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Particle Decays

15.1 Introduction

In this chapter we discuss experiments where the run architecture is significantly

different from that of standard in-out experiments such as particle scattering.

We apply the quantized detector network (QDN) formalism to particle decays,

the ammonium molecular system, Kaon-type regeneration decay experiments,

and quantum Zeno experiments. In all of these experiments, the problem is the

modeling of time, which conventionally is taken to be continuous. In QDN, time

is treated in terms of stages, which are discrete. We show how the QDN formalism

deals with such experiments.

In standard quantum mechanics (QM), time is assumed to be continuous. That

is a legacy from classical mechanics (CM), which does not concern itself in general

with the processes of observation. CM assumes systems under observation (SUOs)

“have” physical properties that are independent of how they are observed. In

contrast, QM cannot be considered without a discussion of the processes of

observation. On close inspection of any process of observation, as it is actually

carried out in the laboratory and not how it is modeled theoretically, the continuity

of time does not look quite so obvious.

The problem is that there are two mutually exclusive views about the nature

of observation in physics. These were discussed in detail by Misra and Sudarshan

(MS) in an influential paper on the quantum Zeno effect (Misra and Sudarshan,

1977). On the one hand, no known principle forbids the continuity of time, so

the axioms of QM are stated implicitly in terms of continuous time. When the

Schrödinger equation is postulated to be one of them (Peres, 1995), temporal

continuity is assumed explicitly. On the other hand, it is an empirical fact that

no experiment can actually monitor any SUO in a truly continuous way. All

references to continuous time measurements are invariably based on statistical

modeling of complex processes, with the continuity of time having much the same

status as that of temperature. Such effective parameters are extremely useful in
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15.1 Introduction 199

physics, but their status as model-dependent, emergent attributes of SUOs, and

the apparatus used to observe them, should always be kept in mind.

The best that could be done toward simulating temporal continuity in physics

would be to perform a sequence of experiments with a carefully prescribed

decreasing measurement time scale, such as occurs in experiments investigating

the phenomenon known as the quantum Zeno effect (Itano et al., 1990).

MS analyzed particle decay processes and asked certain questions about them

not normally investigated in quantum mechanics. Three of these questions were

referred to as P , Q, and R and this convention will be followed here.

P (t|Ψ)

This question asks for the probability that an unstable system prepared at time

zero in state Ψ has decayed sometime during the interval [0, t].

Q(t|Ψ)

This question asks for the probability that the prepared state has not decayed

during this interval.

R(t1, t|Ψ)

This question asks for the probability that the state has not decayed during the

interval [0, t1], where 0 < t1 < t, and has decayed during the interval [t1, t].

Here we come across an example where mathematics and logic cannot be used

to explore physics. We pointed out in Section 2.10 that the validation1 of the

negation ¬P of a physical proposition P cannot always be undertaken by the

same apparatus that is used to validate P . The point is that suppose we had used

apparatus AP to answer MS’s question P (t|Ψ) by looking for decay products of

an unstable SUO and had found no such decay products over any given interval

of time. We could not conclude that the SUO was absolutely stable; there could

be decay products that our apparatus could not detect. At best we could only

say that the SUO was stable relative to AP .

In physics, therefore, we cannot simply assert Q(t|Ψ) = 1 − P (t|Ψ) as an

empirical fact, because as we stated in Chapter 2, what are important in physics

are generalized propositions, and these require full specification of apparatus. In

order to answer Q(t|Ψ), we would have to use apparatus AQ, which could be

very different from AP .

Likewise, in order to answer MS’s question R(t1, t|Ψ), we would have to use

apparatus AR.

The point made by MS is not quite the same as what we have just made. Our

concern is about apparatus, theirs was about time. MS stressed that P (t|Ψ),

Q(t|Ψ), and R(t1, t|Ψ) are not what quantum mechanics normally calculates,

1 Our convention is that validation means the attempt to establish the truth of a proposition.
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which is the probability distribution of the time at which decay occurs, denoted

by T . The difference as they saw it is that the P , Q, and R questions involve

a continuous set of observations (according to the standard paradigm), or the

nearest practical equivalent of it, during each run of the experiment, whereas

T involves a set of repeated runs, each with a one-off observation at a different

time to determine whether the particle has decayed or not by that time. Because

P , Q, and R involve an experimental architecture different from T , it should be

expected that empirical differences might be observed.

Note that the observations referred to by MS to can have negative outcomes;

i.e., a failure to detect an expected particle decay in an experiments counts as an

observation. The correct statement of such an observation is not that the particle

is stable, but that that particular experiment has failed to detect any decay.

MS emphasized the limitations of QM, stressing that although it works

excellently in many situations, QM does not readily give a complete picture of

experiments probing questions such as P , Q, and R. They concluded that “there

is no standard and detailed theory for the actual coupling between quantum

systems and the classical measuring apparatus” (Misra and Sudarshan, 1977).

We fully agree. QDN is a relatively simplified attempt to move toward such a

theory.

Our first task in this chapter is to apply QDN to the simplest idealized decay

process, a particle decaying via a single channel. The quantum Zeno effect is

then discussed. That effect demonstrates that the answer as to whether a system

decays while it is being monitored or whether it remains in its initial state

depends on the experimental context, i.e., the details of the apparatus and

the measurement protocol involved. We follow this by applying QDN to more

complex phenomena such as the ammonium molecule and neutral Kaon decay.

We show how QDN can readily provide the empirical architecture to describe

the spectacular phenomenon of Kaon decay regeneration, originally discussed by

Gell-Mann and Pais in standard QM (Gell-Mann and Pais, 1955).

It will be shown that for all of these phenomena, QDN incorporates probability

conservation at all levels of the discussion and therefore does not require the

introduction of any ad hoc imaginary terms in any energies or the use of non-

Hermitian Hamiltonians.

15.2 One Species Decays

In this subsection, we apply QDN to the description of what in standard ter-

minology would be called the decay of an unstable particle, the initial state X

of which can decay into some multiparticle state Y . Our aim is to show that

the QDN account of such processes readily conserves total probability at all

stages. Because the essence of such processes lies in the temporal architecture,

the momenta and other attributes of the particles involved will be ignored here,

the discussion being designed to illuminate the basic principles of the formalism
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only. Should such aspects be required, the formalism can readily deal with them

by introducing an “internal” Hilbert space associated with the SUO states.

The run architecture follows the pattern used throughout this book, with

labstate preparation for each run being completed by an initial stage denoted as

Σ0, and referred to as stage zero. All subsequent stages in that run are counted

from stage zero, so Σ1 is the first stage (after stage zero).

By stage Σ0 of any given run, the observer will have contextual evidence that

they have prepared an X-particle state, in the language of standard QM. This

is represented in QDN by the normalized labstate Ψ0 ≡ ÂX
0 00, which we have

previously designated a preparation switch.

Now consider the first stage, Σ1, at which the observer has the means to

detect any decay. Suppose by that stage, the labstate is now represented by Ψ1

and given by

Ψ1 ≡ U1,0Ψ0 = (αÂX
1 + βÂY1

1 )01, |α|2 + |β|2 = 1. (15.1)

Here the first term on the right-hand side (RHS) represents the possibility that

the particle has not decayed, whereas the second term, involving Y , represents

the possibility that a decay has occurred.

It is part of the underlying philosophy of QDN that the term in Y in Eq. (15.1)

does not model specific details of the Y state. It models a yes/no possibility that

something has happened. It is an example of a virtual detector rather than a real

detector. A virtual detector is informational in character, not necessarily directly

identifiable with a specific, real detector in the laboratory, although such things

are necessary to establish the context for the labstate Y .

To clarify this point further, suppose that the multiparticle state Y consisted

of N identifiable particles. We have not modeled here the stage Σ1 labstate

by a term in (15.1) such as βÂ
Y 1

1
1 Â

Y 2
1

1 Â
Y 3

1
1 . . . Â

Y N
1

1 01, where for example Â
Y i

1
1

would create a signal in a specific detector for decay component particle Y i at

stage Σ1. We could do that, if we wanted to, however. That would undoubtedly

add to the complexity of a problem that already has some degree of complexity

in its architecture, so that is a scenario where a computer algebra approach to

QDN would be most suitable.

The modeling of the labstate Ψ1 given by (15.1) does however include some

desirable features that we have put in “by hand.” We exclude from the RHS of

(15.1) the possibility that we find no signals whatsoever at stage Σ1; that is, we

exclude the signal ground state 01. This means that the apparatus is what we

have referred to before as calibrated .

In the same spirit, we exclude the signality-two state ÂX
1 ÂY 1

1 01, on the grounds

that any run with a labstate consisting of the original particle and its decay prod-

uct would be discounted by the observer as contaminated by external influences

(as happens in real experiments).

From (15.1), the amplitude A(X1|X0) for the particle not to have decayed by

stage Σ1 is given by
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202 Particle Decays

A(X1|X0) ≡ 01A
X
1 Ψ1 = α, (15.2)

while the amplitude A(Y1|X0) for the particle to have made the transition to

state Y by stage Σ1 is given by

A(Y1|X0) ≡ 01A
Y1
1 Ψ1 = β. (15.3)

Here we have used the fact that [ÂX
n ,AY

n ] = 0, and so on.

From the above, we see that

|A(X1|X0)|2 + |A(Y1|X0)|2 = 1, (15.4)

so total probability is conserved.

The above probabilities can also be calculated directly as expectation values

of partial questions. For the probability Pr(X1|X0) of no decay by stage Σ1, we

find Pr(X1|X0) ≡ Ψ1P̂
X
1 Ψ1 = |α|2, while the probability Pr(Y1|X0) of decay

into Y by stage Σ1 is given by Pr(Y1|X0) ≡ Ψ1 P̂Y1
1 Ψ1 = |β|2. Note that these

are contextual probabilities: we noted at the previous section that these are

statements valid only relative to the detectors used, which are assumed suitable

for what they are supposed to detect.

On the RHS of (15.3), the label is Y1; that is, the decay state label is itself

labeled by a temporal subscript, in this case the number 1, which is the stage

Σ1 at which the amplitude is calculated for. This label of a label is significant.

It registers the fact that when a detector is triggered, it does so irreversibly. The

stage at which this happens is a crucial feature of the analysis, being directly

related to the measurement issues discussed by MS (Misra and Sudarshan, 1977).

Our architecture is based on monitoring the state of the SUO as much as possible,

that is, attempting to perform as good an approximation to continuous-in-time

monitoring as our equipment allows.

The above process conserves signality one, so the dynamics can be discussed

economically in terms of the evolution of the signal operators rather than the

labstates. For instance, evolution from stage Σ0 to stage Σ1 can be given in the

form

ÂX
0 → U1,0Â

X
0 U1,0 = αÂX

1 + βÂY1
1 , (15.5)

where U1,0 is a semi-unitary operator satisfying the rule U1,0U1,0 = I0, with

I0 being the identity for the initial lab register Q0 ≡ QX
0 and U1,0 being the

retraction of U1,0.

Process (15.5) involves a change in rank, since Q1 ≡ QX
1 QY1

1 , but not in

signality. Because dimQ1 > dimQ0, the evolution operator is properly semi-

unitary, that is, satisfies the condition U1,0U1,0 	= I1, which is a statement of

irreversibility relative to the observer. This is a critical feature of the experiments

discussed in this chapter, apart for the ammonium molecule, and is the reason

for the apparent loss of probability in conventional Schrödinger wave mechanics

descriptions of unstable particles. In those descriptions, a common strategy is

to consider only the Hilbert space of the original SUO and add an imaginary
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term −iΓ to energies, thereby forcing wave functions to fall off with time, with

the interpretation that this represents particle decay. Where this probability loss

goes is left unstated.

In relativistic quantum field theory, such as quantum electrodynamics (QED),

the architecture is usually different. There, the Hilbert space is big enough to

accommodate particles (such as muons) and their decay products. Decays are

treated as scattering problems, with initial undecayed particles coming in at

remote negative (infinite past) time and decay products going out at remote

positive (infinite future) time. The extraction of decay lifetimes then is usually

done in a heuristic manner, usually involving manipulation with symbols that are

nominally divergent, such as dividing an amplitude by the four-volume measure

of Minkowski spacetime in order to determine a flux decay rate. Our ambition

in QDN is to avoid such manipulations while retaining probability conservation.

The QDN description of the next stage of the process, from stage Σ1 to stage

Σ2, is more subtle and involves a null test. Considering the labstate of the above

decay process at stage Σ1, there are now two terms to consider.

No Decay

The first term on the RHS in (15.1), αÂX
1 01, corresponds to a no decay outcome

by stage Σ1. This potential outcome can now be regarded as a preparation, at

stage Σ1, of an initial X state that could subsequently decay into a Y state

or not, with the same dynamical characteristics as for the first temporal link

of the run, held between stages Σ0 and Σ1. If the measured laboratory time

interval τ10 ≡ t1− t0 between stages Σ0 and Σ1 is the same, within experimental

uncertainty, as the measured laboratory time interval τ21 ≡ t2 − t1 between

stages Σ1 and Σ2, and so on for subsequent links, then spatial and temporal

homogeneity may be assumed, if the apparatus has been set up in the laboratory

carefully enough. This will be a physically reasonable assumption in the absence

of gravitational fields and in the presence of suitable apparatus.

Decay

The second term, βÂY1
1 01, in (15.1) corresponds to decay having occurred during

the first time interval. Such an outcome is irreversible in this example, but this

is not an inevitable assumption in general. Situations where the Y state could

revert back to the X state are more complicated but of empirical interest, such

as in the ammonium maser and Kaon and B meson decay. These scenarios are

discussed later sections in this chapter.

Assuming homogeneity, the next stage of the evolution is given by

ÂX
1 → U2,1Â

X
1 U2,1 = αÂX

2 + βÂY2
2 , (15.6)

ÂY1
1 → U2,1Â

Y1
1 U2,1 = ÂY1

2 . (15.7)

Equation (15.7) is justified as follows. The decay term in (15.1), proportional

to ÂY1
1 at stage Σ1, corresponds to the possibility of detecting a decay product
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state Y at that time. Now there is nothing that requires this information to be

extracted precisely at that stage. The experimentalist could choose, or indeed

be required, to delay information extraction until some later stage, effectively

placing the decay product observation “on hold.” The inherent irreversibility of

signal detectors means that, as a rule, such signals on hold are not lost.

As stated above, this may be represented in QM by passing a state through

a null test, which does not alter it. In QDN this is represented by Eq. (15.7).

Essentially, quantum information about a decay is isolated from the rest of the

experiment and passed forward in time until it is physically extracted.

The lab register Q2 at stage Σ2 has rank three, being the tensor product

Q2 ≡ QX
2 QY1

2 QY2
2 . Semi-unitary evolution from stage Σ0 to stage Σ2 is still of

signality one and is given by

ÂX
0 → U2,1U1,0Â

X
0 U1,0U2,1 = α2ÂX

2 + αβÂY2
2 + βÂY1

2 , (15.8)

with the various probabilities being read off as the squared moduli of the corre-

sponding terms.

The temporal architecture of this process is given in Figure 15.1. It will be

apparent from a close inspection of (15.8) that what appears to look like a space-

time description with a specific arrow of time is being built up, with a memory

of the change of rank of the lab register at stage Σ1 being propagated forward in

time to stage Σ2. This is represented by the contribution involving ÂY1
2 , which

is interpreted as a potential decay process that may have occurred by stage Σ1

and contributing to the overall labstate amplitude at stage Σ2.

X

X

X

X

Y

Y

Y

Y

Y

Y

Figure 15.1. The temporal architecture of a single X particle decay experi-
ment.
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Subsequently the process continues in an analogous fashion, with the rank

of the lab register increasing by one at each time step. By stage Σn, assuming

homogeneity, the dynamics is given by

ÂX
0 → Un,0Â

X
0 Un,0 = αnÂX

n + β

n∑
i=1

αi−1ÂYi
n , (15.9)

where Un,0 ≡ Un,n−1Un−1,n−2 . . .U1,0 is semi-unitary and satisfies the constraint

Un,0Un,0 = I0.

The amplitude A(X,n|X, 0) that the original state has not decayed by stage

Σn can be immediately read off the RHS of (15.9) and is given by

A(X,n|X, 0) = 0nA
X
n Un,0Â

X
0 00 = αn. (15.10)

The probability Pr(X,n|X, 0) of no decay by stage Σn is the squared modulus

of this amplitude, so provided β 	= 0, this probability falls monotonically with

increasing n, consistent with our expectations of particle decay. Specifically, if

we write α = eiθ−
1
2Γτ , where θ is some real phase, Γ is a characteristic lifetime

associated with the decay, and τ is the effective time between successive stages,

then we have

Pr(X,n|X, 0) = e−Γnτ , (15.11)

which is the exponential decay form expected with such phenomena.

Commentary

Figure 15.1 does not reveal the full complexity of what is going on. That will be

appreciated by the observation that the labstate has signality one at every stage.

This means that at any stage, either the original state has not decayed or it has

decayed once, either at the stage being examined or prior to that stage.

This stage diagram reinforces the message that the Block Universe picture

of reality is too simplistic, because that picture is a classical record of what

was actually observed and cannot include the future of whatever “now” is being

discussed (which is stage Σ0 here), unless the vacuous assumption is made that

the future is single valued and predetermined. That would not be compatible

with quantum principles as we know them, however. Figure 15.1 refers to the

future of stage Σ0 and the probability outcomes predicted for the observer by

QM, for that stage only; it is not a valid stage diagram for any process time stage

after stage Σ0. The contextuality of stage diagrams underlines the message that

physics is contextual, never absolute.

15.3 The Quantum Zeno Effect

The discussion at this point calls for some care with limits, because there arises

the theoretical possibility of encountering the so-called quantum Zeno effect , in

which a carefully monitored state of an unstable SUO appears not to change.
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In the following, we will assume that the parameter α in the one-particle decay

discussed above satisfies |α| < 1, because the case |α| = 1 corresponds to a

stable particle, which is of no interest here.

Consider the physics of particle decay. Calculated probabilities should be

functions of labtime, the clock time used by the observer in the laboratory.

Labtime is not assumed here to be a continuous variable on the microscopic

level. Instead, it is linked to the scale of time associated with successive stages,

and this is determined by the apparatus used. The temporal subscript n in our

concept of stages will, when it is so arranged, correspond to a physical interval of

time τ , where τ is some reasonably well-defined time scale characteristic of the

apparatus.

Certainly, stages need not be strictly regulated in terms of being equally spaced

out in time. But in the sort of experiments relevant to this chapter, there will

be such an interval τ , and it will be typically a minute fraction of a second, but

certainly nowhere near the Planck time scale of 10−44 second. Indeed, the conjec-

ture that there is such a Planck time scale remains conjectural and has received

some meaningful criticism (Meschini, 2007). The smallest interval currently that

has been measured empirically is of the order 10−23 second, which is on the

shortest hadronic resonance scale, comparable with the time light takes to cross

a proton diameter. More realistic measurement scales that could be involved in

our discussion directly would probably be electromagnetic in origin, in the range

of 10−9 to 10−18 second. For instance, the shortest controllable time is about 10

attoseconds, that is, about 10−17 second (Koke et al., 2010). Experimentalists

would generally have a good understanding of what their relevant τ is.

Suppose first that we have some reason to believe that we can relate the

transition amplitude α to the characteristic time τ by the rule |α|2 ≡ e−Γτ ,

where Γ is a characteristic inverse time introduced to satisfy this relation. Then

the survival probability P (tn) is given by P (t) ≡ Pr(X,n|X, 0) = e−Γt, which

is the usual exponential decay formula. No imaginary term proportional to Γ

in any supposed Hamiltonian or energy has been introduced in order to obtain

exponential decay.

A subtlety may arise here, however. Exponential decay implies that |α|2 is an

analytic function of τ with a Taylor expansion of the form

|α|2 = 1− Γτ +O
(
τ2
)
, (15.12)

i.e., one with a nonzero linear term. Under such circumstances, the standard

result limn→∞(1−x/n)n = e−x leads to the exponential decay law. The possibil-

ity remains, however, that the dynamics of the apparatus is such that the linear

term in (15.12) is zero, so that the actual expansion is of the form

|α|2 = 1− γτ2 +O
(
τ3
)
, (15.13)

where γ is a positive constant (Itano et al., 1990). Then in the limit n → ∞,

where nτ ≡ t is held fixed, the result is given by
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lim
n→∞, nτ=t fixed

(
1− γτ2 +O

(
τ3
))n

= 1, (15.14)

which gives rise to the quantum Zeno effect scenario. An expansion of the ampli-

tude of the form a = 1+iμτ+ντ2+O(τ3) is consistent with (15.13), for example,

if μ is real and μ2 + ν + ν∗ < 0.

To understand properly what is going on, it is necessary to appreciate that

there are two competing limits being considered: one where an SUO is being

repeatedly observed over an increasingly large macroscopic laboratory time scale

t ≡ nτ , and another one where more and more observations are being taken

in succession, each separated on a time scale τ that is being brought as close

to zero as possible by the experimentalist. In each case, the limit cannot be

achieved in the laboratory. The result is that in such experiments, the specific

properties of the apparatus and the experimental protocol may play a decisive

role in determining the results. If the apparatus is such that (15.12) holds, then

exponential decay will be observed, whereas if the apparatus behaves according

to the rule (15.13), or any reasonable variant of it, then approximations to the

quantum Zeno effect should be observed.

From the QDN perspective, the quantum Zeno effect can be understood from

the architecture of decay observation as follows. Looking at Figure 15.1, we see

that there is one channel, denoted by circles with an X, that runs across all

stages. That channel is the “no decay” channel. If during a run involving a great

number of stages the net probability of any of the other outcomes being detected

is sufficiently low, then it would appear that the original system was stable.

However, given enough stages with a fixed duration τ between each, the decay

outcomes would eventually win out. The quantum Zeno effect therefore relies on

having as brief a duration τ as possible and finding the critical time scale over

which the apparent effect could be observed.

Another way of understanding the quantum Zeno effect is in terms of envir-

onment. For instance, a free neutron will decay with a mean lifetime of about

880 seconds, whereas inside a nucleus, neutrons are generally stable. We can

understand the quantum Zeno effect as the effect of the detection environment

on an otherwise unstable system.

15.4 Matrix Analysis

The single-particle decay scenario discussed above can be discussed efficiently in

terms of semi-unitary matrices.

Definition 15.1 A semi-unitary matrix M is an m×n complex matrix such

that M†M = In, where In is the n× n identity matrix.

Exercise 15.2 Prove that no semi-unitary matrix exists if m < n.
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Consider the X decay scenario discussed above. If the initial labstate Ψ0 is

represented by the 1× 1 column vector [Ψ0] ≡ [1], then the action of U1,0 acting

on that labstate Ψ0 given by (15.1) may be represented by the action of the 2×1

semi-unitary matrix U1,0 ≡
[
α

β

]
acting on [Ψ0], giving

[Ψ1] ≡ U1,0[Ψ0] =

[
α

β

]
[1] =

[
α

β

]
. (15.15)

The two required transition amplitudes at stage Σ1 are just the two components

of this vector.

Continuing this process to the next stage, we deduce that the labstate [Ψ2] at

stage Σ2 is represented by the action of the semi-unitary matrix U2,1 ≡

⎡⎣α 0

β 0

0 1

⎤⎦
on [Ψ1], giving

[Ψ2] ≡ U2,1[Ψ1] =

⎡⎣α 0

β 0

0 1

⎤⎦[α
β

]
=

⎡⎣α2

αβ

β

⎤⎦ . (15.16)

For n > 1, the relevant semi-unitary matrix is an (n + 1) × n matrix

given by

Un+1,n =

⎡⎣ α θT
n−1

β θT
n−1

θn−1 In−1

⎤⎦ , (15.17)

where θn is a column of n zeros, θT
n is its transpose, and In is the n×n identity

matrix. This leads to the final state [Ψn] at stage Σn:

[Ψn] = Un,n−1Un−1,n−2 . . . U1,0[Ψ0] =

⎡⎢⎢⎢⎢⎢⎣
αn

βαn−1

...

βα

β

⎤⎥⎥⎥⎥⎥⎦ . (15.18)

The squared modulus of the first component of this column vector gives the

same survival probability |α|2n as before. It is also easy to read off all the other

transition amplitudes and from them determine discrete time versions of the

P , Q, and R functions discussed by MS (Misra and Sudarshan, 1977).

Although the QDN analysis gives results that look formally like the standard

decay result, the scenario involved is equivalent to that discussed by MS; namely,

there is a constant questioning (or its discrete equivalent) by the apparatus as

to whether decay has taken place or not. In this case the results are simple. For

Kaon and B meson decays, the results are more complicated.
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15.5 The Ammonium System

In order to understand the QDN approach to neutral Kaon decay, discussed in

the next section, it will be necessary to review first how stable systems such as

the ammonium molecule are dealt with in our formalism.

The ammonium molecule consists of three hydrogen atoms and one nitrogen

atom. If we ignore molecular rotation and translation as inessential to this

argument, then we can think of the three hydrogen atoms as defining a plane in

three dimensions. Then the nitrogen can be found on either side of this plane.

What is observed is consistent with the classical explanation that the nitrogen

oscillates from one side of this plane to the other and back with a characteristic

frequency. It is this behavior that is the focus of our discussion here.

The Standard QM Account

With the above assumptions about neglecting rotation and translation, a simple

but effective model of the ammonium molecule is described quantum mechani-

cally as a superposition of two orthonormal states, |X〉 and |Y 〉, each of which

represents one of the two possible position states of the single nitrogen atom

relative to the plane defined by the three hydrogen atoms. These two states form

a basis for a two-dimensional Hilbert space HAM , in other words, a qubit. It is

interesting to note that we have encountered here a naturally occurring preferred

basis for a qubit, that is, one that is dictated not by detector apparatus but by

the assumed geometry of the SUO.

An account of the nonrelativistic quantum theory for ammonium is given by

Feynman et al. (1966) so we give only a simplified brief resume here to set the

scene.

It is most convenient to use a matrix representation for the states and the

Hamiltonian operator. We define the preferred basis representation

|X〉 =
R

[
1

0

]
, |Y 〉 =

R

[
0

1

]
. (15.19)

Then relative to this representation, the Hamiltonian for the system is given by

the Hermitian matrix

H =
R

[
e f

f∗ e

]
, (15.20)

where e is real and f can be complex. When f is zero, the two states are

degenerate energy eigenstates and so are stable. This possibility is of no in interest

here, so we shall assume that f = |f |eiφ, where |f | is nonzero and φ is a constant

phase.

The two eigenvalues of H are E± ≡ e ± |f | with corresponding normalized

energy eigenstates

|±〉 =
R

1√
2

[
eiφ

±1

]
, (15.21)
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where we have set the arbitrary phases to zero for convenience. Hence an arbitrary

normalized solution to the Schrödinger equation

i�
d

dt
|Ψ, t〉 = H|Ψ, t〉 (15.22)

has matrix representation

|Ψ, t〉 =
R
ae−iE+t/�|+〉+ be−iE−t/�|−〉, (15.23)

where |a|2 + |b|2 = 1.

If now we calculate the probability Pr(X, t|Ψ, 0) ≡ 〈X|Ψ, t〉 that the SUO be

found in state |X〉 at time t > 0 we find

Pr(X, t|Ψ, 0) = 1
2 + |ab| cos(β − α+ 2|f |t/�), (15.24)

where a = |a|eiα, b = |b|eiβ . Similarly, we find

Pr(Y, t|Ψ, 0) = 1
2 − |ab| cos(β − α+ 2|f |t/�). (15.25)

These probabilities successfully model our expectations. First, if f is zero, then

these probabilities are fixed. Second, if the initial state is prepared in an energy

eigenstate to begin with, which means setting either a or b to zero, then the

probability of finding the SUO in state |X〉 is the same as that of finding it in

state |Y 〉.

The QDN Account

In the QDN description, the temporal architecture is given by Figure 15.2. It is

assumed that there are two different detectable signal states, X, Y , with signal

operators ÂX
n , ÂY

n , respectively, evolving from stage Σn to stage Σn+1 according

to the rule

Un+1,nÂ
X
n 0n = {AÂX

n+1 +BÂY
n+1}0n+1,

Un+1,nÂ
Y
n 0n = {CÂX

n+1 +DÂY
n+1}0n+1, (15.26)

where Un+1,n is a semi-unitary operator and A,B,C, and D are constants deter-

mined by the dynamics of the situation. Semi-unitarity requires the constraints

X X X X

YYYY

Figure 15.2. The temporal architecture of the ammonium molecule, with the
two orthogonal states denoted X and Y .
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|A|2 + |B|2 = |C|2 + |D|2 = 1, A∗C +B∗D = 0, which is equivalent to standard

unitarity in quantum mechanics in this case, because the rank of the quantum

register is constant from stage to stage. All other states will be disregarded on

the basis that there are no dynamical channels between them and states X,Y .

From (15.26) we can find a dyadic representation for Un+1,n in the form

Un+1,n = ΦT
n+1UΦn, (15.27)

where

ΦT
n+1 ≡ [ÂX

n+10n+1, Â
Y
n+10n+1], Φn ≡

[
0nA

X
n

0nA
Y
n

]
, (15.28)

and U is the unitary matrix

U ≡
[
A C

B D

]
. (15.29)

The retraction Un+1,n of Un+1,n is given by

Un+1,n = ΦT
nU

†Φn+1 (15.30)

and satisfies the relation Un+1,nUn+1,n = Icn, where Icn is the contextual identity

operator

Icn ≡ ÂX
n 0n0nA

X
n + ÂY

n 0n0nA
Y
n (15.31)

for the contextual subspace Qc
n with orthonormal basis {ÂX

n 0n, Â
Y
n 0n}.

The form (15.27) is particularly suitable for finding the evolution operator

UN,0 taking states of the SUO from stage Σ0 to some final stage ΣN . We find

UN,0 = ΦT
NUNΦ0, N = 0, 1, 2, . . . (15.32)

The problem therefore reduces to finding UN , which we do as follows.

As discussed in Section 11.5, a unitary matrix U such as (15.29) can always

be put in standard form, that is,

U = eiη
[

a −b∗

b a∗

]
, (15.33)

where η is real and a and b satisfy the condition |a|2 + |b|2 = 1.

Exercise 15.3 Find expressions for η, a, and b in terms of A, B, C, and D.

We now state without proof that matrix U can be written in the form

U = eiηV ΛV †, (15.34)

where matrix V is a unitary matrix given by

V ≡
[

u −v∗

v u∗

]
, (15.35)

https://doi.org/10.1017/9781009401432.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401432.016


212 Particle Decays

where |u|2 + |v|2| = 1 and Λ is the diagonal matrix

Λ ≡
[

λ+ 0

0 λ−

]
. (15.36)

Here λ+, λ− are the two eigenvalues of U and so are the roots of the equation

λ2 − (a + a∗)λ + 1 = 0. These roots are complex conjugates of each other and

have magnitude one, so we can write λ+ = eiθ, λ− = e−iθ for some real angle θ.

The relations between u, v and a, b are

a = |u|2eiθ + |v|2e−iθ, b = u∗v(eiθ − e−iθ), (15.37)

noting that these are nonlinear in u and v. Indeed, u and v are not unique: we can

multiply each by an element of the unit circle without changing relations (15.37).

The significance of the form (15.34) is that it is now easy to evaluate powers

of U . Specifically, we find

Un,0 = eiηnΦT
nV ΛnV †Φ0. (15.38)

Applying this to the evolution of the signal operators then gives, modulo a phase

factor,

ÂX
0 → {|u|2einθ + |v|2e−inθ}ÂX

n + u∗v{einθ − e−inθ}ÂY
n ,

ÂY
0 → uv∗{einθ − e−inθ}ÂX

n +
{
|u|2e−inθ + |v|2einθ

}
ÂY

n . (15.39)

Hence we find the conditional probabilities

Pr (X,n|X, 0) = Pr(Y, n|Y, 0) = |u|4 + |v|4 + 2|u|2|v|2 cos (2nθ) ,
Pr(Y, n|X, 0) = Pr(X,n|Y, 0) = 4|u|2|v|2 sin2 (nθ) , (15.40)

which agrees with the QM expressions (15.24) and (15.25) when the parameters

u, v, and θ are chosen suitably.

It was noted by Itano et al. (1990) that a survival probability of the form

P (τ) ∼ 1− γτ2 +O(τ3) would be needed to make observations of the quantum

Zeno effect viable. The above calculation of the ammonium survival probabilities

is compatible with this, as can be seen from the expansion

Pr (X,n|X, 0) = |u|4 + |v|4 + 2|u|2|v|2 cos (2nθ)
∼ 1− 4|u|2|v|2n2θ2 +O

(
n4θ4

)
. (15.41)

Therefore, it is predicted that the quantum Zeno effect (or at least behavior

analogous to it) should be observable in the ammonium system, if the right

experimental conditions are set up. As with the particle decays discussed in the

previous section, it would be necessary to ensure that the two limits, t → ∞,

τ → 0, were carefully balanced.

15.6 Kaon-type Decays

The explanation by Gell-Mann and Pais (Gell-Mann and Pais, 1955) of the

phenomenon of regeneration in neutral Kaon decay was a successful application of
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QM to particle physics. In the standard calculation (Feynman et al., 1966), a non-

Hermitian Hamiltonian is used to introduce the two decay parameters needed to

describe the observations. We will show that QDN readily reproduces the results

of the Gell-Mann and Pais calculation while conserving total probability and

without the introduction of any complex energies.

The analysis of the Kaon system is more complicated than the single-particle

decay process discussed above, involving the interplay of two distinct neutral

Kaons, the K0 and its antiparticle, the K̄0. In that respect, our discussion in

the previous section of the ammonium molecule is useful. The QDN discussion

of neutral Kaon decay goes as follows (Jaroszkiewicz, 2008b).

Consider three different particle states, X,Y , and Z, making transitions

between each other in the specific way described below. An important example

of such behavior in particle physics involves the neutral Kaons, with X

representing a K0 meson, Y representing a K
0
meson, and Z representing

their various decay products. Kaon decay is remarkable for the phenomenon of

regeneration, in which the Kaon survival probabilities fall and then rise with

time. A similar phenomenon has been observed in B meson decay (Karyotakis

and de Monchenault, 2002).

As before, attention can be restricted to signality-one states. The dynamics is

described by the transition rules

ÂX
n → αÂX

n+1 + βÂY
n+1 + γÂZn+1

n+1 , (15.42)

ÂY
n → uÂX

n+1 + vÂY
n+1 + wÂZn+1

n+1 , (15.43)

ÂZa

n → ÂZa

n+1, a = 1, 2, . . . , n (15.44)

where semi-unitarity requires the transition coefficients to satisfy the constraints

|α|2 + |β|2 + γ|2 = |u|2 + |v|2 + |w|2 = 1, α∗u+ β∗v + γ∗w = 0. (15.45)

The above process is a combination of the decay and oscillation processes

discussed in previous sections.

The temporal architecture is given by Figure 15.3: the dynamics given by

(15.42)–(15.44) rules out transitions from Z states to either X or Y states.

Therefore, once a Z state is created, it remains a Z state, so there is an irreversible

X
X

X
X

Y
Y

Y
Y

Z
Z

Z
Z

Z

Z

SSSS

Figure 15.3. The temporal architecture of Kaon decay.
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flow from the X and Y states and so these eventually disappear. Before that

occurs, however, there will be back-and-forth transitions between the X and Y

states that give rise to the phenomenon of regeneration.

In actual Kaon decay experiments, pure K0 states can be prepared via the

strong interaction process π−+p → K0+Λ, while pureK
0
states can be prepared

via the process π+ + p → K+ + K
0
+ p. In our notation, these preparations

correspond to initial labstates ÂX
0 0n and ÂY

0 00, respectively. In practice, super-

positions ofK0 andK
0
states may be difficult to prepare directly, but the analysis

of Gell-Mann and Pais shows that such states could in principle be prepared

indirectly (Gell-Mann and Pais, 1955). Therefore, labstates corresponding to X

and Y superpositions are physically meaningful and will be used in the following

analysis.

Consider an initial labstate of the form Ψ0 ≡
{
x0Â

X
0 + y0Â

Y
0

}
00, where

|x0|2 + |y0|2 = 1. Matrix methods are appropriate here. The dynamics of the

system will be discussed in terms of the initial column vector Ψ0 ≡ [ x0 y0 ]T ,

equivalent to the statement that each run of the experiment starts with the

rank-two lab register Q0 ≡ QX
0 QY

0 . The dynamical rules (15.42)–(15.44) map

labstates in Q0 into Q1 ≡ QX
1 QY

1 Q
Z1

1 , so there is a change of rank from two to

three. The transition is represented by the semi-unitary matrix

U1,0 ≡

⎡⎣α u

β v

γ w

⎤⎦ , (15.46)

which subsequently generalizes to

Un+1,n ≡

⎡⎢⎢⎢⎢⎣
α u 0Tn

β v 0Tn

γ w 0Tn
0n 0n In

⎤⎥⎥⎥⎥⎦ , n > 0, (15.47)

where In is the n×n identity matrix and 0n is a column of n zeros. The observer’s

detector array increases rank by one over each time step. The state at stage

Σn is represented by a column vector Ψn with n + 2 components, given by

Ψn = Un,n−1Un−1,n−2 . . .U2,1U1,0Ψ0. Overall probability is conserved, because

of the semi-unitarity of the transition operators.

As before, the key to unraveling the dynamics is linearity, which is guaranteed

by the use of semi-unitary evolution operators. Suppose the state Ψn at time n

is represented by

Ψn = [xn, yn, z
n
n , . . . , z

1
n]

T , (15.48)

where the components xn and yn are such that xn = λnx0 and yn = λny0, where

λ is some complex number to be determined. Such states will be referred to as

eigenmodes. They are not eigenstates of any physical operator, but their first two
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components, xn and yn, behave as if they were. The dynamics gives the relations

xn+1 = αxn + uyn = λxn, yn+1 = βxn + vyn = λyn, and zn+1
n+1 = γxn + wyn.

Experimentalists will be interested principally in survival probabilities for the

X and Y states, so the dynamics of Z states will be ignored here; i.e., the behavior

of the components zkn for k < n will not be discussed. Clearly, however, the QDN

formalism is capable of giving much more specific details about the process than

just the X and Y survival probabilities.

It will be seen from the above that λ is an eigenvalue of the matrix[
α u

β v

]
,

which means that in principle there are two solutions, λ+ and λ−, for the

eigenmode values, given by λ± = 1
2{α + v ±

√
(α− v)2 + 4βu}. It is expected

that these will not be mutual complex conjugates in actual experiments, because

if they were, the analysis could not explain observed Kaon physics. Therefore, the

coefficients α, β, u, and v will be such that the above two eigenmode values are

complex and of different magnitude and phase, giving rise to two decay channels

with different lifetimes, as happens in neutral Kaon decay. In the quantum

mechanics analysis of neutral Kaon decays, Gell-Mann and Pais described the

neutral Kaons as superpositions of two hypothetical particles known as K0
1

and K0
2 , which are charge-parity eigenstates and have different decay lifetimes

(Gell-Mann and Pais, 1955). The K0
1 decays to a two-pion state with a lifetime

of about 0.9 × 10−10 second, while the K0
2 decays to a three-pion state with a

lifetime of about 0.5× 10−7 second.

Semi-unitarity guarantees that

|xn+1|2 + |yn+1|2 + |zn+1
n+1 |2 = |xn|2 + |yn|2, (15.49)

and so it can be deduced that

|λ|2 = 1−
|zn+1

n+1 |2
|xn|2 + |yn|2

< 1, n = 0, 1, 2, . . . , (15.50)

given |xn|2 + |yn|2 > 0. From this and the conditions xn = λnx0, yn = λny0, the

eigenmode values can be written in the form λ2 ≡ λ+ = ρ1e
iθ1 , λ2 ≡ λ− = ρ2e

iθ2 ,

where 0 < ρ1, ρ2 < 1 and θ1 and θ2 are real. The eigenmodes at time t = 0

corresponding to λ1 and λ2 will be denoted by Λ1,0 and Λ2,0 respectively, i.e.

Λ1,0 = [ a1 b1 ]T , Λ2,0 = [ a2 b2 ]T , and then the evolution rules give

Λ1,n =

⎡⎢⎢⎢⎢⎢⎣
λn
1a1

λn
1 b1
cn,n
...

c1,n

⎤⎥⎥⎥⎥⎥⎦ , Λ2,n =

⎡⎢⎢⎢⎢⎢⎣
λn
2a2

λn
2 b2
dn,n
...

d1,n

⎤⎥⎥⎥⎥⎥⎦ , (15.51)
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where the coefficients {ck,n} , {dk,n} can be determined from the dynamics. The

initial modes Λ1,0 and Λ2,0 are linearly independent provided λ1 and λ2 are

different. Given that, then any initial labstate Ψ0 can be expressed uniquely as

a normalized linear combination of Λ1,0 and Λ2,0, i.e., Ψ0 = μ1Λ1,0 + μ2Λ2,0, for

some coefficients μ1 and μ2. This is the analogue of the decompositions

|K0〉 = {|K0
1 〉+ |K0

2 〉}/
√
2,

|K0〉 = {|K0
1 〉 − |K0

2 〉}/
√
2 (15.52)

in the Gell-Mann and Pais approach.

From this, the amplitude A(X,n|Ψ, 0) to find an X signal at time n is given by

A (X,n|Ψ, 0) = μ1a1λ
n
1 + μ2a2λ

n
2 , (15.53)

so that the survival probability for X is given by

Pr (X,n|Ψ, 0) = |μ1|2|a1|2ρ2n1 + |μ2|2|a2|2ρ2n2
+2ρn1ρ

n
2Re{μ∗

1μ2a
∗
1a2e

−i(θ1−θ2)}, (15.54)

and similarly for Pr (Y, n|Ψ, 0).

There is scope here for various limits to be considered, as discussed in the

single-channel decay analysis, such that either particle decay is seen or the

quantum Zeno effect appears to hold over limited time spans. If we are justified

on empirical grounds in writing ρn1 ≡ e−Γ1t/2, ρn2 ≡ e−Γ2t/2, where t ≡ nτ

and Γ1,Γ2 correspond to long and short lifetime decay parameters, respectively,

then the various constants can always be chosen to get full agreement with the

standard Kaon survival intensity functions

I(K0) = (e−Γ1t + e−Γ2t + 2e−(Γ1+Γ2)t/2 cosΔmt)/4,

I(K
0
) = (e−Γ1t + e−Γ2t − 2e−(Γ1+Γ2)t/2 cosΔmt)/4, (15.55)

for pure K0 decays. Here Δm is proportional to the proposed mass difference

between the hypothetical K0
1 and K0

2 “particles,” which are each charge-parity

eigenstates and are supposed to have charge-parity–conserving decay channels.

From the QDN approach, such objects need not exist. Instead, they are regarded

as manifestations of different possible superpositions of K0 and K
0
labstates,

each of which is physically realizable via the strong interactions, as mentioned

above. Conversely, the apparatus dynamics may be such that quantum Zeno-type

effects are observed instead of long-term decays. Again, this will depend on the

details of the experiment chosen.
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