
CONGRUENCE REPRESENTATIONS IN ALGEBRAIC 
NUMBER FIELDS II. SIMULTANEOUS LINEAR 

AND QUADRATIC CONGRUENCES 

ECKFORD COHEN 

1. I n t r o d u c t i o n . Let / and X be positive integers and p a positive odd 
prime. Suppose further t ha t P is an ideal of norm pf in a finite extension F 
of the rational field. In (2), which will also be referred to as I in the present 
paper, we obtained the number of solutions Ns(m) of the quadra t ic con­
gruence, 
(1.1) m = aiXi2 + . . . + asxs

2 (mod Px), 

where m is an arbi t rary integer of F, and the at are integers of F prime to P. 
In this paper we consider an analogous problem in simultaneous representat ion 
involving both linear and quadrat ic congruences. In particular, we shall 
determine the number of simultaneous solutions Ns(m, n) of the pair of 
congruences 

m = «iXi2 + . . . + asxs
2 (mod P x ) 

( L 2 ) n ss plXl + . . . + /3sxs (mod P x ) , 

where m and n are a rb i t ra ry integers of F, and the at and 131 are integers of F 
prime to P. 

As in I we make use of the theory of exponential sums in algebraic number 
fields. However, the method of the paper requires only the most e lementary 
properties of the generalized Cauchy-Gauss sums (§2). The function Ns(m, n) 
is completely and explicitly evaluated in Theorem 1 (§3), and on the basis of 
this result, precise solvability criteria for the congruences (1.2) are deduced 
in §4 (Theorem 2). In contras t with the three cases of insolvability of (1.1) 
obtained in I (see the Remark a t the end of the present paper) , there are 
thir teen cases in which the simultaneous congruences (1.2) may have no 
solutions (Theorem 2). Another striking difference between the results for the 
two problems lies in the fact t ha t (1.1) is always solvable for s > 3, while the 
minimal value of 5 such t ha t the pair of congruences (1.2) is always solvable 
is 5 = 5 (Corollary (2.1)). 

In the special case X = 1, the congruences in (1.2) may be interpreted 
as simultaneous equations in the Galois field GF(pf). The problem of deter­
mining Ns(m, n) in this case was solved in [3], with comparat ively simple 
results. In t h a t paper it was shown tha t N\(m, n) > 0 in case X = 1. By 
contrast , if X > 1, two distinct cases of insolvability may occur in (1.2) when 
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5 = 4 (see Theorem 2). In addition, there exist only four insolvable cases 
of (1.2) in case X = 1, as compared with thirteen in the case of arbitrary X. 

Another important special case arises w h e n / = 1, in which case (1.2) may 
be viewed as a simultaneous pair of rational congruences (mod £x). This 
problem was considered by O'Connor, using a quite different method, in 
connection with a more general investigation (4). However, his results were 
fragmentary except in the case X = 1. The results of the present paper can 
therefore be viewed as a completion and extension of some of O'Connor's 
results on rational congruences. 

2. Exponential sums. Let us choose an ideal C of F, not divisible by the 
prime ideal P , such that 6 = PC is principal. Any integer p of F has a represen­
tation (mod Px) of the form p == 0'f where X > t > 0 and (£, P) = 1. In this 
representation t is uniquely determined and, in addition, £ is uniquely deter­
mined (mod P) if t ^ X. (If t = X, one may assume £ = 1.) We let D denote 
the ideal different of F and choose an ideal B such that f = B/PXD is 
principal. Further, let T(p) denote the trace function in F. Then we place 
f* = f0x-*(O < k < X), where f = fx, and define ek(p) = exp(2WT(pf*)) with 
e(p) = ei(p). This is the exponential function (mod Px) introduced by Hecke 
(4, §54) and discussed under a different notation in I. The function ek(p) is 
an additive character (mod Pk) and has the simple properties: eo(p) = 1, 
ejc(p) = ek{p) if p = p (mod Pk), ek(pdj) = ek-j(p) for k > j > 0, and 
£fc(#i + #2) = ^(^1)^(^2). In addition, if P is of norm pf, p prime, then 

Suppose that X > & > 0 and let a and 6 be integers of F. The notation 
^(a) will be used to denote the Legendre symbol (a/P) in F. We now intro­
duce several trigonometric sums which will be needed in our discussion: 

(2.2) Gk(a) = X) ^(ax2), G(a) = d ( a ) , 
z(mod P*) 

(2.3) G*k(a) = £ iKx)e*(ax), G*(a) = G*(a), 

(2.4) cfc(a) = X) e*(a*0, c(a) = Ci(a), 
(x ,p fc )= l 

(2.5) S*(a, 6 ) = X e*(ax2 + 2ôx). 
x(mod Pfc) 

The functions Gk(a) and G*k(a) are the Hecke sums (4, §54), c*(a) is Rade-
macher's sum (6, §2.2), and Sk(a, b) is the generalization to F of the Cauchy-
Gauss sum (3, (1.7)). 

Suppose that P is odd as well as prime. The Hecke and Rademacher sums 
possess the following useful properties. If k > 0 and a = 0*/x(mod Pk) where 
k > t > 0, (/x, P) = 1, then 
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<2.6) *(a)-{rv°° (< = fc - 1) 
(otherwise), 

(2.7) 
(pm-1}(pf-l) 

lo 

(fc < * ) 
(t = k-1) 

(otherwise) ; 

if k > 0, then 

(2.8) G * ( 1 ) = l ^ G ( l ) 
(k = 2j) 
(* = 2j + 1) 

(2.9) GM = **G*)G*(D; 

moreover, 
(2.10) G*(M) = G(M) = *G*)G(1), 

(2.11) G2(l) = * ( - l ) /> ' . 

For a more detailed discussion of these sums we refer to I. 
The function Sk (a, b) has the following reduction property (cf. Carlitz 

(1, Lemma 3) in the rational case). 

LEMMA 1. If k > 0 and a is defined as in (2.6) then for P odd 

(2.12) S*(a,V)=pfte^t{-r2/p)G*-t(M) or 0 

according as b is or is not divisible by P , r being defined by b = 0lr (mod Pk) 
in case Pl\b. 

Proof. A complete residue system (mod Pk) is given by x = 6k~l + z where 
y and z range over complete residue systems modulo Pl and Pk~l respectively. 
Hence, by the elementary properties of ek(p)y we have 

Sk(a,b) = E e*(a*2 + 2fe) E *i(26y). 
2(mod p * - « ) 2/(mod P O 

If Pl \b, then 5*(a, b) = 0 by (2.1). Suppose then that P'\b, so tha t^maybe 
written (mod Pk) in the form b = Qlr. Then by (2.1) 

5*(a, 6) = pft X) ek-t(iJLZ2 + 2rs) 

z(mod p*-«) 

\ M/2(mod P * - 0 \ \ M/ / 

But since s + r//x and z range together over complete residue systems (mod 
Pk~l), the Lemma follows immediately. 

3. Evaluation of Ns{m, n). In the remainder of the paper/ , X, and s will 
denote positive integers. As in the Introduction, P will represent an odd prime 
ideal of F with norm pf, p being a rational odd prime. The letters au /3* (i = 1, 
. . . , s) will denote integers of F prime to P , while m and n will represent arbi­
trary integers of F. In addition, we define 

https://doi.org/10.4153/CJM-1958-056-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1958-056-x


564 ECKFORD COHEN 

a = ai. . . a8, 

and write 

m s daM, n = »W, |9 = 0 j3 

= — + . . . H , 
ai as 

(mod Px) 

where a, b, d are non-negative integers < X, and M, N, ft are integers of F 
not divisible by P. We also define for b > d, 

7 s «V 7 = JV202&-<* - mft 

where X > A > 0 and (7', P) = 1. We place 

ô = min(6, d) 77 = min(6, h), 

it being understood that rj = 6 if h is undefined. Also we put 

(modP x) , 

= f 2r (5 ê  
- (2r + 1 (s o« 

even) )2D (d even) 
(5 odd) (2D + 1 (dodd). 

Let Z denote any one of the integers a, ô, A, X. Then we place 

where [x] denotes the greatest integer < x, and lt = ai} of, hi or \ t according 
as / = a, 8, h, or X (i = 0, 1, 2). We also write 

/1 = min(ai, <5i), h = min(a2, <52) 

and define for integers u, v, 

L(u,v) = | 0 
(w odd, u < v) 
(otherwise), 

L'(u,v) = { j (u even, u < v) 
(otherwise). 

If a > — 1 , we define further 

1(7 + 1 (r = 2), 
<r / ( (r+i)(3_2r) H 

^2/((r+D(l-r) _ -. 

(r = 1). 

The final formulas for Ns{m, n) will be expressed in terms of the following 
functions: 

U + i 
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(3.1) Al=(pf-1) {pHi-T)Pr(h - 1) + H{-l)T«)Pr(h)} 
- pafi2-T){L(a, Ô) + * ( ( - lYa)L'(a, 8)} + p ^ \ 

(3.2) A, = p\pr - l)Qr(h - 1) - p"a+a*{1-2r))L(a, Ô) 
+ / ( r + a ' ( 3 - 2 r t ) ^ ( ( - iyaM)L'(a, S) + pmT~x\ 

(3.3) Bi = / « D + « » - ^ ) - « ( ^ , / _ 1 ) Q r ( A l _ £ , _ ! ) _ pf^-^-^L{h, X) 

+ ̂ ' « ^ ( ( - D V H ' t i , X), 
(3.4) 5 2 = £««"-»<»-*'>-'+»(£' - l)t((-iya)QT(h2 - D - l ) 

+ ^ ^ ( 3 - 2 r V ( T ' ) i ( ^ , X) - / < f t l ( 3 - 2 r ) - r + 1 ) iK(- l ) '« )£ ' (* , X). 

(3.5) B3 = £ 2 ' w - " (/>' - 1) {p'^Wrihx - D - l ) 
+ t((-iyp>a)p-frWr(h2-D)} 

- pnm-T)-r){L(h, X) + *((-l) r«/J')L'(ft, X)}, 

(3.6) B, = £ ' ( 1 - r ) ( s + 1 ) { , K 7 W , X) + t((-iy+1ap'y')L'(h, X)}. 

We are now in a position to state and prove our first main result. 

THEOREM 1. The number of solutions Ns(m, n) of the pair of congruences 
(1.2) is given by the following formulas: 

If d > rj, then 
( /(2X-l)(r-l)4 / 9 N 

(3.7) * . ( « , » ) - { ^ « ( ^ (
(
5

S-=
2

2V+1). 
If d ^ tj, then 

(3.8) 2V.(»», n) = 1 

^,(»-i)<^i)4i + / > /<ft(^i)+ i»B i j 

^ /(2X-l,(r-l)y4i + ^/(2X(r_l)+Z»52j 

^ / ( X_i)(2 r-i)^2 + ^/<x<*^i)+i»Bï) o r 

according as (i) 5 = 2r, ^ = 2£>, (ii) 5 = 2r, d = 2D + 1, (iii) s = 1r + 1, 
d = 2D, or (iv) 5 = 2r + 1, d = 2D + 1. 

Proof. The proof will be divided into four parts. 

Part I. Our method is based on the Fourier representation (3) of Ns(m, n) 
as a function of m and « (mod Px) . In particular 

(3.9) N,(m, ») = p~2'x £ £ *(«, »)«x(- m«) e x ( - 2n»), 
«(mod P*) «(mod P*) 

where 

*(«i v) = ] £ ex(w(o:i^î + . . . + a 5 ^) ) e\(2z/(0iXi + . . . + /3sxs)) 
Zt(mod P*) 

( i= l s) 

= f i S\(atu, ptv). 
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566 ECKFORD COHEN 

Placing u = U6^~k (k = 0, 1, . . . , X) and summing over [/(mod Pk), (U, Pk) 
= 1, we have 

x 
(3.10) N8(m, n) = p~2fX E E E , **( - ™U) e x ( - 2nv). 

Jfc=0 (U,Pk)=l v(mod P X ) 

( E S^atUd^, M ) . 

By Lemma 1 it follows that S\(aiUd*~k, (5$) = 0, unless z; can be expressed 
(mod Pk) in the form v = 0x-*7, in which case, using (2.9), 

Si(atU6X-k, M = £ A ^*V W ) e * ( - 0<y7a«£7)G*(l). 

Substituting in (3.10) and summing over ^(mod P*), one obtains, on the 
basis of the definitions of a, /3, and Sk, 

Ns(m, n) = pM-*> E /»_/*V*(a)Gj;(l) . 
(3.11) *"• / B \ 

If & < d, then by LemmLa 1 

(3-12) H ~ ^ ' ~ n / _ \ o (k>b)' 
while if & > d, we obtain by (2.9), 

(8.13) 5,(- f,, - ») = * * v- we* v - ^ G ~ ( l ) 
V u ' |0 (6 < d).. 

We now separate the k summation in (3.11) into three parts to obtain 

(3.14) N,(m, «) = Z + Z + Z . 
1 2 3 

where k = 0 in £i> d > & > 1 m S 2, and & > J in £)3, it being agreed that 
vacuous sums shall have the value 0. It follows immediately that 

(3.15) Z = P™^, 
1 

and by (3.12) that 

(3.16) E = PfUs'2) E Pmi'9)*\a)Gi(l) E V\U)ek(- mU). 
2 k=l (U,Pk)=l 

Also, by (3.13) and the definition of 7, one obtains 

|0 or 

U/(X(-2)+V(-l8') E ^ V ( - ^ ' ) ^ ( l ) G w ( l ) . 
(3.17) E = k=d+l 

Z (<A(t/))Ks+1)-^(^) , 
( r / .p*)=i 
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according as d > rj or d < 77, because the inner U sum reduces in every case 
either to ck(y//3f) or to G*k(y/($'), and these functions vanish when h < k — 1, 
by (2.7) and (2.6) respectively. 

Part II. With reference to (3.16) we write 

(3.18) Z = Z + E , 
2 21 22 

where k = 2j in £21 and & = 2j + 1 in £22. 

Case l(s = 2r). Applying (2.8) one obtains 

21 j=l 

which becomes by (2.7) 

(3.19) E = ^'"'-"[(fi' - l)pn2-r)Pr(h - 1) - p<"(2-r)L(a, Ô)}. 
21 

By (2.8) and. (2.11), 

£ _^«ft- l )<^ ( (_ i r a ) £ ^(W, ( _ w ) | 
22 i = 0 

so that by (2.7) 

(3.20) E = ^ ( 2 X - 1 ) ( ^ 1 V ( ( - lY*){(pf - l)Pr(fc) - / / ( 2 " r ) L' (a , «)}. 
22 

Case 2(s = 2 r + 1). In this case we have by (2.8) 

E = /X(2r-1) £ pmi~2\v{- tn), 
21 j = i 

which becomes, on applying (2.7), 

(3.21) £ = pf*-m2r-l){p\pf - l)Qr{h - 1) - / ( a 2 ( 1" 2 r ) + a )L(aIô)}. 
21 

By (2.8) and (2.11) we have 

Z = / ( X ( 2 r - 1 ) - r V(( -D- )G( l ) E ^ ^ ( 1 " 2 ^ * m ( - m ) , 
22 j=Q 

and hence on the basis of (2.6), (2.10), and (2.11), 

(3.22) Z = ^^- 1 >^"+ a ^ 8 - 2 ^+ 'V( ( - iyaM)L' (a, 5). 
22 

This completes the evaluation of 5^2. 

Part III . Referring to (3.17) in the case d < 77, we place 

(3-23) E = E + Z 
3 31 32 

where & = 2j in £31 and k = 2j + 1 in £32. 

Caw 1(5 = 2r, d = 2D). In this case by (2.8) 
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E = P
f^-l)+D) E P"™CIÙ, 

31 j=D+l \P / 

and hence on the basis of (2.7) 
(3.24) E = /^Mr-i)+D)^A(z>+i)(3-2,)_i)(^ /_ 1)Qr{hi _ D _ 1 ) 

- pnw-iT)-l)L{h,\)\. 

By (2.8) and (2.11) 

E = *"»<-»+»-'V((- iy+V)G(D E ^ (1-2r)4+1fe) , 
32 j=D \P / 

which by (2.6), (2.10), and (2.11) gives 

(3.25) S = ^/(2X(r-l)+M(3-2,)+i)-r+l)^((_ ^ ^ ' ( f c , X)# 

32 

Case 2(5 = 2r, d = 2D + 1). By (2.8) 

E = P'W-1)+D)H- m i ) E *" ( " r ) r i / £ ) , 
31 J=25+l \ P / 

so that by (2.6), (2.10), and (2.11) 

(3.26) E = pmMr-1)+MZ-2r)+D)4<(y')L(h, X). 
31 

Applying (2.8) and (2.11), we have 

E = ̂ ^- l )+ f l-'+lV((- ir«) E ^ ( 1 - 2%+ 1 fe) , 
32 j=D+1 \P / 

which becomes by (2.7) 

(3.27) E = £' ( 2 X < r-1 ) + D- r + 1 ) ,K(- l ) r « ) { ( / - l)pm+m*-2T)QT{h, - D - l ) 
32 

- / f t l ( 3 - 2 r ) L' ( fe ,X)} . 

Case 3(s = 2r + 1, d = 2D). By (2.8) 

E - /(X(2r-1)+D) E ^ ^ . i f e ) 
31 j=D+l \P / 

^=Z)+1 

and hence on the basis of (2.7) 
(3.28) S = ^<M2r-l)+D)^/(2(^l)(l-,)-l)(^/ _ l)Wr{hi _ D _ D 

31 

-^ < M 1 - r ) - r ) Z(fe ,X)} . 

Applying (2.8) and (2.11), one obtains 

E = £'<x<2r-1)+"-'V((- D«/3') E p-^'cmCÙ • 
and thus by (2.7) 

(3.29) E = £ / ( M 2 r - 1 ) + D - r V((~ 1) ap") {(Pf - l)pifDa-T)Wr(h2 - D) 

-pmi-r)L'(h,\)\. 
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Case 4 (5 = 2r + 1, d = 2D + 1). In this case by (2.8) 

E = */(x(2r-i,+ov(- m i ) E p-VriGiii). 
which by (2.6), (2.10), and (2.11) gives 

(3.30) £ = pf(M2r-1)+(h+1H1-r)+D)HY)L(h, X). 
31 

Applying (2.8) and (2.11), one obtains 

E = •»<-»-*»*((- i)'«)G(i) E ^ 2 / r ^ + 1 f e ) . 
32 Jfc=D+l \ P / 

and hence by (2.6), (2.10), and (2.11), 

(3.31) £ = £/(X(2r-i)+u+i)(i-,M-^((_ iy^afyy>)L'(h, X). 
32 

This completes the evaluation of £ 3 in case d < rj. 

Part IV. We now combine the results of the preceding parts. By (3.1)r 

(3.15), (3.18), (3.19), and (3.20), 

(3.32) E + E = ^ / ( 2 X - 1 ) ( r - ^ i (s = 2r), 
1 2 

and by (3.2), (3.15), (3.18), (3.21), and (3.22) 

(3.33) Z + E = p'*-m™A, (s = 2r + 1). 
1 2 

By (3.3), (3.23), (3.24), and (3.25) 

(3.34) E =/> / (2X(r-1)+I ,>51 (Case 1, < * < , ) ; 
3 

by (3.4), (3.23), (3.26), and (3.27) 

(3.35) E = pmH,-1)+D)B2 (Case 2,d<t,); 
3 

by (3.5), (3.23), (3.28), and (3.29) 

(3.36) E = pf(M2r~1)+D)B3 (Case3,<*<7,); 
3 

by (3.6), (3.23), (3.30), and (3.31) 

(3.37) E = pnU2r-X)+D)B4 (Case 4, <*<„)• 
3 

We also have by (3.17) 

(3.38) Z = 0 (d>n). 
3 

The theorem follows on combining the following formulas: (3.14), (3.32), 
(3.38) in case d > rj, s even; (3.14), (3.33), (3.38) in case d > v, s odd; (3.14), 
(3.32), (3.34) in case d < rj, s even, d even; (3.14), (3.32), (3.35) in case 
d < ?7, 5 even, d odd; (3.14), (3.33), (3.36) in case d < rj, s odd, d even; and 
(3.14), (3.33), (3.37) in case d < t\, s odd, d odd. 
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(3.40) Ns{m,n) = ) ./(X(2r-i)-r),./r 

Although the formulas for N s{m, n) are quite complicated in the general 
case, they simplify remarkably in certain special cases. For example, by taking 
X = 1 in Theorem 1, one obtains the compact results already proved in (3). 
We also note the following simple corollaries which result easily from the 
theorem. 

COROLLARY 1.1. If b = 0, d > 0 {P Kn, P\/3), then 

(3.39) Ns{m,n) = pfMs~2\ 

COROLLARY 1.2. If d = h = 0 (P K /3, P K T ) , then 
^ / ( 2 X - l ) ( , - l ) ( ^ - l ) + H { _ 1 ) W ) ) Q r 

according as s = 2r or 2r + 1. 

COROLLARY 1.3. If a = 0, b '£• d > h, then 

f / / ( a-m ' - 1V ( r _ 1 )-*((-!)«)) or 

according as s = 2r or 2r + 1. 

COROLLARY 1.4. 7/ a = 0, J > b > 0, /Ae» iVg(m, n) is given by (3.41). 

4. Solvability criteria. Theorem 1 presents a means for determining directly 
all cases for which (2.1) is insolvable. To accomplish this, one must first sim­
plify the formulas for Ns(m, n) for small values of s(s < 5). In obtaining these 
simplifications, it is useful to observe that \l/( — a) = 1 in case 5 = 2, d > 0, 
and that the condition d < 77 always implies that d < a. However, we omit 
the simplified formulas, since they involve numerous subcases and, moreover, 
are of little interest beyond the verification of our second main result, which 
we now state. 

( 3 . 4 1 ) N8(m,n) = ) . / ( ( X - l ) ( 2 r - l ) + r) / . / ( r - 1 ) 

T H E O R E M 2 !. The . function N s(m, n) vanishes > (2Âa£ is, (1.2) is insolvable) 
if and only if < one of the following sets of conditions is satisfied: 

(1) s = 1, h < X 
(2) 5 = 2, d > rj, a < ô 
(3) 5 = 2, d < 77, d even, , h even ,h <\, \p(- a / ) = - 1 

(4) 5 = 2, d < 77, d even , h odd, ,h < X 
(5) s = 2, d < 77, d odd, h even, , h < X 
(6) 5 = 2, d < 77, d odd, h odd, h < X, V(Y') = - 1 
(7) 5 = 3, d > V, a even. , a < 8 ,*(-aM) = - 1 

(8) s = 3, d> rj, a odd. a < Ô 

(9) s = 3, d < rj, d even , h odd, h < X, \p(-al3') = - 1 

(10) 5 = 3, d < 77, d odd, h odd, h < X , ^ ( 7
/ ) = - 1 

(11) 5 = 3, J < 77, d odd, h even, , h < X, yp(a& V) = -- 1 

(12) * = 4, d > 77, a odd, a < 5, *(<*) = - 1 
(13) s = 4, d < 77, d odd, h odd, h < X, ^ ( a ) = = My') = - 1 . 
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On the basis of Theorem 2 one obtains 

COROLLARY 2.1. The minimal value of s such that Ns(m, n) > 0 for all odd, 
prime-power ideals Px,for all coefficients, au fii prime to P, and for arbitrary m, 
n is given by s = 5. 

It will be observed that conditions (12) and (13), under which N±(m, n) = 0, 
fail to arise in case X = 1. We therefore have a result proved previously (3, 
§3). 

COROLLARY 2.2. If\ = 1, then N±{m, n) > 0. 

We also note 

COROLLARY 2.3. If ^{a) = 1, then N±{m, n) > 0. 

Finally, it will be observed that the only cases of insolvability which can 
occur when X = 1 arise from cases (1), (2), (3), and (7) of Theorem 2 (3, 
Theorem 2). 

Remark. By I, in contrast with Theorem 2, the congruence (1.1) is insolvable 
(Ns(m) = 0), if and only if one of these three sets of conditions is satisfied: 
(1) s = 1, a < X, a odd; (2) s = 1, a < X, a even, \p(aM) = - 1 ; (3) s = 2, 
a < X, a odd, \p( —a) = — 1. This result is not stated explicitly in I but follows 
immediately from (2; (8.4), (8.5), (8.8)). 
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