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DECOMPOSABLE INVOLUTION CENTRALIZERS
INVOLVING EXCEPTIONAL LIE TYPE SIMPLE GROUPS
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1. Introduction

There have been investigations (Janko (1966), Janko and Thompson
(1966), Yamaki (1972)) of finite groups G which contain a central involution t
whose centralizer (in G) has the form C(t) = (t) x F, where F is isomorphic to
a non-abelian simple group. Here it is shown such a group cannot be simple
when F is isomorphic to an exceptional Lie type simple group of odd charac-
teristic. Specifically the following theorem is proved.

THEOREM 1.1. Let G be a finite group with a central involution t whose
centralizer has form

C{t) = (t)xF,

where F is isomorphic to an exceptional Lie type simple group of odd charac-
teristic. Then G has a subgroup of index 2 not containing t.

Theorem 1.1 may be combined with the results of Curran to give:

THEOREM 1.2. Let G be a finite group with a central involution t whose
centralizer has the structure

where F is isomorphic to any alternating simple group or any classical or excep-
tional Lie type simple group of odd characteristic. Then G has a subgroup of
index 2 not containing t (and so G is not simple), except when F ~ A5 or F ~
PSL(2,32n+1) (n& 1).

Of course these are true exceptions, for the centralizer of an involution /
in the Janko simple group of order 175,560 has the form C(t)~(t)x A5

(Janko (1966)); while in the simple Ree groups C(t) has the structure C(t)~
(t)x PSL(2,32" + 1) (n a 1) (Janko and Thompson (1966)).
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The notation follows that of Carter (1972) in which standard facts on the
Chevalley groups may be found.

2. Straightforward cases

In this section Theorem 1.1 is proved when F is isomorphic to one of the
following simple Lie groups: G2(q), Ft(q), E6(q), Es(q), 3D4(<73), ^ ( q 2 ) or
2G2(3

2"+I) (n =£ 1). The proof of the theorem is straightforward in these cases,
because when F ~ 2G2(3

3n+1) (n g 1) a Sylow 2-subgroup of G is abelian and
appeal to the theorem of Walter (1969) characterizing such groups yields the
result; while in the remaining cases every involution in F is a square in F and
the theorem follows easily from (2.1) and (2.2) below.

PROOF OF THEOREM 1.1. First consider the case when F = 2G2(3
2n+l)

(n g 1), the twisted Ree group of type G2 over the field F3
2-*' (n g 1). This

group has only one class of involutions and as noted above if x is any involu-
tion in F, CF(x) = 0c)xPSL(2,32"+l). Thus a Sylow 2-subgroup of G is
elementary abelian of order 8, and so a Sylow 2-subgroup of G is elementary
abelian of order 16.

Without loss of generality we may assume O(G) = 1, where O(G) is the
maximal normal odd order subgroup in G. Then if O'(G) is the minimal nor-
mal subgroup of odd index in G, C(l) D O'(G)< C(t) and contains a Sylow
2-subgroup of G. Thus ( l ) x F C O'(G). But both G and (t) x F have 2-order
16 so by a theorem of Walter (1969) characterizing groups with abelian Sylow
2-subgroups O'(G) = (t) x F. Therefore F < G and GIF has order 2k, k odd.
Thus by a theorem of Burnside GIF has a subgroup of index 2 not containing
tF and the conclusion of Theorem 1.1 follows.

Now consider the remaining cases. Since t is central, C(t) contains a
Sylow 2-subgroup of G of form S = (t)x M where M is a Sylow 2-subgroup
of F. We show t is not fused (that is conjugate in G) to any involution in M
and use the following lemma of Thompson (1968).

LEMMA 2.1. Let M be a subgroup of index 2 in a Sylow 2-subgroup S of a
finite group G. Let t be an involution in S\M which is not fused to any element of
M. Then G has a (normal) subgroup of index 2 not containing t.

Now the structure of C(t) shows t cannot be fused with an involution
which is a square in F. More generally if (L2) denotes the group generated by
the squares of elements of a subgroup L of G, the following holds:

LEMMA 2.2. t is not fused to any involution x G (CF(x)2).

PROOF. Suppose on the contrary x=Xl?=iX2 where x, £ CF(x) (m a
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positive integer) and t = x", some a G G. Then ( = nr.i(x°)2. But
XiECF(x)QC(x) so xfE C(x)a = C(t). Thus tE(C(lf)CF, a contradic-
tion. But in the remaining simple Lie groups above, every involution is a
square and so the conclusion of Theorem 1.1 follows immediately from (2.1)
and (2.2). In the table below we list these groups, together with the corres-
ponding Dynkin diagram, a representative of each class of involutions and the
order 4 element of which it is a square.

Dynkin ~ . Order 4
Group ' Representativesr Diagram elements

G2(q) 1
•—c:
1 2

2

3 4

h,

h2h4

h,h3

n2n4

. t4f . t

1 2 3 5 6 h2h5 n2n5

1 2 3 4 5 7 8 h2h4h6 n2n4

ht,h7 n6n7

The representatives chosen are found from Iwahori (1970). The element
hi = hi(— 1) and the element n< = xP;(l)x-Pi(— l)jtPi(l) is a generator of the
subgroup N in the Chevalley group. n]= hh and for i^ j we have n.n, = n,7ii if
and only if node i and node / are not connected in the Dynkin diagram.

3. The case E7(q)

Finally consider the case when F ~ E7(q), the adjoint Chevalley group of
type En over the finite field k = F, of q elements (q odd).

Let <t be the set of roots of a complex semi-simple Lie algebra of type E7

relative to a Cartan subalgebra. For a fixed ordering of 4> let <I>* be the posi-
tive roots containing a fundamental system U = {p,, p2, • • -,p7}, with Dynkin
diagram

p2 PJ p* p>, p 7 - Po

where p(, is the highest root in <J>+, p0 = p, + 2p2 + 3p3 + 4p4 + 2p5 + 3p6 + 2p7.
Let W = (w,\r G <t>) be the Weyl group of <t>, and w o £ W be the sym-

metry which interchanges p3 and p6, p2 and p7, p, and - p0, and fixes p4 and p5.
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Let E = (xr(t)\r E<$>, t E k) be the associated adjoint Chevalley group
over the field k, which contains the subgroup H = (h,{t)\ r 6 O , ( £ J t ) , where
k = (K ) is the multiplicative group of k. The universal Chevalley group of type
E7 has centre (h,(- I)h3(- I)h5(- 1)) of order 2, so the adjoint group E is
generated by the elements xr(t) (r£<J>,[£)l) satisfying the usual relations for
the universal group with the additional relation ht( — l)/i3( — I)h5(— 1)= 1.

Let K be the algebraic closure of k, and for the extension field Fq
2 of k in

K, let FV = (p>. Put i = p
i"1'IVA and V K = p<<?+1)/2. Denote by E =

(xr(t)\ r E<S>, t G K) the connected linear group over K containing £ as a sub-
group in the natural way, and H = (K(t)\ r £ $, ( G K).

The mapping x,(t)—* x,(tq) (r G $ , f £ K) on the generators of E extends
to the Frobenius automorphism a of E. For a subset X of E invariant under
a, let Xa denote the fixed points of a in X. Then E* = Ea is the group of k-
rational points in E. One knows | E * : E | = 2, E* = EH* and E D H* = H,
where H* = Ha. In fact E* = ( M V ^ M ^ / ^ V K ^ . E .

The proof of Theorem 1.1 requires the classes of involutions and their cen-
tralizers in E. First, from the results of Iwahori (1970), we give the classes and
their centralizers in E.

LEMMA 3.1. (i) There are three classes of involutions in E having the fol-
lowing representatives in H*\

(ii) // C° is the connected component of the identity for the centralizer C of
any of the above involutions then C/C" is finite abelian. Coset representatives of
C° in C are certain nw E N = NE(H), w G W, where the nw can be chosen to
have the same order as w. Further CU = H.X where X is a connected semi-
simple algebraic group and X<Cn. The following table lists for z, Ui and u2 the
simple components ofX, the corresponding set of fundamental roots, the order of
C/C" and the coset representatives in N.

Representatives Components Root Structure \C/C°\ nw

. • I5 . . .
A,,D6

A7

E,

1 3

1 2 3

2 3

4 6

4 6

4 6

7 0

7 0

7

1

2

2

1

n,

n.
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PROOF If i \ is the Z-lattice spanned by IT, H may be identified with
Hom(F,, K). Then (ii) follows from proposition 1 in Iwahori (1970) with X =
(Xr(t)\ r G <$>x, t G K) where the involution h G H corresponds to \ G
Hom(r,,, K) and <t>Y = { r £ <t>\x(r) = 1 }• The involutions z, u,, u2 correspond
to ,YA2(2), *AS(2), ^A,(I ) respectively in Iwahori (1970) and the classes for E (giv-
ing (i)) and the 4>, for each of these involutions are given on pages F23, F24 of
that paper.

LEMMA 3.2. (i) There are 5 classes of involutions in E* with representa-
tives z, u,, ua, (i = 1,2) where «„•„ = a".a~l (a G E).

(ii) There are 3 classes of involutions in E with representatives:

z, u, (i = 1, 2) when q = 1 (mod 4).

2, w ° (/ = 1, 2) when q = — 1 (mod 4).

PROOF. By a lemma of Steinberg (10.1 in Steinberg (1968)) if nw G E,
nK = x"x' for some x G E. Then proposition 6 in Iwahori (1970) shows that
for any involution h G H* the map

Cf(h)ICUh)^{h£ HE*)/E*,

(the E * class of /r lying in the E class of h), defined by: nw—*(hx ) E ' (the JE *

class of h'), is a bijection. (i) now follows from (3.1) taking «„„ = a"al

(a G E) and (ii) is contained in Iwahori (1970) on pages F26, F27.

In order to treat the cases q = ± 1 (mod 4) uniformly we observe (for

' = 1,2),

where Ee is the group of fixed points of 6 = a" ' = cmWu in E. So when q=—\

(mod 4) it is convenient to let £ ( - 1) = E" ', of index 2 in E9, and consider the

centralizer of u, in E(— 1), since Cr\u^) ~ CF(-,)(w,). Because 0 = crnwil these

centralizers involve twisted Lie groups. We also put H(-\)=H°\

H*(-l)=H*a", E(])=E, H(\)=H, H*(\)=H* and assume q = e
(mod 4), (e ± 1) in the following.

LEMMA 3.3. (i) CE(z)= H.L(z) where L{z) is a central product of Lie
groups of type A, and Dh. Further z is the only central class in E and z is a
square in E.

(ii). CE(e)(u,) = (h1)L(u1), where L(w,) is of type A7(q) (e = 1) or 2A7(q2)
(e = - 1 ) , and htGH(e).

(Hi) CE ( , , (K2) = (h2)L(u2), where L(u2) is of type E6(q) (e = 1) or 2E6(q
2)

(e = - 1 ) , and h2e H(e).
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(iv) For i = 1, 2 Mj G (CEi.)(u, f) if and only if q = e (mod 8).

PROOF, (i) From (3.1) it follows that CE(z) = H.L(z), where L(z) =

Let L, = <Xipi(O|f Gfc> and L2 = <XIp,(r)| i = 0, 3 g i S 7 ; rGfc), then
L(z) = L,.L2 where Li is of type A, and L2 is of type D6. In fact Z(Li) =
<fc,(-l)> so L, = SL(2,q), and

Z(L2) = ( M - 1 ) M - 1 ) M - 1)> x < M " 1 ) M - 1)) = <*•(- 1)>

so L2 is a homomorphic image of Spin (12, q) which is not fl(12, q). Clearly
[L,, L2] = 1 and L, D L2 = ( M ~ 1)) so L(z) is the central product of L, and
L2. Further L(z) is of index 2 in CE(z), because clearly CE(z) = ( / I 2 (K)) .L(Z)

and I I 2 ( K ) 2 G L ( Z ) .

Also z is obviously a square in E (z = n?) and a calculation of | E: CE(z)|
shows z is central in E.

(ii) For i = 1,2, C° E ( E ) (u i )=£(e )nCl (u 1 ) . So from (3.1) C°E(e)(iO is of
index 2 in CE<r)(M,) with coset representative nwm and CE(»)(M,) = H(e). L(M,),

with L(Mi)<CE(e)(Mi).

Now L(M,) = < X i p i | 0 g i S 7 , iV5> is of type A7(q) (e = 1) or of type
2A7(q

2) (e = - 1). If d = (q - e, 8) and y = p("2-')/a then

Z(L(Ul)) = (

Thus when q = e (mod8), Z ( L ( M , ) ) = (u,), and when q = 4 + e (rnod8),
Z ( L ( « , ) ) = 1 . So in the latter case L(M,) = PSL(8,q) (e = 1) or L(M,) =
PSU(8,q) (e = - 1 ) .

In fact if A = p"~' (so A" = A = K (e = 1) and A" = A"1 (e = - 1)) it is
easily seen that

where ft, = MA)/i2(A2)MA3)h4(- A2)/i5(A).
Note: if V/A=p("-£>/2, and g, = fc1(VA)/i2(A)A3(>yA)/t4(- A) / I 5 (VA) then g,G
H*(e)- H(e) and g2 = It,. Since ( i , 2 £L(« , ) and h"~° = h;1 = ̂ , (modL(M,)X
CE(f)(Mi)/L(M1)~ Z 2 x Z2, the 4-group.
Hence L(M, ) = L(M, ) ' C CE ( f ,(M,) C ( C E ( O ( M , ) 2 ) £ L(M,) .

(iii) L(M2) = (Xip, |2 S i S 7) is of type E6(q) (e = 1) or of type 2E6(q
2)

e = — 1), with a centre of order (3,q — e). In fact

where /i2 = h,(A)/i3(A>4(A2)MA)fi7(A2). Since h^~'V2 = 1 and /z2
w°=/J2"',

CE(e)(u2)/L(u2) is dihedral.
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Thus (CE(c>(u2f) = CE(e){u2)' is of index 2 in H(e)L(u2).
(iv) Since h\q~'v* = u,, ut £ (CE<e)(Hi)2) if and only if q = e (mod8), and in

fact when q = e (mod 8), u, = (h\q~'vs)2 is actually a square in E.
A calculation of | E(e): CE(e)(u,)\ shows the u, are not central (/ = 1,2) in

E(s).
We now give the proof of (1.1) when F ~ E7(q).

PROOF OF (1.1). We put F = E(e) where as above q = e (mod4), e =
± 1; and relabel z°, the representative of the central class in E( — 1), z. Thus
the classes in F have representatives z, u, and u2. We show t is not fused to
any of these three involutions and the theorem then follows from (2.2). By
(3.3) when q = e (mod 8) z, Mi and u2 are all squares in F and the conclusion
of the theorem follows from (2.1).

Thus assume q = 4 + e (mod 8). A maximal set of representatives of the
classes of involutions in C(t) = (t)x F is the set {t, z, u,, tz, tu,\i = 1,2}.
(a) Again z is a square in F by (3.3) so r / z by (2.2).
(b) Suppose tz ~ f i n G, say (tz)b = t some b £ G. As t G C(tz), t" G C(t)
and is thus conjugate to one of the involutions above. Suppose tb ~ «, or tUi
(i = 1,2). In fact we may assume tb = ut or tut. In either case

hence (C(t, z)'"')* = C(y, u,)™,

where for a subgroup L of G, L<=o) is the last term in the derived series of L.
Now C(/ ,z) = ( l )xC F (z ) , so C(f, z)("'= CF{zTy=L(z) and similarly

C((, K,-)'*' = L(ut). This gives a contradiction since by (3.3) L(z) and L(ut) are
not isomorphic. Thus tb ~ tz and again we may assume tb = tz so tz —»• f —> tz
under />. Therefore (C(t, z), fc) is a subgroup of order 2| C(f, z)\, contradicting
the fact that C(t, z) contains a Sylow 2-subgroup of G (since z is central in F).
Thus tz/ t in G.

(c) Suppose M, is conjugate to ( in G so M[ '= t, some cf £ G. Now u"5 =
«if i 5 ( - l ) a n d "2°"' = u2h0(- l)/i,( — 1)= u2h3(- l ) / i 6 ( - 1), where. n5, no«i,
2i = / ts(- 1), ^2= ^3(- 1)^6(- 1)£ F. Thus M, ~ M,Z, where z, is central in F
(since z, is clearly a square in F for /' = 1,2).Conjugating this relation by c,,
and assuming for the moment zc,'= z,, we have t ~ tz, in G. However tz{ ~ tz
in G and this contradicts the result of (b).

To justify the assumption, recall we are assuming u1'= t. Then as in (b),
since L{z), L(«,) and L(u2) are not isomorphic by (3.3), we may suppose tc' =
Uj or tu,. In either case c, centralizes C(t, «,) and so induces an automorphism
on C(t, Ui){x) = L(u,). But z, E L(u,) and by a theorem of Steinberg (1968)
every automorphism ip of a Chevalley group is of form \\i = fgdi where / is a
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field, g, a graph, d a diagortal and i an inner automorphism. As zt is fixed by
field, graph and diagonal automorphisms zV~ z[' some ft EL(Wj)CF. Re-
placing c, by c'i= c>f~l we have uf'= t and z ' c = zf as assumed.

Therefore ( is not fused to any involution in F and the conclusion of the
theorem follows from (2.1). This completes the proof of (1.1).
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