
Canad. J. Math. Vol. 66 (2), 2014 pp. 354–372
http://dx.doi.org/10.4153/CJM-2012-062-3
c©Canadian Mathematical Society 2013

The Minimal Growth Rate of Cocompact
Coxeter Groups in Hyperbolic 3-space
Ruth Kellerhals and Alexander Kolpakov

Abstract. Due to work of W. Parry it is known that the growth rate of a hyperbolic Coxeter group
acting cocompactly on H3 is a Salem number. This being the arithmetic situation, we prove that the
simplex group (3,5,3) has the smallest growth rate among all cocompact hyperbolic Coxeter groups,
and that it is, as such, unique. Our approach provides a different proof for the analog situation in
H2 where E. Hironaka identified Lehmer’s number as the minimal growth rate among all cocompact
planar hyperbolic Coxeter groups and showed that it is (uniquely) achieved by the Coxeter triangle
group (3,7).

1 Introduction

Let G be a discrete group generated by finitely many reflections acting cocompactly
on hyperbolic space Hn. Denote by S the set of generating reflections. We call
G = (G, S) an n-dimensional cocompact hyperbolic Coxeter group. A fundamen-
tal domain P ⊂ Hn for G is a Coxeter polytope characterised by dihedral angles of
the form π/k for integers k ≥ 2. In dimensions n = 2 and n = 3, there is a plethora
of such hyperbolic Coxeter groups, which we can arrange by increasing volume of P.
In this way, the right-angled triangle group (3, 7) is minimal and provides, by a result
of Siegel [Si], an orbit space that is the overall smallest volume hyperbolic 2-orbifold.
However, for n = 3 it is known that the Coxeter tetrahedron with Coxeter symbol
(4, 3, 5) has smaller volume than its cousin (3, 5, 3) (cf. [Ke]), but the obvious in-
ternal 2-fold symmetry leads to an (arithmetic) discrete group (3, 5, 3) ? Z2 whose
associated quotient has minimal volume (cf. [ChFr, GM, MaM]).

Another and more algebraic feature to characterise the set of hyperbolic Coxeter
groups and to compensate the volume deficiency is the growth series with its growth
rate. For a hyperbolic Coxeter group G = (G, S), the growth series is given by

(1.1) fS(x) = 1 +
∑
k≥1

akxk,

where ak ∈ Z equals the number of words w ∈ G with S-length k. The growth rate τ
is defined by the reciprocal value of its radius of convergence R ≤ 1. If G is supposed
to be cocompact, a result of Milnor [Mi] guarantees that τ = 1/R > 1. Furthermore,
it is known that the series (1.1) is the power series of a rational function p(x)/q(x)
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with coprime polynomials p(x), q(x) ∈ Z[x]. By results of Floyd and Plotnick [FlPl]
for n = 2, and of Parry [Pa] for n = 2, 3, it follows that the denominator q(x) is
a product of cyclotomic polynomials with precisely one Salem polynomial (cf. §2.2).
Therefore, the growth rate τ is a Salem number, that is, a real algebraic integer greater
than 1 all of whose Galois conjugates have absolute value not greater than 1 and at
least one of which has absolute value equal to one.

Lehmer’s problem in number theory (see [GhHi]) can be formulated as a minimi-
sation problem and a search for a uniform lower bound s > 1 for all Salem numbers.
By the above-mentioned connection of Salem numbers to growth rates in dimensions
2 and 3, Lehmer’s problem experiences a beautiful interpretation within hyperbolic
geometry. For example, if n = 2, E. Hironaka [Hi] proved that the group (3, 7) has
minimal growth rate among all cocompact planar hyperbolic Coxeter groups, and
that this Salem number τ1 equals Lehmer’s number αL ' 1.17628 with minimal
polynomial L(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1. Notice that αL is the
smallest Salem number known to date.

In this work, we prove that the tetrahedral Coxeter group (3, 5, 3) has minimal
growth rate among all of the infinitely many hyperbolic Coxeter groups acting co-
compactly on H3. This Salem number τ2 ' 1.35098 has minimal polynomial x10 −
x9 − x6 + x5 − x4 − x + 1 (cf. (2.8)). The proof relies upon Steinberg’s formula (cf.
2.5), a monotonicity property of the exponents of finite Coxeter groups (cf. Table 1)
and some combinatorial and classification results for 3-dimensional cocompact Cox-
eter groups (cf. §2.1). The proof itself is nonetheless of an elementary nature, and in
contrast to |S| ≥ 6 requires only a limited case-by-case analysis for |S| = 4 and
|S| = 5. It will be presented in full detail, revealing that the most delicate part arises
when considering minimal |S| and the growth rates of the rivaling Coxeter tetrahedra
(3, 5, 3) and (4, 3, 5). Furthermore, the proof allows us to reprove Hironaka’s result
in the same spirit, without using any convexity argument. Finally, we illustrate that
growth rates are not directly linked to covolume of hyperbolic Coxeter groups, but
they provide rather a good indicator for small covolume (cf. §4).

2 Preliminaries

2.1 Cocompact Hyperbolic Coxeter Groups

Let Xn be either the n-sphere Sn, the Euclidean n-space En, or the n-dimensional
hyperbolic space Hn. Let P ⊂ Xn be a Coxeter polytope, that is, P is a convex polytope
bounded by finitely many hyperplanes Hi ⊂ Xn , i ∈ I , which, when intersecting in
Xn, form dihedral angles ∠(Hi ,H j) of type π/ki j for an integer ki j ≥ 2. Apart from
the spherical case, hyperplanes bounding a polytope can be disjoint. In particular,
hyperplanes bounding a finite volume polytope P can be disjoint in Hn but intersect
in the ideal boundary ∂Hn or admit a common perpendicular. In these cases, one
sometimes speaks of (hyperbolically) parallel or ultra-parallel hyperplanes.

The group G = (G, S) = G(P) generated by the set S of reflections si ∈ Isom(Xn)
with respect to the limiting hyperplanes Hi of P is called a geometric Coxeter group
in Xn. By construction, the generators si ∈ S of G provide the relations s2

i = 1
and (sis j)ki j = 1 if ∠(Hi ,H j) = π/ki j , while (sis j)∞ = 1 for (ultra-)parallel hy-
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perplanes Hi ,H j . Furthermore, geometric Coxeter groups G are discrete subgroups
of Isom(Xn) and provide an important class of geometric n-orbifolds Q = Xn/G.
We often do not distinguish between the geometric Coxeter group G and its Coxeter
polytope P (or its quotient space Q). In the sequel, we always assume a hyperbolic
Coxeter polytope to be compact and call the associated hyperbolic Coxeter group co-
compact. A compact polytope P ⊂ Xn with non-obtuse dihedral angles is simple, that
is, each k-dimensional face F is contained in precisely n − k bounding hyperplanes
of P for 0 ≤ k ≤ n − 1. In particular, if P is spherical, then P is a simplex, and the
spherical Coxeter simplices have been classified by Coxeter [Co] in 1934.

If a Coxeter group (G, S) has a simple presentation, with few generators and rela-
tions, it is most convenient to represent G by its Coxeter diagram Σ or by its Coxeter
symbol. Recall that the Coxeter diagram Σ of P (and G) consists of nodes correspond-
ing to the hyperplanes of P (or the reflections of G) that are pairwise connected by an
edge of weight k if the two corresponding hyperplanes intersect under the dihedral
angle π/k. For the particular cases k = 2 (resp. k = 3), the edge is always omitted
(resp. exempt from its weight). For a hyperbolic Coxeter polytope with ultra-parallel
hyperplanes Hi ,H j in its boundary (admitting a common perpendicular segment re-
alising their distance li j), the corresponding nodes in Σ are joined by a dotted edge
(with weight li j , which is usually omitted). Furthermore, the Coxeter diagram of a
hyperbolic Coxeter polytope of finite volume is connected. We call the number |S| of
generators the order of Σ.

The simplest geometric Coxeter groups in Xn are associated with linear Coxeter
diagrams of order n + 1 (and with weights k1, . . . , kn, say; see Example 2.4). The
corresponding polytope is called a Coxeter orthoscheme and denoted by the (slightly
modified) Coxeter symbol (k1, . . . , kn). However, compact hyperbolic Coxeter or-
thoschemes exist only up to dimension 4, and the single compact examples in H3

are given by (4, 3, 5), (3, 5, 3), and (5, 3, 5), ordered by increasing volume (see [Ke],
for example). In general, there are infinitely many, essentially different examples of
compact Coxeter polyhedra in H2 and H3. This is obvious for n = 2, since compact
hyperbolic Coxeter k-gons P ⊂ H2 do exist as long as the total (interior) angle sum
Ω of P satisfies

(2.1) 0 < Ω < (k− 2)π.

However, for n = 3, this is much less obvious. By Andreev’s theorem (see [Vi1,
p. 112], for example), there are explicit realisation conditions that allow one to clas-
sify compact hyperbolic Coxeter polyhedra of fixed combinatorial type. For example,
Coxeter simplices were classified by Lannér (see [Vi1, p. 205], for example), and the
lists of triangular Coxeter prisms and hyperbolic Napier cycles are due to Kaplinskaja
[Ka] and Im Hof [Im].

Example 2.1 The family

Σ1
p,q,r : , 1/p + 1/q < 1/2, 1/q + 1/r > 1/2,

parametrised by three integers p, q, r ≥ 3, yields an infinite sequence of compact
truncated Coxeter orthoschemes (or orthogonal simplicial Coxeter prisms) in H3 dis-
covered first by Kaplinskaja [Ka].
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Σ2
p,q,r :

r p

q

Figure 1

Example 2.2 The family of so-called Lambert cubes (see [Ke, pp. 548, 552] for the
description and volume aspects) are particular doubly truncated orthoschemes and
depend on three real parameters.

They provide fundamental domains for cocompact reflection groups in Isom(H3)
given by Coxeter graphs Σ2

p,q,r with integer weights p, q, r ≥ 3 (see Figure 1) and were
discovered by Im Hof [Im] in the context of Napier cycles.

2.2 Growth Series and Growth Rates

Consider the growth series of a geometric Coxeter group (G, S), that is,

(2.2) f (x) = fS(x) = 1 + |S| x +
∑
k≥2

akxk,

where ak denotes the number of elements w ∈ G of S-length k.
In the spherical case, growth of finite Coxeter groups is polynomial and well un-

derstood (see below). In the sequel, we are interested in the growth series of co-
compact hyperbolic Coxeter groups G, which are of infinite order and may also have
hyperbolic Coxeter subgroups (see Examples 2.1 and 2.2). Since S = S−1, the co-
efficients satisfy ak ≤ |S|k so that the growth series (2.2) has radius of convergence
1/|S| ≤ R ≤ 1 in C. Notice that, by a result of Milnor [Mi], R < 1, since G is co-
compact. Furthermore, Steinberg [St] proved that f (x) is a rational function of the
form

(2.3) f (x) =
p(x)

q(x)
,

where p, q ∈ Z[x] are monic and coprime polynomials of equal degree. In this way,
we can interpret f (x) as rational function of x in the complex plane. The growth rate
of G is defined by τ = τG := 1/R > 1 and coincides with the biggest positive real
root of the denominator polynomial q in (2.3). By definition, τ is a real algebraic
integer. Our aim is to minimise τ for cocompact Coxeter groups in Isom(H3).

Consider a cocompact Coxeter group G ⊂ Isom(Hn) for n ≥ 2. In [CD, Corollary,
p. 376], it is shown that the rational function f (x) is reciprocal (resp. anti-reciprocal)
for n even (resp. n odd), that is

(2.4) f (x−1) =

{
f (x) for n ≡ 0(2),

− f (x) for n ≡ 1(2).
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In particular, the inverse τ−1 = R < 1 is a Galois conjugate of the growth rate τ . For
its computation, the following formula of Steinberg [St] for arbitrary Coxeter groups
(G, S) will be of fundamental importance:

(2.5)
1

fS(x−1)
=

∑
GT<G
|GT |<∞

(−1)|T|

fT(x)
.

It provides an explicit procedure to compute fS(x−1) in terms of the growth polyno-
mials fT(x) of the finite Coxeter subgroups GT , T ⊂ S, of G, where G∅ = {1}. In this
context, recall that any subset T ⊂ S generates a Coxeter group GT that may be finite
or infinite, reducible or irreducible. Combinatorially, each finite Coxeter subgroup
GT < G arises as the stabiliser of a certain face of P. In particular, a maximal finite
Coxeter subgroup GT of G acting on Hn is of rank |T| = n and stabilises a vertex v
of P whose link is a spherical (n− 1)-simplex Pv (by the simplicity of P). By a result
of Solomon [So], the growth polynomial fT(x) is given by a product

(2.6) fT(x) =
t∏

i=1
[mi + 1].

Here we use the standard notations [k] := 1 + x + · · · + xk−1, [k, l] = [k] · [l], and so
on. The entries m1 = 1,m2, . . . ,mt are the exponents of the Coxeter group GT (for
references, see [CoMo, § 9.7] or [D, Chapter 17], for example). In Table 1, we list the
exponents and growth polynomials of the finite Coxeter groups of rank at most three.
Finally, for a reducible finite Coxeter group (G1 × G2, S1 ∪ S2), it is easily seen that
its growth polynomial equals the product of the polynomials of (G1, S1) and (G2, S2).
By (2.5) and (2.6), it follows that the numerator polynomial p(x) of f (x) in (2.3)
is a product of cyclotomic polynomials. This is a consequence of the factorisation
property (cf. [Pr, § 3.3])

[k] =
∏
d|k

d>1

Φd(x),

where Φd(x) denotes the d-th cyclotomic polynomial of degree equal to Euler’s func-
tion ϕ(d). For completeness, let us recall that the polynomial Φd(x) is irreducible in
Z[x] and, for d > 2, of even degree. If p is prime and d = pm, it satisfies the property

Φpm(x) =


Φm(xp) if p | m,

Φm(xp)

Φm(x)
otherwise.

As another general fact, we mention that the growth series f (x) of a Coxeter group
G acting cocompactly on Hn is related to the Euler characteristic of G and the volume
of P as follows (see [He]):

(2.7)
1

f (1)
= χ(G) =

{
(−1)

n
2 2 voln(P)

voln(Sn) , if n is even,

0, if n is odd.
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Notation Symbol Exponents fS(x)
A1 − 1 [2]

Dk
2, k ≥ 2 (k) 1, k− 1 [2, k]

A3 (3, 3) 1, 2, 3 [2, 3, 4]
B3 (4, 3) 1, 3, 5 [2, 4, 6]
H3 (5, 3) 1, 5, 9 [2, 6, 10]

Table 1: Growth of irreducible finite Coxeter groups of rank at most 3

Of special interest is the arithmetic nature and the distribution of the growth rates.
By results of Cannon and Parry (see [Pa] and also [CaW, Hi]), it is known that the
growth rate τ of a Coxeter group G acting cocompactly on Hn is a Salem number
if n = 2, 3. That is, τ is a real algebraic integer > 1 all of whose conjugates have
absolute value not greater than 1 and at least one of which has absolute value equal
to 1. It follows that the minimal polynomial, called the Salem polynomial, of τ is
palindromic with roots τ , τ−1, and all other roots lie on the unit circle coming in
inversive pairs.

Example 2.3 Consider the famous triangle group

Γ1 = (3, 7) :
7

with |S| = 3 generating reflections acting cocompactly on H2. It is known that the
group Γ1 ⊂ Isom(H2) is arithmetic and provides the (unique) hyperbolic 2-orbifold
of minimal volume (cf. [Si]). Furthermore, Γ1 is at the basis of the Hurwitz formula
Aut(Sg) ≤ 84(g − 1) for the order of the automorphism group of a compact surface
of genus g > 1. The group Σ1 has the rank 2 subgroups D3

2 = A2, D7
2 and A1 × A1 so

that Steinberg’s formula (2.5), combined with the reciprocity property (2.4), yields

f(3,7)(x) =
[2, 2, 3, 7]

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1
.

By (2.7), the covolume of Σ1 equals π/42 as is also well known by the defect for-
mula. The denominator of f(3,7)(x) is Lehmer’s polynomial L(x), which is the mini-
mal polynomial of the smallest Salem number αL ' 1.17628 known to date. Hence,
for the growth rate τ1 of Γ1, we obtain τ1 = αL.

Example 2.4 Consider the cocompact tetrahedral group

Γ2 = (3, 5, 3) :
5

with |S| = 4 generating reflections in Isom(H3). In order to apply Steinberg’s formula
(2.5), we list all finite subgroups with their growth polynomials according to Table 1
and summarise those of rank 2 and 3 in Table 2.
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Notation Graph Multiplicity Polynomial
A1 × A1 3 [2, 2]
A2 2 [2, 3]

D5
2

5
1 [2, 5]

A1 × A2 2 [2, 2, 3]

H3
5

2 [2, 6, 10]

Table 2: Finite subgroups of (3, 5, 3)

Then, by the anti-reciprocity (2.4), the growth function f(3,5,3) becomes (cf. also
[W, p. 235])

(2.8) f(3,5,3)(x) =
[2, 2, 2, 3] · (x6 − 2x5 + 3x4 − 3x3 + 3x2 − 2x + 1)

(1− x) · (x10 − x9 − x6 + x5 − x4 − x + 1)
.

It follows that x = 1 is a simple pole of f(3,5,3)(x) (cf. (2.7)), and the growth rate is
the Salem number τ2 ' 1.35098 > 4/3 associated with the minimal polynomial as
given by the second factor of the denominator in (2.8). Let us add that in [W], the
growth functions of all nine compact hyperbolic Coxeter simplex groups are listed
and shown to have denominators that split into one Salem polynomial beside cyclo-
tomic polynomials.

By exploiting Steinberg’s formula for cocompact Coxeter groups G ⊂ Isom(Hn)
with fundamental polytope P, Floyd and Plotnick [FlPl] for n = 2, and Parry [Pa]
for n = 2, 3, succeeded to derive a closed formula for the growth function of G in
terms of the exponents associated with the (finite) vertex stabilisers. More precisely,
the formula of Floyd and Plotnick for n = 2 and a compact Coxeter polygon with
interior angles π/k1, . . . , π/kN equals

(2.9) f (x) =
[2] · [k1] · · · [kN ]

(x − N + 1) [k1] · · · [kN ] +
∑N

i=1[k1] · · · [̂ki] · · · [kN ]
.

For n = 2 and n = 3, Parry provided an alternative characterisation, by consid-
ering 1/ f (x−1) and by collecting the different contributions for each vertex v of P
(with respective exponents m1 = 1,m2,m3). For n = 3, he obtained the beautiful
expression

1

f (x−1)
=:

x − 1

x + 1
+
∑
v∈P

gv(x)

=
x − 1

x + 1
− 1

2
x(x − 1)

∑
v∈P

(xm1 − 1)(xm2 − 1)(xm3 − 1)

(xm1+1 − 1)(xm2+1 − 1)(xm3+1 − 1)
.

(2.10)

Based on the expressions (2.9) and (2.10), as well as on certain non-trivial properties
about such rational functions, they could prove that the growth rate, in the cases
n = 2, 3, is always a Salem number.
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3 The Main Result

Let G be a Coxeter group acting cocompactly on hyperbolic space Hn and denote
by S its natural set of generating reflections. Let P ⊂ Hn be a fundamental Coxeter
polytope for G. Since G is cocompact, the polytope P is simple. Let (f0, . . . , fn−1)
denote its f-vector whose k-th component fk equals the number of k-dimensional
faces of P. In particular, fn−1 = |S|. In the following, we consider the case n = 3 and
prove the following main result of this work.

Theorem 3.1 Among all Coxeter groups acting cocompactly on H3, the tetrahedral
group (3, 5, 3) has minimal growth rate, and as such the group is unique.

For the explicit shape of the growth function of (3, 5, 3) giving rise to the Salem
pole τ2 ' 1.35098, recall from Example 2.4 and (2.8) that

f(3,5,3)(x) =
[2, 2, 2, 3] · (x6 − 2x5 + 3x4 − 3x3 + 3x2 − 2x + 1)

(1− x) · (x10 − x9 − x6 + x5 − x4 − x + 1)
.

3.1 Proof of the Theorem

Consider Parry’s formula (2.10) for the growth function f (x) of an arbitrary Coxeter
group acting cocompactly on H3, which we rewrite using (2.4) and m1 = 1 so that

(3.1)
1

f (x)
=

1− x

1 + x

{
1− x

2

∑
v∈P

(xm2 − 1)(xm3 − 1)

(xm2+1 − 1)(xm3+1 − 1)

}
,

and where the exponents m2,m3 are listed in Table 1. By having a closer look at
Table 1, one can observe the following naive, but crucial fact. Let G1 6= A1 be a group
in Table 1. By increasing one entry in the Coxeter symbol of G1 and passing from
G1 to another group G2 in Table 1, the non-trivial exponents all increase as well. For
example, the passage from A3 to H3 (increase the first entry 3 of the Coxeter symbol
(3, 3) to 5) transforms the exponents different from m1 = 1 according to m2 : 2 7→ 5
and m3 : 3 7→ 9.

In order to make use of this observation, we start by modifying (3.1) and write

(3.2)
1

f (x)
=

1− x

[2]

{
1− x

2

∑
v∈P

hk(x)hl(x)

}
=:

1− x

[2]

{
1− x

2
H(x)

}
,

interpreting the exponents m2 and m3 associated with the stabiliser of each vertex
v ∈ P as certain positive integers denoted simply by k and l, and where

(3.3) hk(x) = hv
k(x) =

xk − 1

xk+1 − 1
=

[k]

[k + 1]
,

which is strictly monotonely decreasing on [0, 1] and satisfies the following simple
but important property.
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Lemma 3.2 For each integer k ≥ 1 and for all x ∈ (0, 1],

0 < hk(x) < hk+1(x) < 1.

Proof We have
1

hk(x)
− 1

hk+1(x)
= xk

( 1

[k]
− x

[k + 1]

)
,

whose positivity on (0, 1] is equivalent to the trivial inequality

1 + x + · · · + xk > x + x2 + · · · + xk.

Our strategy is to show that, for each x ∈ (0, 1/τ2], there is a strict inequality
1/ f (x) < 1/ f(3,5,3)(x) for the growth function f of any three-dimensional cocom-
pact hyperbolic Coxeter group different from (3, 5, 3). Equivalently, by (2.8) and
(3.2), we will show that

(3.4) H(x) > H(3,5,3)(x) = 2
{ 1

[3]
+

[5, 9]

[6, 10]

}
for x ∈ (0, 1/τ2].

Consider a compact Coxeter polyhedron P ⊂ H3 associated with G. Obviously, P
must have f2 ≥ 4. Furthermore, we know that P is simple, that is, 3f0 = 2f1. Euler’s
polyhedron formula f0 − f1 + f2 = 2 then yields the identity f0 = 2 (f2 − 2) (or
f1 = 3 (f2 − 2)) in terms of f2 = |S|. We shall prove (3.4) by distinguishing between
the three cases f2 = 4, f2 = 5, and f2 ≥ 6.

Suppose that f2 ≥ 6. If P is totally right-angled, then, by a result of Inoue [In,
Lemma 3.3], f2 ≥ 12, and therefore f0 ≥ 20. Since m2 = m3 = 1, we get the estimate

H(x) ≥ 20

[2]2
=: H̃(x).

We will prove the inequality H̃(x) > H(3,5,3)(x), which is stronger than (3.4), by
making the following observation. For any positive integer l,

(3.5)
2

[2]
>

[l]

[l + 1]
for x ∈ [0, 1],

since (3.5) is equivalent to the inequality xl + 1 > 0. Now, by (3.5), we get

H̃(x) =
20

[2]2
>

4

[2]2
+ 2
{ [2]

[2, 3]
+

[5, 9]

[6, 10]

}
> 2
{ [2]

[2, 3]
+

[5, 9]

[6, 10]

}
= H(3,5,3)(x).

Suppose that P has at least one dihedral angle π/l with an integer l ≥ 3, associated
with the edge e = F ∩ F ′ formed by two faces F, F ′ bounding P, say. Let v, v ′ be
the vertices on the edge e of P. By looking at their vertex figures, it follows that both
stabiliser subgroups of v and v ′ are finite Coxeter groups of the form (k, l) and (k ′, l)
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Pp,q,r,t

p

q

r

t
p, q, r, r ≥ 2, 1

p + 1
q + 1

r < 1;

t ≥ 3, 1
t + 1

p >
1
2 , 1

t + 1
r >

1
2

Qs

5

s

s = 4, 5

Table 3: The compact straight Coxeter prisms in H3

with certain integers k, k ′ ≥ 2 (see also Table 1). By Lemma 3.2, and since f0 ≥ 8,
this leads to the rough estimate

(3.6) H(x) ≥ 6

[2]2
+ 2

[l− 1]

[2, l]
≥ 6

[2]2
+

2

[3]
=: H̃(x).

In order to show that H̃(x) > H(3,5,3)(x), we need to verify that (see (3.4) and §2.2)

(3.7)
3

[2]2
>

[5, 9]

[6, 10]
=

x6 + x3 + 1

x8 + x5 + x3 + 1
,

which is equivalent to the evident positivity (on [0, 1), say) of the difference polyno-
mial

∆(x) = 3 (x8 + x5 + x3 + 1)− (x + 1)2(x6 + x3 + 1)

= (1− x)2(1 + x)2 · (2x4 − 2x3 + 3x2 − 2x + 2)

= (1− x)2(1 + x)2 ·
(

2 (1− x) (1 + x2) + x2(1 + 2 x2)
)
> 0.

Suppose that f2 = 5. Then P is a Coxeter prism that is combinatorially the product
of a 1-simplex with a 2-simplex and which has f0 = 6 vertices. The associated Coxeter
groups G are given by a Coxeter diagram that contains exactly one dotted edge (cor-
responding to an infinite subgroup). Each Coxeter prism arises by glueing straight
Coxeter prisms, which are distinguished by one (top) facet that is totally orthogonal
to all its incident (lateral) facets. Based on this observation, Kaplinskaja [Ka] classi-
fied all straight Coxeter prisms (for a complete list, cf. [Vi2, Table 4, p. 61]). In Table 3
we summarise the relevant existence data for straight Coxeter prisms G =: Pp,q,r,t in
terms of integer parameters p, q, r, t (cf. also §2.1, Example 2.1) as well as for the two
additional examples G =: Q4,Q5. Observe that the cyclic subdiagram, formed by the
edges with weights p, q, r in Pp,q,r,t , is hyperbolic, while the subdiagrams with Coxeter
symbols (t, p) and (t, r) are spherical.

Notice that Lemma 3.2 allows us, as in (3.6), to restrict the proof of Theorem 3.1
for f0 = 5 to straight Coxeter prisms Pσ . More precisely, for the auxiliary function
H̃(x) := HPσ (x), we have HG = H(x) ≥ H̃(x) on (0, 1] by Lemma 3.2, and we shall
prove that H̃(x) > H(3,5,3)(x) on (0, 1/τ2].
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We start with the Q-examples. Again by Lemma 3.2, it suffices to treat only the
case Q4. Lemma 3.2 and (3.7) yield

H(x) =
[2, 3]

[3, 4]
+

[3, 5]

[4, 6]
+

[5, 9]

[6, 10]
+

1

[2]2
+

[3]

[2, 4]
+

[4]

[2, 5]

>
2

[2]2
+

[5, 9]

[6, 10]
+

1

[2]2
+

2

[3]
> 2
{ 1

[3]
+

[5, 9]

[6, 10]

}
,

which proves the desired inequality H(x) > H(3,5,3)(x).
For the P-series, we consider the two cases q = 2 and q ≥ 3. For q = 2, the

conditions in Table 3 imply that P is of the form P = Pp,2,5,3 with p = 4, 5. By
Lemma 3.2, we investigate the case p = 4, only, and can bound H(x) as follows:

(3.8) H(x) =
[3, 5]

[4, 6]
+

[5, 9]

[6, 10]
+

2

[2]2
+

[3]

[2, 4]
+

[4]

[2, 5]

>
1

[3]
+

[5, 9]

[6, 10]
+

2

[2]2
+

1

[3]
+

1

[2]2
=

2

[3]
+

[5, 9]

[6, 10]
+

3

[2]2
.

By (3.7), the inequality (3.8) yields (3.4), as desired.
Consider now the case q ≥ 3. By Lemma 3.2, it suffices to consider p = 2 and

linear Coxeter diagrams of type (see §2.1, Example 2.1)

P2,q,r,t :
q r t

,

where the parameters q, r, t ≥ 3 satisfy the additional conditions of Table 3. Together
with Lemma 3.2, these conditions allow us to suppose that t = 3 (see also [Ka, p. 89]).
Then either r = 3, q ≥ 7 or r ≥ 4, q ≥ 4 (except r = q = 4). In both cases, the
hyperbolicity of the subgraph (q, r) and Lemma 3.2 yield the estimate

(3.9) H(x) ≥ [m(r),m(3)]

[m(r) + 1,m(3) + 1]
+

1

[2]2
+ 2

[q− 1]

[2, q]
+

[r − 1]

[2, r]
+

1

[3]
,

where m(r),m(3) denote the exponents of the finite Coxeter group (r, 3) (cf. Table 1).
Consider the first case with r = 3 and q ≥ 7. By applying (3.5) to the third term in
(3.9), and by Lemma 3.2, we obtain

H(x) ≥ [2, 3]

[3, 4]
+

1

[2]2
+

[6, 9]

[7, 10]
+

2

[3]
>

[2]

[4]
+

1

[2]2
+

[5, 9]

[6, 10]
+

2

[3]
.

But the inequality
[2]

[4]
+

1

[2]2
>

[5, 9]

[6, 10]

is equivalent to the evident inequality of the difference polynomial

∆(x) = (1− x)2[2]3[3, 5] ·
(

1 + x6 + x2 · (2 {1 + x2} − x)
)
> 0 on [0, 1).
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Therefore, H(x) > H(3,5,3)(x) as desired.
In the second case with r, q ≥ 4, we may assume that q = 4 and r = 5 when

looking at the middle term in (3.9). Then Lemma 3.2 and (3.7) allow us to transform
(3.9) as follows:

H(x) ≥ [5, 9]

[6, 10]
+

1

[2]2
+2

[3]

[2, 4]
+

[4]

[2, 5]
+

1

[3]
>

[5, 9]

[6, 10]
+

3

[2]2
+

2

[3]
> 2

[5, 9]

[6, 10]
+

2

[3]
,

which proves (3.4) for f2 = 5.
Suppose that f2 = 4. In this case, P is a Coxeter tetrahedron and G is one of the

nine Lannér groups as given in Table 4 (cf. [Vi1, p. 205] and [W] for their growth
functions). We will show as above that, for each Coxeter group G 6= R1 = (3, 5, 3) in
Table 4, we have H(x) > H(3,5,3)(x) for x ∈ (0, 1/τ2]. By Lemma 3.2, it suffices to do
this for the S-series, for T and the R-series separately, and for the Coxeter diagrams
with smallest weights in each series, only.

R1

5 4

R2

5 5

R3

5

T
5

S1

4

S2

5

S3

44

S4

54

S5

55

Table 4: The Lannér groups

Let us start with the S-series and consider S1 which has the smallest weights in this
set. More specifically, S1 has among its four finite subgroups of rank three the group
A3 with multiplicity two and the group B3 with multiplicity two. By (2.5) and Table
1, we can compute H(x) and, by using Lemma 3.2 and (3.5), we bound it as follows:

H(x) = 2
[2, 3]

[3, 4]
+ 2

[3, 5]

[4, 6]
> 2

[2]

[2, 3]
+ 2

[5]

[2, 6]
>

2

[3]
+ 2

[5, 9]

[6, 10]
= H(3,5,3)(x),

for each x ∈ (0, 1].
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Consider next the diagram T. In a similar way, we get

H(x) = 2
[5, 9]

[6, 10]
+

[2, 3]

[3, 4]
+

1

[2]2
.

Since [4] = [2] (x2 + 1) by Section 2.2, and by Lemma 3.2, we can treat the last two
terms according to

[2]2 + x2 + 1

[2]2(x2 + 1)
= 2

[3]

[2]2(x2 + 1)
= 2

[3]

[2, 4]
>

2

[3]
,

which yields the desired inequality (3.4).
The R-series and especially R2 = (4, 3, 5) are the most delicate cases. For R2, we

compute

H(x) =
[3, 5]

[4, 6]
+

[5, 9]

[6, 10]
+

[3]

[2, 4]
+

[4]

[2, 5]
.

We have to show that, for x ∈ (0, 1/τ2] ⊂ (0, 3/4],

(3.10)
[3, 5]

[4, 6]
+

[3]

[2, 4]
+

[4]

[2, 5]
>

2

[3]
+

[5, 9]

[6, 10]
,

which we do by using the divisibility properties of [k] (cf. §2.2) and by considering
the difference ∆(x) of the two rational functions in (3.10). In this way, an easy com-
putation yields

(3.11) ∆(x) =
2 x2 (x8 − x5 − x4 − x3 + 1)

[2, 2, 3, 5] (x2 + 1) · (x4 − x3 + x2 − x + 1)
=:

2 x2 p(x)

q(x)
.

For the factor r(x) = x4 − x3 + x2 − x + 1 of q(x) in (3.11), we write r(x) = x4 +
x2 + 1 − x (x2 + 1) = x4 + (1 − x) (x2 + 1), which is clearly positive on [0, 1). For
the numerator polynomial p(x) in (3.11), however, observe that p(1) < 0. We write
p(x) = x8 + 1−x3 (x2 + x + 1) =: a(x)−b(x) and consider the polynomials a(x), b(x)
on the interval [0, 3/4]. For 0 ≤ x ≤ 3/4, we have a(x) > 1, while

b(x) = x3 (x2 + x + 1) ≤ b(3/4) =
999

45
<

103

45
=

125

128
< 1,

that is, p(x) > 0. Hence, it follows that ∆(x) > 0 on (0, 3/4], which finishes the
proof.

3.2 An Analog Proof in Dimension Two

By the same method, the result of E. Hironaka [Hi] in two dimensions can be derived
in a more elementary way, and without using a convexity argument for the function
(2.9). More precisely, consider a compact Coxeter polygon P ⊂ H2 with f0 = |S|
vertices and its associated Coxeter group G. In order to prove that the minimal growth
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rate τ1 is (uniquely) attained by the triangle group Γ1 = (3, 7) (see Example 2.3), and
hence τ1 = αL ' 1.17628, we consider Steinberg’s expression (2.5)

(3.12)
1

f (x−1)
=

∑
GT<G
|GT |<∞

(−1)|T|

fT(x)
.

By reciprocity (2.4), f (x−1) = f (x). As in Section 3.1, we look at the f0 vertices v ∈ P.
Denote by π/kv the interior angle at v in P. That is, the vertex stabiliser Gv ⊂ G
is the dihedral group Dkv

2 of order 2kv ≥ 4, with Coxeter symbol (kv) and growth
polynomial [2, kv]. Furthermore, since |S| = f0, equation (3.12) can be simplified
according to

1

f (x)
= 1− |S|

[2]
+
∑
v∈P

1

[2, kv]
= 1− 1

[2]

∑
v∈P

{
1− 1

[kv]

}
= 1− x

[2]

∑
v∈P

[kv − 1]

[kv]
=: 1− x

[2]

∑
v∈P

hv(x),

(3.13)

where the auxiliary functions hv , v ∈ P, and their sum can be written in the form (cf.
(3.3))

(3.14) hk(x) = hkv (x) =
[m(k)]

[m(k) + 1]
, H(x) :=

∑
v∈P

hk(x),

since the exponents of the group Dkv
2 are equal to m1 = 1 and m2 = m(k) = kv − 1.

By Lemma 3.2, we have that 0 < hi(x) < h j(x) < 1 for all i < j and for all x ∈ (0, 1].
We want to show that for each x ∈ (0, 1/αL], the value 1/ f(3,7)(x) is strictly bigger

than the corresponding value 1/ f (x) for any compact Coxeter polygon P ⊂ H2 that
is not isometric to the triangle (3, 7). By (3.13) and (3.14), this means that we have
to show that

(3.15) H(x) > H(3,7)(x) =
1

[2]
+

[2]

[3]
+

[6]

[7]
for all x ∈ (0, 1/αL].

First, we consider the case of compact Coxeter triangles P with angular existence
condition 1/p + 1/q + 1/r < 1 for integers p, q, r ≥ 2 (cf. (2.1)). Hence, at most
one angle of P can be equal to π/2. The angular existence condition and Lemma 3.2
imply that H must satisfy at least one of the following inequalities:

H(x) ≥ 1

[2]
+

[2]

[3]
+

[l]

[l + 1]
=: Hl(x) for l ≥ 6,(3.16)

H(x) ≥ 1

[2]
+

[3]

[4]
+

[4]

[5]
=: H4(x) > H(3,7)(x)(3.17)

with equality in (3.16) only if l = 6 and therefore G ∼= Γ1. Indeed, the first inequal-
ity holds for all Coxeter triangles having angles π/2, π/3, and by comparison with
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(3.15), the function Hl(x), l ≥ 6, does coincide with H(3,7)(x) precisely for l = 6.
As for (3.17), which concerns right-angled Coxeter triangles with no angle equal to
π/3, we consider the difference function ∆(x) := H4(x)−H(3,7)(x) for x ∈ (0, 1]. A
straightforward computation yields

∆(x) =
x2(x10 + 2x9 + 2x8 + x7 − x5 + x3 + 2x2 + 2x + 1)

[2, 3, 5, 7] (x2 + 1)
> 0 on (0, 1],

which proves our assertion. Let us pass to hyperbolic Coxeter quadrilaterals P by
noticing that they may have at most three right angles (cf. (2.1)). Hence, by Lemma
3.2, we get the estimate

(3.18) H(x) ≥ 3

[2]
+

[2]

[3]
.

Therefore, (3.15), (3.18), and (3.5) imply that (3, 7) has minimal growth rate among
all compact planar Coxeter triangles and quadrilaterals. Finally, let us look at com-
pact Coxeter polygons with at least five vertices. Then, together with (3.15) and (3.5),
we get the obvious estimate

H(x) ≥ 5

[2]
> H(3,7)(x),

which finishes the proof.

4 Growth Rate Versus Covolume

Consider a hyperbolic Coxeter group acting cocompactly on H2 or H3. Example 2.3
documents that the group (3, 7) has minimal growth rate and minimal covolume
among all planar hyperbolic Coxeter groups. This observation leads to several further
questions about connections between growth rates and covolumes in dimensions two
and three. Some aspects will be discussed below.

4.1 The Planar Case

By restricting to the cocompact case, let us consider the question (cf. [GhHi,
Problem 16]) whether there is a direct connection between the volumes of hyper-
bolic polygons and the asymptotic growth rates of the underlying Coxeter reflection
groups. In general, the answer is no, according to the following propositions.

Proposition 4.1 There exist two infinite families Pk and Qk, k ≥ 4, of compact hy-
perbolic Coxeter polygons such that τPk = τQk but | vol2(Pk) − vol2(Qk)| → ∞ for
k→∞.

Proof Let k ≥ 4, and consider a hyperbolic k-gon Pk all of whose angles equal π/3,
and a totally right-angled hyperbolic (k + 1)-gon Qk. By (2.1) and by evaluating the
total interior angle sum Ω, one sees that the polygons Pk and Qk exist for each k ≥ 4.
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By (2.5) or (2.9), the corresponding growth functions can be computed and are equal
to

(4.1) fPk (x) =
[3]

x2 − (k− 1)x + 1
, fQk (x) =

[2]2

x2 − (k− 1)x + 1
.

Since the denominators in (4.1) are identical, the growth rates of Pk and Qk coin-
cide for each k ≥ 4. By the defect formula for an N-gon, expressing the volume as
(N − 2)π − Ω (or by using (2.7)), one gets

vol2(Pk) =
2π

3
(k− 3), vol2(Qk) =

π

2
(k− 3),

so that
| vol2(Pk)− vol2(Qk)| = π

6
(k− 3)→∞ for k→∞ .

Proposition 4.2 There exist two infinite families Rk and Sk, k ≥ 2, of compact hyper-
bolic Coxeter polygons such that vol2(Rk) = vol2(Sk) but |τRk − τSk | → ∞ for k→∞.

Proof Let Rk be a right-angled hyperbolic (4k)-gon, and let Sk be a hyperbolic
(3k)-gon with all angles equal to π/3. Again, both families of polygons exist for
k ≥ 2. By the defect formula, one derives vol2(Rk) = 2π (k−1) = vol2(Sk). For their
growth functions, one obtains the expressions

fRk (x) =
[2]2

x2 − (4k− 2)x + 1
, fSk (x) =

[3]

x2 − (3k− 1)x + 1
.

A straightforward computation for the roots of the denominator polynomials shows
that |τRk−τSk | grows like k for k→∞. Acutally, one can even deduce that τRk/τSk →
4/3, which shows that τRk and τSk are not asymptotically equivalent.

4.2 The Spatial Case

In contrast to the planar case, the group (3, 5, 3) has minimal growth rate τ(3,5,3) '
1.35098 but not minimal covolume among all Coxeter groups acting cocompactly
on H3. In fact, consider the group (4, 3, 5) with growth rate τ(4,3,5) ' 1.35999 that
describes a compact Coxeter orthoscheme of volume slightly smaller than 0.03589
(cf. [Ke, Appendix]). Therefore, the group (3, 5, 3), which is of volume slightly bigger
than 0.03900 (cf. [Ke, Appendix]), cannot be a minimal volume compact hyperbolic
Coxeter group or, more generally, a minimal volume compact hyperbolic orbifold
of three dimensions. Recently, it has been proven by Gehring, Marshall, and Martin
(see [GM, MaM]) that the orbit space Q of H3 by the Z2-extension of (3, 5, 3) with
volume vol3(Q) ' 0.01953 is the compact hyperbolic 3-orbifold of minimal volume.

As in (4.1), we can illustrate this discrepancy as follows. Consider the k-th Löbell
polyhedron L(k) , k ≥ 5 , all of whose dihedral angles are right (cf. [Ve]).

Observe that the polyhedron L(5) coincides with a totally right-angled hyperbolic
dodecahedron. From the construction it follows that L(k) has two k-gonal faces that

https://doi.org/10.4153/CJM-2012-062-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-062-3


370 R. Kellerhals and A. Kolpakov

k-gonal face F1

k-gonal face F0

Figure 2: An unfolding of the Löbell polyhedron L(k), k ≥ 5. The left-hand side is glued to the
right-hand side.

are at the bottom and the top of two polygonal ribbons consisting of k lateral pen-
tagonal faces, each (see Figure 2). The polyhedron L(k) has therefore f2 = 2k + 2
faces, f1 = 6k edges, and f0 = 4k vertices. By [Ve, (7)], the volume of L(k) behaves
asymptotically according to

(4.2) vol3(L(k)) ∼ 10 k ν3,

where ν3 ' 1.01494 is the volume of an ideal hyperbolic regular tetrahedron.
In the sequel, we shall construct infinite families of compact Coxeter polyhedra

in H3 by glueing isometric copies of Löbell polyhedra along lateral pentagonal faces
and along k-gonal (top and/or bottom) faces, and prove statements similar to Propo-
sitions 4.1 and 4.2.

Proposition 4.3 There exist two infinite families Gk and Hk, k ≥ 5, of compact hy-
perbolic Coxeter polyhedra such that τGk = τHk but | vol3(Gk) − vol3(Hk)| → ∞ for
k→∞.

Proof Let k ≥ 5, and denote by Gk := L(2k) the (2k)-th Löbell polyhedron L(2k)
with f-vector (f0, f1, f2) = (8k, 12k, 4k + 2). Next, take a Löbell polyhedron L(k) and
glue two further, isometric copies of it to its k-gonal bottom and top faces F0 and F1.
Since L(k) is right-angled, the resulting polyhedron Hk exists, is right-angled, and has
f-vector (8k, 12k, 4k + 2), which is identical to that of Gk. In fact, the glueing process
makes the edges, together with their vertices, of the glued faces F0 and F1 disappear.

Now, both Coxeter polyhedra Gk and Hk are compact and right-angled so that
their associated growth functions can be computed according to the formula (see
[D, Example 17.4.3])

(4.3) f (x) =
[2]3

1− ( f2 − 3)x + ( f2 − 3)x2 − x3
.

Therefore, we obtain

fGk (x) =
[2]3

1− (4k− 1)x + (4k− 1)x2 − x3
= fHk (x),
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which implies that τGk = τHk . By construction, we have the volume identity
vol3(Hk) = 3 vol3(Lk) so that formula (4.2) leads to the asymptotic laws

vol3(Gk) ∼ 20 k ν3, vol3(Hk) ∼ 30 k ν3,

for large k. This finishes the proof.

Proposition 4.4 There exist two infinite families Lk and Mk, k ≥ 6, of compact hy-
perbolic Coxeter polyhedra such that vol3(Lk) = vol3(Mk) but |τLk − τMk | → ∞ for
k→∞.

Proof Let k ≥ 6, and consider the double Lk of L(k) that arises by glueing two iso-
metric copies of L(k) along one k-gonal face. Then vol3(Lk) = 2 vol3(L(k)). In a sim-
ilar way, glue two copies of L(k) along one (right-angled) pentagonal face and call the
new compact right-angled polyhedron Mk. It follows that vol3(Mk) = 2 vol3(L(k)) =
vol3(Lk).

Furthermore, it is not difficult to identify the number of faces of Lk and Mk with
f2(Lk) = 3k + 2 and f2(Mk) = 4k− 3. By (4.3), this leads to the growth functions

fLk (x) =
[2]3

1− (3k− 1)x + (3k− 1)x2 − x3
,

fMk (x) =
[2]3

1− (4k− 6)x + (4k− 6)x2 − x3
.

(4.4)

The computation of the roots (see [R, Discriminants]) for the denominator polyno-
mials in (4.4) yields

τLk =
1

2

(
3k− 2 +

√
9k2 − 12k

)
,

τMk =
1

2

(
4k− 7 +

√
16k2 − 56k + 45

)
.

(4.5)

As a consequence, |τLk − τMk | → ∞ for k → ∞. More precisely, one deduces from
(4.5) that

τLk

τMk

−→ 3

4
for k→∞,

which shows that the quantities τLk and τMk are not asymptotically equivalent.
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[Vi1] È. B. Vinberg and O. V. Shvartsman, Discrete groups of motions of spaces of constant curvature. In:

Geometry, II, Encyclopaedia Math. Sci., 29, Springer, Berlin, 1993.
[Vi2] , Hyperbolic reflection groups. Russian Math. Surveys 40(1985), 31–75.
[W] R. L. Worthington, The growth series of compact hyperbolic Coxeter groups with 4 and 5

generators. Canad. Math. Bull. 41(1998), 231–239. http://dx.doi.org/10.4153/CMB-1998-033-5

Department of Mathematics, University of Fribourg, Fribourg Pérolles, Switzerland
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