreducible constituents of χ_{U}. Set $b=(f+(f / p)+2 p-4) /(p-1)$. Then:
(a) $d_{G}(U) \leqq b$.
(b) If $r>1$, then

$$
d_{G}(U) \leqq b-\frac{(r / p)-1}{p-1}-1 .
$$

(c) If $\operatorname{det} \chi_{U}=1_{U}$, the inequalities in (a) and (b) may be replaced by strict inequalities.

Proof. Use induction on $|U||G|$. First note that if $f=1$, then $b>1$ and U is cyclic and the theorem holds. If $f=p$, then $b=3$. In this case the theorem follows from Lemma 6 . We therefore assume that $f \geqq p^{2}$.

If $r=1$, then χ_{U} is irreducible and since $d_{G}(U) \leqq d_{U}(U)$, we are done by induction if $U<G$. Assume then, that $U=G$ and let H be a maximal subgroup of G, chosen so that χ_{H} is reducible. Since $|H||G|<|G||G|$, the inductive hypothesis applies and we conclude that $d_{G}(H) \leqq b-1$ with strict inequality if det $\chi=1_{G}$. It follows that $d_{G}(G)=1+d_{G}(H) \leqq b$, again with strict inequality if det $\chi=1_{G}$. The theorem is now proved in this case.

Now suppose $r=p$. Choose a maximal subgroup, $H \supseteq U$. If χ_{H} is irreducible, we are done by applying the inductive hypothesis to H. We may assume, then, that $\chi_{H}=\theta_{1}+\ldots+\theta_{p}$, where the θ_{i} are conjugate irreducible characters of H. Since we are assuming $r=p$, we have $\left(\theta_{i}\right)_{U}$ irreducible for all i. On the other hand, since $f \geqq p^{2}, \theta_{1}(1) \geqq p$ and there exists a maximal subgroup, W, of H with $\left(\theta_{1}\right)_{W}$ reducible. It follows that $U \nsubseteq W$. Let λ be a linear character of H with kernel W and let $\psi=\lambda^{G}$ and $V=U \cap \operatorname{Ker} \psi$. Then $V \subseteq U \cap W \subset U$. Also, $\Phi(H) \subseteq W$ and $\Phi(H) \triangleleft G$, so that $\Phi(H) \subseteq \operatorname{Ker} \psi$ and consequently, U / V is elementary abelian. If ψ is reducible, then $W \triangleleft G, W=\operatorname{Ker} \psi$ and U / V is cyclic. If ψ is irreducible, there is a corresponding irreducible character $\hat{\psi}$ of G / V and $\hat{\psi}_{(U / V)}$ is faithful. It follows from Lemma 6 (c) that $d_{G / V}(U / V)=1$, and thus this is true in either case.

Since $V \subset U$, the theorem applies to bound $d_{G}(V)$. Since χ_{V} has at least p^{2} irreducible constituents, we have $d_{G}(V) \leqq b-2$, with strict inequality if $\operatorname{det} \chi_{U}=1_{U}$. Now $d_{G}(U)=d_{G}(V)+d_{G / V}(U / V)=1+d_{G}(V)$ and thus the theorem holds.

Finally, we assume that $r \geqq p^{2}$ and again choose a maximal $H \supseteq U$. As before, we may assume that $\chi_{H}=\theta_{1}+\ldots+\theta_{p}$. Let $\lambda_{i}=\operatorname{det} \theta_{i}$, let $\psi=\lambda_{1}{ }^{G}$ and let $V=U \cap \operatorname{Ker} \psi$. If ψ is reducible then $\operatorname{Ker} \psi=\operatorname{Ker} \lambda_{1}, U / V$ is cyclic and $d_{G / V}(U / V)=1$. If ψ is irreducible, then as before we let $\hat{\psi}$ be the corresponding irreducible character of G / V. Since $\hat{\psi}_{(U / V)}$ is faithful and U / V is abelian, Lemma $6(\mathrm{~b})$ yields $d_{G / V}(U / V) \leqq 2$. Now $\operatorname{det} \psi_{H}=\Pi \lambda_{i}=\operatorname{det} \chi_{H}$ and hence if $\operatorname{det} \chi_{U}=1_{U}$, it follows that $\operatorname{det} \hat{\psi}_{(U / V)}=1_{(U / V)}$ and $d_{G / V}(U / V) \leqq 1$ by Lemma 6(c).

Now let $K_{j}=\operatorname{Ker} \theta_{j}$ and let $N_{i}=V \cap \bigcap_{j=1}^{i} K_{j}$. Set $N_{0}=V$ and note that $N_{p}=1$ since χ_{V} is faithful. By Corollary 3 ,

$$
d_{G}(V) \leqq d_{H}(V)=\sum_{i=1}^{p} d_{H / N_{i}}\left(N_{i-1} / N_{i}\right) .
$$

Let r_{i} be the number of irreducible constituents of $\left(\theta_{i}\right)_{N i-1}$ and observe that $r_{i} \geqq r / p \geqq p$. Let $\hat{\theta}_{i}$ be the irreducible character of H / N_{i} corresponding to θ_{i} for $1 \leqq i \leqq p$. We have $\hat{\theta}_{i\left(N_{i}-1 / N_{i}\right)}$ is faithful and has trivial determinant since $N_{i-1} \subseteq V \subseteq \operatorname{Ker} \psi \subseteq \operatorname{Ker} \lambda_{i}$. It follows by the inductive hypothesis that

$$
d_{H / N i}\left(N_{i-1} / N_{i}\right)<\frac{(f / p)+\left(f / p^{2}\right)+2 p-4}{p-1}-\frac{\left(r_{i} / p\right)-1}{p-1}-1 .
$$

Since $f \geqq p^{2}$ and $r_{i} / p \geqq r / p^{2} \geqq 1$, the quantity on the right is an integer and we conclude

$$
d_{H / N i}\left(N_{i-1} / N_{i}\right) \leqq \frac{(f / p)+\left(f / p^{2}\right)+2 p-4}{p-1}-\frac{\left(r / p^{2}\right)-1}{p-1}-2 .
$$

Therefore we have

$$
\begin{aligned}
d_{G}(V) & \leqq \frac{f+(f / p)+2 p^{2}-4 p}{p-1}-\frac{(r / p)-p}{p-1}-2 p \\
& =\frac{f+(f / p)-p-(r / p)}{p-1}=b-\frac{(r / p)-1}{p-1}-3 .
\end{aligned}
$$

Combining this inequality with $d_{G / V}(U / V) \leqq 2$ and $d_{G / V}(U / V) \leqq 1$ if $\operatorname{det} \chi_{U}=1_{U}$, yields (b) and (c) in this case. The proof of the theorem is now complete.

Observe that Theorem B is a special case of Theorem 7(a) and has therefore now been proved. Also note that if $f \geqq p$, we have

$$
\frac{f+(f / p)+2 p-4}{p-1} \leqq \frac{3 f}{p}
$$

Proof of Theorem A. It has already been noted that it suffices to prove (a), and that, only when χ has no linear constituents. Let $\chi_{1}, \chi_{2}, \ldots, \chi_{n}$ be the distinct irreducible constituents of χ and let $K_{j}=\operatorname{Ker} \chi_{j}$ and $N_{i}=\bigcap_{j=1}^{i} K_{j}$. Then by Corollary $3, d(G)=\Sigma d_{G / N_{i}}\left(N_{i-1} / N_{i}\right)$ where $N_{0}=G$. By Theorem 7 applied to G / N_{i}, we have $d_{G / N_{i}}\left(N_{i-1} / N_{i}\right) \leqq 3 \chi_{i}(1) / p$. It follows that $d(G) \leqq$ $3 \chi(1) / p$ as desired.

We end this section with a corollary of Theorem 7. The bound given here will be shown to be sharp.

Corollary 8. Let G be a p-group and let $U \triangleleft G$ be abelian. Suppose $\chi \in \operatorname{Irr}(G)$ with $\chi(1)=f$ and χ_{U} faithful. Then $d_{G}(U) \leqq(f-1) /(p-1)+1$.

Proof. If $f=1, U$ is cyclic. Otherwise, apply Theorem 7(b) with $r=f$.
3. In this section we discuss some examples.

Theorem 9. The bounds given in Theorem A are sharp.
Proof. Let H be the central product of a non-abelian group of order p^{3} with a cyclic group of order p^{2}. Then $d(H)=3$ and H has a faithful irreducible character of degree p. Now let G be the direct product of $(f-s) / p$ copies of H and s copies of a cyclic group of order p. Then $d(G)=3(f-s) / p+s$ and G has a faithful character of degree f.

The direct product of one copy of H with $f-p$ cyclic groups of order p shows that the bound in (b) is the best possible.

Theorem 10. The bound given in Lemma 5(a) is sharp.
Proof. We need an example of a p-group G with $A \triangleleft G, A$ abelian, G / A cyclic, $\chi \in \operatorname{Irr}(G), \chi_{A}$ faithful, $\chi(1)=p^{e}$ and $d_{G}(A)=e+1$. The example is as follows.

Let $A=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \ldots \times\left\langle x_{e+1}\right\rangle$, where the order, $o\left(x_{i}\right)=p^{i}$. Define an automorphism, σ, of A by

$$
x_{i}{ }^{\sigma}=x_{i} x_{i+1}{ }^{p} \text { for } 1 \leqq i \leqq e
$$

and $x_{e+1}{ }^{\sigma}=x_{e+1}$. We claim that $o(\sigma) \leqq p^{e}$. Let $Z=\left\langle x_{e+1}\right\rangle$. Then σ acts on A / Z and this is the situation corresponding to the case $e-1$. By induction, then, $\sigma^{p^{p-1}}$ acts trivially on A / Z. Let $\theta=\sigma^{p^{p-1}}$ so that $a^{-1} a^{\theta} \in Z$ for all $a \in A$.

Now let $\bar{A}=A / \Omega_{1}(A)$. Then σ acts on \bar{A} and this too is the situation corresponding to $e-1$. Thus θ is trivial on \bar{A} and $a^{-1} a^{\theta} \in \Omega_{1}(A) \cap Z$ for all $a \in A$. If $a^{\theta}=a y$, then $y^{p}=1$ and $y^{\theta}=y$ so that $a^{\theta p}=a y^{p}=a$, and $o(\sigma) \leqq p^{e}$ as claimed.

Let G be the semi-direct product, $A \times \mid\langle\sigma\rangle$. It is clear that $G^{\prime}=\Phi(A)$ and hence $\left|A: G^{\prime}\right|=p^{e+1}$. By Lemma 4, $|A \cap \mathbf{Z}(G)|=p^{e+1}$. However, since $\langle\sigma\rangle$ acts faithfully on A, we have $\mathbf{Z}(G) \subseteq A$. Since $Z \subseteq \mathbf{Z}(G)$ and $|Z|=p^{e+1}$, it follows that $\mathbf{Z}(G)=Z$ is cyclic. Therefore, G has a faithful irreducible character χ with $\chi(1) \leqq|G: A| \leqq p^{e}$. Finally, since $G^{\prime}=\Phi(A)$, it follows that $d_{G}(A)=d(A)=e+1$. By Lemma $5(\mathrm{a}), \chi(1)=p^{e}$ and the proof is complete.

Theorem 11. Let E be an elementary abelian p-group of order $p^{k}, k \geqq 1$. There exists an abelian p-group, U, on which E acts so that
(a) $\mathbf{C}_{U}(E)$ is cyclic and
(b) $d(U /[U, E])=\left(p^{k}-1\right) /(p-1)+1$.

Before proving Theorem 11, we discuss some consequences. Let G be the semidirect product $U \times \mid E$. Then we have $G^{\prime}=[U, E]$ and $G / G^{\prime} \cong U /[U, E] \times E$. It follows that $d_{G}(U)=d(U /[U, E])=\left(p^{k}-1\right) /(p-1)+1$ and that $d(G)=d_{G}(U)+k$. Now $\mathbf{Z}(G) \cap U=\mathbf{C}_{U}(E)$ is cyclic, and thus there exists $\chi \in \operatorname{Irr}(G)$ with $\mathbf{C}_{U}(E) \cap \operatorname{Ker} \chi=1$. It follows that χ_{U} is faithful. Let $f=\chi(1)$ so that $f \leqq|G: U|=p^{k}$. On the other hand, Corollary 8 asserts that $d_{G}(U) \leqq(f-1) /(p-1)+1$. It follows that $f=p^{k}$. At this point we have proved

Corollary 12. The bound of Corollary 8 is sharp.

In the above situation, $f=|G: U|$ and it follows that U is a maximal abelian subgroup of G. Therefore, $\mathbf{C}_{U}(E)=\mathbf{Z}(G)$ and hence χ is faithful. Let $b=b(f)$ be the bound given in Theorem B. If $f=p$ or p^{2}, we see that $d(G)=b$. Although the above group, G, does not prove that the bound, b, is sharp; it does show that it is not far wrong, since for $f>1$ we have $d(G)>p b /(p+1)$.

Before proving Theorem 11, we need the following counting lemma.
Lemma 13. Let n and k be positive integers and let N be the number of k-tuples, $\left(x_{1}, \ldots, x_{k}\right)$ of integers, $0 \leqq x_{i} \leqq n$, such that $\Sigma x_{i} \equiv 0 \bmod n$. Then

$$
N=\frac{(n+1)^{k}-1}{n}+1
$$

Proof. We count the k-tuples with $\Sigma x_{i} \equiv 0 \bmod n$ according to the number, r, of entries equal to n. If $r=k$, there is one such k-tuple. If $r<k$, the number of k-tuples with the required property is $\binom{k}{r} F(r)$ where $F(r)$ is the number of $(k-r)$-tuples, $\left(y_{1}, \ldots, y_{k-r}\right)$, where $0 \leqq y_{i} \leqq n-1$ and $\Sigma y_{i} \equiv 0 \bmod n$.

We may identify the $n^{k-r}(k-r)$-tuples of integers $y_{i}, 0 \leqq y_{i} \leqq n-1$ with the elements of the direct product of $k-r$ cyclic groups of order n. Under this identification, the tuples, $\left(y_{1}, \ldots, y_{k-r}\right)$, with $\Sigma y_{i} \equiv 0 \bmod n$, correspond to the elements of the kernel of a homomorphism onto the cyclic group of order n. It follows that $F(r)=n^{k-r-1}$ and

$$
\begin{aligned}
N & =1+\sum_{r=0}^{k-1}\binom{k}{r} n^{k-r-1} \\
& =1+\frac{1}{n}\left((n+1)^{k}-1\right),
\end{aligned}
$$

as desired.
Proof of Theorem 11. We shall construct U as an (additive) subgroup of the group ring $R[E]=A$, where $R=\mathbf{Z} / p^{k+1} \mathbf{Z}$. Now E acts on A by right multiplication and $\mathbf{C}_{A}(E)=R\left(\sum_{x \in E} x\right)$, a cyclic group. Therefore, it suffices to find a subgroup $U \subseteq A$ which is invariant under E (i.e., U must be an ideal) such that $d(U /[U, E])=\left(p^{k}-1\right) /(p-1)+1$.

First we observe that for $x \in E$, we have $(x-1)^{p}=p \sum_{i=1}^{p-1} r_{i}(x-1)^{i}$ for suitable $r_{i} \in R$. This is so because of the polynomial identity $X^{p}-(X+1)^{p}+$ $1=p \sum_{i=1}^{p-1} m_{i} X^{i}$ where $m_{i}=-\binom{p}{i} / p \in \mathbf{Z}$. Substituting $x-1$ for X yields the required result.

Next we establish some notation. Let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a fixed set of generators for E. Let $\mathscr{S}=\left\{\left(m_{1}, \ldots, m_{k}\right) \mid m_{i} \in \mathbf{Z}, 0 \leqq m_{i} \leqq p-1\right\}$. If $s=\left(m_{1}, \ldots\right.$, $\left.m_{k}\right) \in \mathscr{S}$, we write $\sum s$ for $\sum m_{i}$ and $(x-1)^{s}$ for $\left(x_{1}-1\right)^{m_{1}}\left(x_{2}-1\right)^{m_{2}} \ldots$ $\left(x_{k}-1\right)^{m_{k}} \in A$.
We claim that $\left\{(x-1)^{s} \mid s \in \mathscr{S}\right\}$ is an R-basis for A. Since $|\mathscr{S}|=p^{k}=|E|$, it suffices to show that if $\sum_{s \in \mathscr{Y}} r_{s}(x-1)^{s}=0$ with $r_{s} \in R$, then all $r_{s}=0$. Suppose, then, that some $r_{s} \neq 0$. By multiplying the dependence by the highest power of p which fails to annihilate all of the coefficients, we may assume that $p r_{s}=0$ for all $s \in \mathscr{S}$. Now, among all $s \in \mathscr{S}$ with $r_{s} \neq 0$, choose one, say $s_{0}=\left(m_{1}, \ldots, m_{k}\right)$, with $\sum s_{0}$ minimal. Let $t=\left(p-1-m_{1}, \ldots, p-1-\right.$ $\left.m_{k}\right) \in \mathscr{S}$ and multiply the dependence by $(x-1)^{t}$. Observe that $r_{s}(x-1)^{s}$ $(x-1)^{t}=0$ if $s \neq s_{0}$. This is so because if $s \neq s_{0}$ and $r_{s} \neq 0$, then $\sum s \geqq \sum s_{0}$ and hence some entry (say the i th) in the k-tuple, s, is strictly larger than the corresponding entry in s_{0}. It follows that $(x-1)^{s}(x-1)^{t} \in\left(x_{i}-1\right)^{p} A \subseteq p A$. Since $p r_{s}=0$, it follows that $r_{s}(x-1)^{s}(x-1)^{t}=0$. We now have

$$
0=r_{s_{0}}(x-1)^{s_{0}}(x-1)^{t}=r_{s_{0}}(x-1)^{p-1} \ldots\left(x_{k}-1\right)^{p-1} .
$$

This is a contradiction, since 1 is clearly in the support of $\left(x_{1}-1\right)^{p-1} \ldots$ $\left(x_{k}-1\right)^{p-1}$ and $r_{s_{0}} \neq 0$.

We now use this basis for A to construct two subgroups. For $s \in \mathscr{S}$, let $l(s)=l$ be the unique integer such that $l(p-1) \leqq \sum s<(l+1)(p-1)$ and let $m(s)=m$ be the unique integer such that $m(p-1)<\sum s \leqq(m+1)$ $(p-1)$. Note that $0 \leqq l(s) \leqq k$ and $-1 \leqq m(s) \leqq k-1$. Also $l(s)=m(s)$ unless $\sum s$ is a multiple of $(p-1)$, in which case $m(s)=l(s)-1$. Now set

$$
U=\left\{p^{k-l(s)}(x-1)^{s} \mid s \in \mathscr{S}\right\}
$$

and

$$
V=\left\{p^{k-m(s)}(x-1)^{s} \mid s \in \mathscr{S}\right\} .
$$

It is clear that U is the direct sum of the cyclic groups generated by the given set of generators of U and V is the sum of the subgroups of these cyclic groups generated by the generators of V. It follows that $d(U / V)$ is equal to the number of the generators of U which do not lie in V. This is exactly the number of $s \in \mathscr{S}$ with $\sum s \equiv 0 \bmod p-1$. By Lemma 13 , we have $d(U / V)=$ $\left(p^{k}-1\right) /(p-1)+1$.
The proof will be complete when we show $[U, E]=V$ because it then follows automatically that U is E-invariant. Now if $s, s^{\prime} \in \mathscr{S}$ with $\sum s=1+\sum s^{\prime}$, then $m(s)=l\left(s^{\prime}\right)$. If $s \neq(0,0, \ldots, 0)$, we can choose i, and $s^{\prime} \in \mathscr{S}$ with $(x-1)^{s}=(x-1)^{s^{\prime}}\left(x_{i}-1\right)$ and $\sum s=1+\sum s^{\prime}$. Thus $p^{k-m(s)}(x-1)^{s}=$ $p^{k-l\left(s^{\prime}\right)}(x-1)^{s^{\prime}}\left(x_{i}-1\right)$. It follows that every generator of V is of the form $u\left(x_{i}-1\right)$ for some generator u of U. (If $s=(0,0, \ldots, 0)$, then $p^{k-m(s)}$ $(x-1)^{s}=0$.) Therefore, $V \subseteq[U, E]$. The generators u which arise this way are exactly those which correspond to $s^{\prime} \in \mathscr{S}$ where the i th entry of s^{\prime} is $<p-1$. For each such u, we therefore have $u\left(x_{i}-1\right) \in V$.

All that remains now in order to prove that $[U, E] \subseteq V$ is to show that $p^{k-l(s)}(x-1)^{s}\left(x_{i}-1\right) \in V$ whenever the i th entry of s is equal to $p-1$. Recall that

$$
\left(x_{i}-1\right)^{p}=p \sum_{j=1}^{p-1} r_{j}\left(x_{i}-1\right)^{j},
$$

and thus it follows that

$$
(x-1)^{s}\left(x_{i}-1\right)=p \sum_{j=1}^{p-1} r_{j}(x-1)^{s_{j}}
$$

where $s_{j} \in \mathscr{S}$ and $\sum s_{j}=j+\sum s-(p-1)>\sum s-(p-1)$. Therefore $m\left(s_{j}\right) \geqq l(s)-1$ and

$$
p^{k-l(s)}(x-1)^{s}\left(x_{i}-1\right)=\sum_{j=1}^{p-1} r_{j} P^{k-l(s)+1}(x-1)^{s j} \in V
$$

The proof of the theorem is now complete.
Reference

1. D. M. Goldschmidt, 2-Signalizer functors on finite groups, J. Algebra 21 (1972), 321-340.

University of Wisconsin, Madison, Wisconsin

