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Abstract

Global weak continuity of M-functionals in a neighbourhood of the parametric distribution is established.
This has implications for robustness of M-estimators vis a vis definitions put forward by Hampel. For
instance the Tukey bisquare location estimator is robust on neighbourhoods of the parametric model, but
the median is not.
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1. Introduction

Early in the development of robustness theory, Hampel [6] sought to define a general
qualitative definition of robustness of statistical estimators. He gave two theorems
(see Hampel et al. [7, page 99]), which linked the notion of qualitative robustness
and continuity of estimators Tn. In this line of research continuity and also Frechet
differentiability of M-estimators was established in Clarke [3], going beyond the
simple location models. Here estimators are written in the spirit of von Mises [12] as
functionals T defined on the space of distribution functions, if. Under Conditions A,
weak continuity and Frechet differentiability were in fact established at a parametric
distribution Fe e & = {Fx \ x e 0} C &. Here © C Er, Euclidean r-space. Thus
using the given results of [3] to apply any of the results of Hampel we can essentially
only infer from Hampel [6, Theorem 1] (see also Hampel et al. [7, Theorem 1])
the robustness of Tn = T[Fn] at the distribution Fe, where here Fn is the empirical
distribution function formed from the sample X i , . . . , Xn of independent identically
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distributed observations in R, a separable metrizable space. An example application
of this is given in [5].

In this paper we establish a broader result, the (qualitative) robustness of {Tn} at
F, for all F in a Prohorov neighbourhood U(Fe) of Fe\ together with the consistency
of {Tn} to T[F] for all F e U(Fe). This is established by proving the global weak
continuity of T on a U(Fe) and then invoking Hampel [6, Theorem 2] (see also Hampel
et al. [7, Theorem 2]). That is, for the M-functional defined to be a solution of the
general estimating equations

L(1.1) KG(T[G]) = / f(x, T[G])dG(x) = 0,
JR

there exists a functional root T which is weakly continuous at each F € U(Fe).
Here \j/ is a function on R x © defining the M-estimator. Examples of choices of \jr
which involve bounded smooth functions with bounded partial derivatives are found
increasingly in the literature, examples being given in [2,3,5,8,9] just to name some.
It transpires that for such rjr this global weak continuity holds. Thus for example,
the Tukey bisquare estimator of Beaton and Tukey [1] for location, defined by the
x(r -function,

\x\<c,

[0 \x\ > c,

where c is a tuning constant, can be regarded as globally robust, whereas as is noted
in Hampel [6, page 1894] 'The median is robust (and continuous) at F if and only
if F~'(l/2) contains no more than one point. It is not robust in any open set of
distributions.'

It is appropriate to reexamine the fairly general Conditions A of [3] and [3, Theo-
rem 3.2] which defines continuity of the M-estimator in terms of a general metric dis-
tance or equivalently in terms of neighbourhoods n(e, F) = [G e & \ d{G, F) < e}.
Since we are only using the Prohorov metric distance in our deliberations here these
conditions are restated in a much simpler and easier to use form as Conditions W.
They motivate our main theorem given in Section 3. Note that equations (1.1) need
not have a unique solution. We therefore examine the roots of the estimating equations
locally and then globally. For example, T[x//, p0, G] is defined as the solution to

, r) = po(G, T[f, p0, G]),

where

G)=\T \T f xlr(x,r)dG(x) = 0, r € ©j
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if a solution exists. Otherwise, T[ijr, po, G] = +00. Here po is some global selection
functional, for instance, the root closest to the median is chosen via choosing

See [4] for example. In [3, Theorem 3.2] an auxiliary functional is used to discover
the properties of T[\fr, p0, •] simply by using p(G, r) — ||T — 0||, for it is shown
in [3, Theorem 4.1] that T[x/r, po, •] = T[x/r, p, •] on small enough neighbourhoods
n(e, Fg). Of course if ijr is chosen to have only one root then T[ifr, p, •] = T[rjr, •]
and no selection functional is needed.

2. Conditions A and Theorem 3.2 of Clarke

CONDITIONS A

AO: T[r//,p,Fg] = 9;
Al: \}r is an r x 1 vector function on R x 0 and has continuous partial derivatives

on R x D, where D C 0 is some nondegenerate compact interval containing 9 in its
interior;

A2: {\/f(x, r) | T € D), {(d/dx)xjf(x, r) \ r € D] are bounded above in Euclidean
norm (||A|| = {trace(A'A)}1/2) by some function g that is integrable with respect to
all G'€ /j(e, Fg) for some e > 0;

A3: the matrix

M(9) = J\^

is nonsingular;
A4: given S > 0 there exists e > 0 such that for all G e n(e, Fe)

sup
teD

and

f f(x,r)dG(x)- f
JR JR

r)dG(x)- f 1r(x,r)dFe(x)
J

<S

sup

Using Conditions A Theorem 3.2 guarantees continuity of the functional T at Fe.
Restating the theorem here aids in our establishing global weak continuity at a more
general F e U(Fe).

CLARKE [3, THEOREM 3.2] Let p(G, r) = ||T - 0|| and suppose Conditions A
hold. Then given K > 0 there exists e > 0 such that G € n(e, Fe) implies T[\j/, p, G]
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exists and is an element of UK{9). Further for this e there is a K* > 0 such that

and M(T, G) = fR{{d/dz)^r{x, r)}dG(x) is nonsingular for x e UK.(Q). For any
null sequence of positive numbers {e*} let {Gk} be an arbitrary sequence for which
Gk e n(€k, Fe). Then

lim

Weak continuity at Fe follows if Conditions A hold with respect to neighbour-
hoods generated by the Prohorov metric, defined as dp(F, G) = inf{<5 > 0 | F(B) <
G(BS) + 8, G(B) < F(BS) + 8, for all B e 38}, where 3S are the Borel sets, and
Bs is the closed 8-neighbourhood of B. Since we are dealing only with the Prohorov
neighbourhoods the exact conditions for global weak continuity are specified as Con-
ditions W, given in the next section. They are much simpler and guarantee robustness
at all F in a Prohorov neighbourhood of Fe.

3. Assumptions and main result

Here we give weak continuity of T at each F e U(Fe) for some Prohorov neigh-
bourhood under the following assumptions which are a special case of Conditions A
of [3]. Numerous examples of M-estimators satisfying them are now available.

CONDITIONS W:

WO: T[Fe] = 6;
Wl = Al: V is an r x 1 vector function o n i f x 6 and has continuous partial deriva-

tives on R x D, where D c 6 is some nondegenerate compact interval containing 9
in its interior;

W2: {f(x,x) | T e D},{(d/dr)ir(x,r) | x e D] are bounded above in
Euclidean norm by a constant;

W3: the matrix

is nonsingular.

THEOREM 1. Assuming Conditions W, there exists a Prohorov neighbourhood
U(FS) of Fe such that the functional defined via T[\jf, p, •] is weakly continuous
at each F e U(Fe).
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COROLLARY. Assuming Conditions W there exists a qualitatively robust M-func-
tional estimator Tn which is robust and consistent, tending to T[F], at all F 6 U(Fe).

4. Essential proofs

To prove Theorem 1 we appeal to parts of the proof of [3, Theorem 3.2]. Firstly
Conditions W imply Conditions A of [3] with the neighbourhoods n(e, Fe) being the
Prohorov neighbourhoods about F0 as defined by the Prohorov metric distance d (see
[3, Remark 2.2 and Remark 6.2]). From the given proof we can choose K*/2 SO that
there is an e* such that for all F e n{e*, F6)

T[x/f, p, F] = { ^ ( O ) n £4>(0)} € £4-/2(0).

By [3, Lemma 3.1], which essentially follows from the continuity of the determinant
as a function of the elements of a matrix, it can be assumed

Af(r,F) = 7 |^(*. i

is nonsingular for r € UK.(0), whence for 60 = T[ifr, p, F] the matrix M(00, F) is
nonsingular for any particular F in the Prohorov neighbourhood n(e*, F9). Given F
and 60 we let p(G, x) = ||r — 0O|| be an associated selection functional.

LEMMA 1. LetK*,e* be given by [3, Theorem 3.2] {see above). Let F e n(**/2, F$)
be given. Then Conditions W imply the following statements:

CONDITIONS WA

WAO: T[xlr,p,F] = e0,
WAI s Wl s Al,
WA2 = W2 = A2 (with g bounded),
WA3: The matrix M(90, F) is nonsingular,
WA4: Given S > 0 there exists e > 0 such that for all G e n(e, F)

sup 1 [ f(x, x)dG(x) - I fix, r)dF(x)
zeD \\JR JR

<<5
ieD WJR JR

and

sup

PROOF OF LEMMA 1. Note we can without loss of generality assume or restrict set
D C 0 to contain 00 in its interior. Now the proof of [3, Theorem 6.1 ] follows through
with F instead of Fe, whence Remark 2.2 and Remark 6.2 of that paper imply WA4.
We have noted WA3 holds already for F s n(e*, Fe). •
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The following lemma and proof mimicks [3, Theorem 3.2] but with Fe replaced by
F and p(G, r) = ||r - 0|| replaced by p(G, T) = ||T - 6b||.

LEMMA 2. Let F e n(c*/2, Fe) c n(e*, Fe) be given. Then given £ > 0, there
exists anr) > 0 such that G € n(n, F) implies T[\ff, p, G] exists and is an element of
Uf (90). Further, for this rj there exists k > 0 such that

andM{x, G) is nonsingularfor r e Ui(d0). For any null sequence of positive numbers
{rjt} let Gk be an arbitrary sequence for which Gk e n(r]k, F). Then

lim Tlir, p, Gk] = T[f, p, F] = 90.

Moreover, for t] < e*/2, G € nit], F) implies

(4.1) TW,p,G] = TW,p,G].

PROOF OF LEMMA 2. From Lemma 1 we have that Conditions WA hold. The proof
now mimicks that of [3, Theorem 3.2] but with F replacing Fe and Conditions WA
replacing Conditions A. It remains to establish (4.1). Choosing £ = K*/2 in Lemma 2
implies for G e n(r), F)

K~l(0) € t/,./2(0o) C UAB).

We can choose 0 < r] < €*/2 so that

d(G, Fe) < d(G, F) + d(F, Fe) < t*.

Hence,

since

K-'iO) n UK./2(90) = TW, p, G] € UK.(0).

It follows that T[f, p,G] = T[\(r, p, G]. D

Now note the proof of Theorem 1 applies by choosing the neighbourhood U(Fe) to
be«(e*/2, F$). By Lemma 2 T[f, p, •] is weakly continuous at each F € U(Fe). •

The corollary follows from Theorem 1 by applying Hampel [6, Theorem 2]. Note a
result of Varadaraj an [ 11 ] proves that the empirical distribution function Fn converges

https://doi.org/10.1017/S144678870000149X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000149X


[7] Robustness and weak continuity of M-estimators 417

weakly to F almost surely and a result of Prohorov [10] gives that dp(Fn, F) -> 0
almost surely. Thus almost sure consistency T[Fn] —> T[F] follows.

Consider now the Tukey Bisquare location functional defined to be the root of
equations

(4.2) [ x/,BS{x-T)dG(x) = 0.
JE

Theorem 1 asserts there is a weakly continuous root T[x/fBS, p, •] at each F e U(Fe).
The fact that the selection functional po(G, r) = |r — G"'(l/2)| is continuous at
Fe(x) = O(x —9), where <I> is the cumulative standard normal distribution, implies
via arguments similar to [3, Theorem 4.1] that the selection functional T\TJrBS, p, •] =
T[^BS, Po> ] on small enough neighbourhoods n(e, Fe). That is the root (4.2) closest
to the median is weakly continuous at each F in a small enough neighbourhood of Fg.
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