Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T08:25:14.063Z Has data issue: false hasContentIssue false

2 - Geologic analogies between the surface of Mars and the McMurdo Dry Valleys: microclimate-related geomorphic features and evidence for climate change

Published online by Cambridge University Press:  06 July 2010

Peter T. Doran
Affiliation:
University of Illinois, Chicago
W. Berry Lyons
Affiliation:
Ohio State University
Diane M. McKnight
Affiliation:
University of Colorado, Boulder
Get access

Summary

Abstract

The McMurdo Dry Valleys (MDV), classified as a hyperarid, cold-polar desert, have long been considered an important terrestrial analog for Mars because of their cold and dry climate and their suite of landforms that closely resemble those occurring on the surface of Mars at several different scales, despite significant differences in current atmospheric pressure. The MDV have been subdivided on the basis of summertime measurements of atmospheric temperature, soil moisture, and relative humidity, into three microclimate zones (Marchant and Head,2007): a coastal thaw zone, an inland mixed zone, and a stable upland zone. Minor differences in these climate parameters lead to large differences in the distribution and morphology of features at the macroscale (e.g., slopes and gullies); mesoscale (e.g., polygons, viscous-flow features, and debris-covered glaciers); and microscale (e.g., rock-weathering processes/features, including wind erosion, salt weathering, and surface pitting). Equilibrium landforms form in balance with environmental conditions within fixed microclimate zones. For example, sublimation polygons indicate the presence of extensive near-surface ice in the MDV and identification of similar landforms on Mars appears to provide a basis for detecting the location of current and past shallow ice. The modes of occurrence of the limited and unusual biota in the MDV provide terrestrial laboratories for the study of possible environments for life on Mars. The range of microenvironments in the MDV are hypersensitive to climate variability, and their stability and change provide important indications of climate history and potential stress on the biota.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. C. and Conca, J. L. (1991). Weathering of basaltic rocks under cold, arid conditions: Antarctica and Mars. In Proceedings of 21st Lunar Planetary Science Conference, Houston, TX, pp. 711–717.Google Scholar
Anderson, D. M., Gatto, L. W., and Ugolini, F. C. (1972). An Antarctic analog of martian permafrost terrain. Antarctic Journal of the United States, 7, 114–116.Google Scholar
Arvidson, R. E., Guinness, E., and Lee, S. (1979). Differential aeolian redistribution rates on Mars. Nature, 278, 533–535.CrossRefGoogle Scholar
Atkins, C. B., Barrett, P. J., and Hicock, S. R. (2002). Cold glaciers erode and deposit: evidence from Allan Hills, Antarctica. Geology, 30, 659–662.2.0.CO;2>CrossRefGoogle Scholar
Augustinus, P. C. and Selby, M. J. (1990). Rock slope development in McMurdo Oasis, Antarctica, and implications for interpretations of glacial history. Geografiska Annaler, 72(A), 55–62.CrossRefGoogle Scholar
Baker, V. R. (2001). Water and the martian landscape. Nature, 412, 228–236.CrossRefGoogle ScholarPubMed
Bao, H. and Marchant, D. R. (2006). Quantifying sulfate components and their variations in soils of the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research, 111, doi: 10.1029/2005JD006669.CrossRefGoogle Scholar
Bao, H., Campbell, D. A., Bockheim, J. G., and Thiemens, M. H. (2000). Origin of sulfate in Antarctic Dry Valley soils as deduced from anomalous 17O compositions. Nature, 407, 499–502.CrossRefGoogle Scholar
Bao, H., Barnes, J. D., Sharp, Z. D., and Marchant, D. R. (2008). Two chloride sources in soils of the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research, 113(D3) D03301, doi: 10.1029/2007JD008703.CrossRefGoogle Scholar
Berg, T. E. and Black, R. F. (1966). Preliminary measurements of growth of non-sorted polygons, Victoria Land, Antarctica. In Antarctic Soils and Soil Forming Processes, ed. Tedrow, J. C. F.. American Geophysical Union Antarctic Research Series 8. Washington, D.C.: AGU, pp. 61–108.Google Scholar
Berman, D. C., Hartmann, W. K., Crown, D. A., and Baker, V. R. (2005). The role of arcuate ridges and gullies in the degradation of craters in the Newton Basin region of Mars. Icarus, 178(2), 465–486.CrossRefGoogle Scholar
Beyer, L., Bockheim, J. G., Campbell, I. B., and Claridge, G. G. C. (1999). Review: genesis, properties, and sensitivity of Antarctic gelisols. Antarctic Science, 11, 387–398.CrossRefGoogle Scholar
Bibring, J. -B., Langevin, Y., Mustard, J. F., and ,the OMEGA Team (2006). Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science, 312, 400–404.CrossRefGoogle ScholarPubMed
Bidle, K. D., SangHoon, L., Marchant, D. R., and Falkowski, P. G. (2007). Fossil genes and microbes in the oldest ice on Earth. Proceedings of the National Academy of Sciences, 104(33), 13 455–13 460.CrossRefGoogle ScholarPubMed
Binder, A. B., Arvidson, R. E., Guinness, E. A., et al. (1977). The geology of the Viking 1 landing site. Journal of Geophysical Research, 82, 4439–4451.CrossRefGoogle Scholar
Black, R. F. (1973). Growth of patterned ground in Victoria Land, Antarctica. In: Permafrost Second International Conference, National Academy of Sciences, Yakutsk, Siberia, pp. 193–203.Google Scholar
Bockheim, J. G. (1997). Properties and classification of cold desert soils from Antarctica. Soil Society of America Journal, 61(1), 224–231.CrossRefGoogle Scholar
Bockheim, J. G. (2002). Landform and soil development in the McMurdo Dry Valleys: a regional synthesis. Arctic Antarctic and Alpine Research, 34, 308–317.CrossRefGoogle Scholar
Bockheim, J. G. (2003). University of Wisconsin Antarctic Soils Database. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology. Digital media.Google Scholar
Bockheim, J. G. and McLeod, M. (2006). Soil formation in Wright Valley, Antarctica since the late Neogene. Geoderma, 137, 109–116.CrossRefGoogle Scholar
Borgstrom, I. (1999). Basal ice temperatures during late Weichselian deglaciation: comparison of landform assemblages in west-central Sweden. Annals of Glaciology, 28, 9–15.CrossRefGoogle Scholar
Boynton, W. V. and 24 colleagues (2002). Distribution of hydrogen in the near-surface of Mars: evidence for subsurface ice deposits. Science, 296, 81–85.CrossRefGoogle Scholar
Bradley, R. S. (1999). Paleoclimatology: Reconstructing Climates of the Quaternary. International Geophysics Series, 64. London: Academic Press, 613 pp.Google Scholar
Brass, G. W. (1980). Stability of brines on Mars. Icarus, 42, 20–28.CrossRefGoogle Scholar
Bridges, J. C., Catling, D. C., Saxton, J. M., et al. (2001). Alteration assemblages in martian meteorites: implications for near-surface processes. Space Science Review, 96, 365–392.CrossRefGoogle Scholar
Bridges, N. T. and Lackner, C. N. (2006). Northern hemisphere Martian gullies and mantled terrain: implications for near-surface water migration in Mars' recent past. Journal of Geophysical Research, Planets, 111, doi: 10.1029/2006JE002702.Google Scholar
Brook, E. J., Kurz, M. D.Ackert, Jr., R. P., et al. (1993). Chronology of Taylor Glacier advance in Arena Valley, Antarctica, using in situ cosmogenic 3He and 10Be. Quaternary Research, 39,11–23.CrossRefGoogle Scholar
Brook, E. J., Brown, E. T., Kurz, M. D., et al. (1995). Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic 10Berillium and 26Aluminum. Geology, 23, 1063–1066.2.3.CO;2>CrossRefGoogle Scholar
Brook, M. S., Kirkbride, M. P., and Bock, B. W. (2006). Quantified time scale for glacial valley cross-profile evolution in alpine mountains. Geology, 34, 637–640.CrossRefGoogle Scholar
Burt, D. M. and Knauth, L. P. (2003). Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface. Journal of Geophysical Research, 108, doi: 10.1029/2002JE001862.CrossRefGoogle Scholar
Campbell, I. B. and Claridge, G. G. C. (1969). A classification of frigic soils: the zonal soils of the Antarctic continent. Soil Science, 107, 75–85.CrossRefGoogle Scholar
Campbell, I. B. and Claridge, G. G. C. (1987). Antarctica: Soils, Weathering Processes, and Environment. Developments in Soil Science 16. New York: Elsevier, 368 pp.Google Scholar
Campbell, I. B. and Claridge, G. G. C. (2006). Permafrost properties, patterns and processes in the Transantarctic Mountains region. Permafrost and Periglacial Processes, 17, 215–232.CrossRefGoogle Scholar
Campbell, I. B., Claridge, G. G. C., Balks, M. R., and Campbell, D. I. (1997a). Moisture content in soils of the McMurdo Sound and Dry Valley region of Antarctica. In Ecosystem Processes in Antarctic Ice-free Landscapes, ed. Lyons, W. B., Howard-Williams, C., and Hawes, I.. Rotterdam, Netherlands: A. A. Balkema, pp. 61–76.Google Scholar
Campbell, D. I., MacCulloch, R. J. L., and Campbell, I. B. (1997b). Thermal regimes of some soils in the McMurdo Sound and Dry Valley region. In Ecosystem Processes in Antarctic Ice-free Landscapes, ed. Lyons, W. B., Howard-Williams, C., and Hawes, I.. Rotterdam, Netherlands: A. A. Balkema, pp. 45–56.Google Scholar
Campbell, I. B, Claridge, G. G. C., Campbell, D. I, and Balks, M. R. (1998). The soil environment of the McMurdo Dry Valleys, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 297–322.Google Scholar
Carr, M. H. (1981). The Surface of Mars. New Haven, CT: Yale University Press.Google Scholar
Carr, M. H. (1996). Water on Mars. New York: Oxford University Press.Google Scholar
Carr, M. H. (2006). The Surface of Mars. New York: Cambridge University Press.Google Scholar
Chinn, T. J. (1980). Glacier balances in the Dry valleys area, Victoria Land, Antarctica. In Proceedings of the Riederlap Workshop. IAHS-AISH Publication 126, pp. 237–247.Google Scholar
Chinn, T. J. (1981). Hydrology and climate in the Ross Sea area. Journal of the Royal Society of New Zealand, 11(4), 373–386.CrossRefGoogle Scholar
Chinn, T. J. (1993). Physical hydrology of the Dry Valley lakes. In Physical and Biogeochemical Processes in Antarctic Lakes, ed. Green, W. J. and Freidmann, E. I.. Antarctic Research Series 59.Washington, D.C.: American Geophysical Union, pp. 1–51.Google Scholar
Christensen, P. R. (2003). Formation of recent martian gullies through melting of extensive water-rich snow deposits. Nature, 422, 45–48.CrossRefGoogle ScholarPubMed
Christensen, P. R. and 25 colleagues (2001). Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. Journal of Geophysical Research, 106(E10), 23 823–23 872.CrossRefGoogle Scholar
Claridge, G. G. C. and Campbell, I. B. (1968). Soils of the Shackleton Glacier, Queen Maude Range, Antarctica. New Zealand Journal of Science, 11, 171–218.Google Scholar
Claridge, G. G. C. and Campbell, I. B. (1977). The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Science, 28, 377–384.CrossRefGoogle Scholar
Claridge, G. G. C. and Campbell, I. B. (2005). Weathering processes in arid cryosols. In Cryosols: Permafrost Affected Soils, ed. Kimble, J.. Berlin: Springer, pp. 447–458.Google Scholar
Clark, B. C. (1978). Implications of abundant hygroscopic materials in the martian regolith. Icarus, 34, 645–665.CrossRefGoogle Scholar
Clark, B. C. (1979). Chemical and physical microenvironments at the Viking landing sites. Journal of Molecular Evolution, 14, 13–31.CrossRefGoogle ScholarPubMed
Clark, B. C. and Baird, A. K. (1979). Is the martian lithosphere sulfur rich?Journal of Geophysical Research, 84, 8395–8403.CrossRefGoogle Scholar
Clark, B. C. and Hart, D. C. (1981). The salts of Mars. Icarus, 45, 370–378.CrossRefGoogle Scholar
Clark, B. C., Baird, A. K., Weldon, R. J., et al. (1982). Chemical composition of martian fines. Journal of Geophysical Research, 87, 10 059–10 067.CrossRefGoogle Scholar
Conca, J. L. and Astor, A. M. (1987). Capillary moisture flow and the origin of cavernous weathering in dolerites of Bull Pass, Antarctica. Geology, 15, 151–154.2.0.CO;2>CrossRefGoogle Scholar
Costard, F., Forget, F., Mangold, N., and Peulvast, J. -P. (2002). Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity. Science, 295, 110–113.CrossRefGoogle ScholarPubMed
Craddock, R. A. and Howard, A. D. (2002). The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research, 107(E11), doi: 10.1029/2001JE001505.CrossRefGoogle Scholar
Cuffey, K. M., Conway, H., Gades, A. M., et al. (2000). Entrainment at cold glacier beds. Geology, 28, 351–354.2.0.CO;2>CrossRefGoogle Scholar
Dana, G. L., Wharton, R. A., and Dubayah, R. (1998). Solar radiation in the McMurdo dry valleys, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 39–64.Google Scholar
Davis, N. (2001). Permafrost: A Guide to Frozen Ground in Transition. Fairbanks, AK: University of Alaska Press.Google Scholar
Denton, G. H. and Marchant, D. R. (2000). The geologic basis for a reconstruction of a grounded ice sheet in McMurdo Sound, Antarctica, at the last glacial maximum. Geografiska Annaler, 82(A), 167–211.CrossRefGoogle Scholar
Denton, G. H., Sugden, D. E., Marchant, D. R., Hall, B. L., and Wilch, T. I. (1993). East Antarctic Ice Sheet sensitivity to Pliocene climatic change from a Dry Valleys perspective. Geografiska Annaler, 75A, 155–204.CrossRefGoogle Scholar
Dickinson, W. W. and Rosen, M. R. (2003). Antarctic permafrost: an analogue for water and diagenetic minerals on Mars. Geology, 31, 199–202, doi: 10.1130/0091–7613.2.0.CO;2>CrossRefGoogle Scholar
Dickson, J. L., Head, J. W., Marchant, D. R., Morgan, G. A., and Levy, J. S. (2007a). Recent gully activity on Mars: clues from late-stage water flow in gully systems and channels in the Antarctic Dry Valleys. Lunar Planetary Science Conference, 38, abstract 1678.Google Scholar
Dickson, J. L., Head, J. W., and Kreslavsky, M. (2007b). Martian gullies in the southern mid-latitudes of Mars: evidence for climate-controlled formation of young fluvial features. Icarus, 188, 315–323.CrossRefGoogle Scholar
Dickson, J. L., Head, J. W., and Marchant, D. R. (2008). Late Amazonian glaciation at the dichotomy boundary on Mars: evidence for glacial thickness maxima and multiple glacial phases. Geology, 36, 411–414.CrossRefGoogle Scholar
Doran, P. T., McKay, C. P., Clow, G. D., et al. (2002). Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. Journal of Geophysical Research, 107(D24), doi: 10.1029/2001JD002045.CrossRefGoogle Scholar
Elliot, D. E. and Fleming, T. H. (2004). Occurrence and dispersal of magmas in the Jurassic Ferrar large igneous province, Antarctica. Gondwana Research, 7(1), 223–237.CrossRefGoogle Scholar
Fabel, D., Stroeven, A. P., Harbor, J., et al. (2002). Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al. Earth and Planetary Science Letters, 201(2), 397–406.CrossRefGoogle Scholar
Farmer, C. B. (1976). Liquid water on Mars. Icarus, 28, 279–289.CrossRefGoogle Scholar
Farmer, C. B. and Doms, P. E. (1979). Global seasonal variation of water vapor on Mars and the implications of permafrost. Journal of Geophysical Research, 84, 2881–2888.CrossRefGoogle Scholar
Fassett, C. I. and Head, J. W. (2006). Valleys on Hecates Tholus Mars: origin by basal melting of summit snowpack. Planetary and Space Science, 54, 370–378, doi: 10.1016/j.pss.2005.12.011.CrossRefGoogle Scholar
Fassett, C. I. and Head, J. W. (2007). Valley formation on martian volcanoes in the Hesperian: evidence for melting of summit snowpack, caldera lake formation, drainage and erosion on Ceraunius Tholus, Mars. Icarus, 189, 118–135, doi: 10.1016/j.icarus.2006.12.021.CrossRefGoogle Scholar
Feldman, W. C. and 12 colleagues (2002). Global distribution of neutrons from Mars: results from Mars Odyssey. Science, 297, 75–78.CrossRefGoogle ScholarPubMed
Forget, F., Hourdin, F., Fournier, R., et al. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104(E10), 24 155–24 176.CrossRefGoogle Scholar
Forget, F., Haberle, R. M., Montmessin, F., Levrard, B., and Head, J. W. (2006). Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science, 311, 368–371.CrossRefGoogle ScholarPubMed
Fountain, A. G., Lewis, K. J., and Doran, P. T. (1999). Spatial climatic variation and its control on glacier equilibrium line altitude in Taylor Valley, Antarctica. Global and Planetary Change, 22, 1–10.CrossRefGoogle Scholar
Frezotti, M. (1997). Ice front fluctuation, iceberg calving flux and mass balance of Victoria Land glaciers. Antarctic Science, 9, 61–73.CrossRefGoogle Scholar
Garvin, J. B., Head, J. W., Marchant, D. R., and Kreslavsky, M. A. (2006). High-latitude cold-based glacial deposits on Mars: multiple superposed drop moraines in a crater interior at 70 °N latitude. Meteoritics and Planetary Science, 41, 1659–1674.CrossRefGoogle Scholar
Ghysels, G. and Heyse, I. (2006). Composite-wedge pseudomorphs in Flanders, Belgium. Permafrost and Periglacial Processes, 17, 145–161.CrossRefGoogle Scholar
Giardino, J. R., Shroder, J. F., and Vitek, J. D. (1987). Rock Glaciers. London: Allen and Unwin.Google Scholar
Gibson, E. K., Wentworth, S. T., and McKay, D. S. (1983). Chemical weathering and diagenesis of a cold desert soil from Wright Valley, Antarctica: an analog for Martian weathering processes. Journal of Geophysical Research, Supplement 88, A812–A918.Google Scholar
Gilichinsky, D. A., Wilson, G. S., Friedmann, E. I., et al. (2007). Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology, 7(2), 275–311. doi: 10.1089/ast.2006.0012.CrossRefGoogle ScholarPubMed
Golombek, M. P. and 13 colleagues (1997). Overview of the Mars Pathfinder Mission and assessment of landing site predictions. Science, 278, 1743.CrossRefGoogle ScholarPubMed
Golombek, M. P. and 22 colleagues (1999). Overview of the Mars Pathfinder Mission: launch through landing, surface operations, data sets, and science results. Journal of Geophysical Research, 104(E4), 8523–8554.CrossRefGoogle Scholar
Gooding, J. L. (1992). Soil mineralogy and chemistry on Mars: possible clues from salts and clays in SNC meteorites. Icarus, 99, 28–41.CrossRefGoogle Scholar
Gooding, J. L., Wentworth, S. J., and Zolensky, M. E. (1991). Aqueous alteration of the Nakhla meteorite. Meteoritics, 26, 135–143.CrossRefGoogle Scholar
Gooseff, M. N., McKnight, D. M., Runkel, R. L., and Vaughn, B. H. (2003a). Determining long time-scale hyporheic zone flow paths in Antarctic streams. Hydrological Processes, 17(9), 1691–1710.CrossRefGoogle Scholar
Gooseff, M. N., Barrett, J. E., Doran, P. T., et al. (2003b). Snow-patch influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. Arctic Antarctic and Alpine Research, 35, 92–100.CrossRefGoogle Scholar
Haberle, R. M., McKay, C. P., Schaeffer, J., et al. (2001). On the possibility of liquid water on present-day Mars. Journal of Geophysical Research, 106(E10), 23 317–23 326.CrossRefGoogle Scholar
Hall, B. L., Denton, G. H., Lux, D. R., and Bockheim, J. G. (1993). Late Tertiary Antarctic paleoclimate and ice-sheet dynamics inferred from surficial deposits in Wright Valley. Geografiska Annaler, 75(A), 239–268.CrossRefGoogle Scholar
Hall, K. J. (1991). Mechanical weathering in the Antarctic: a maritime perspective. In Periglacial Geomorphology, ed. Dixon, J. C. and Abrahams, A. D.. Chichester, UK: John Wiley and Sons, pp. 103–123.Google Scholar
Hallet, B. and Waddington, D. E. (1991). Buoyancy forces induced by freeze-thaw in the active layer: implications for diapirism and soil circulation. In Periglacial Geomorphology, ed. Dixon, J. C. and Abrahams, A. D.. Chichester, UK: John Wiley and Sons, pp. 251–279.Google Scholar
Hallet, B., Hunter, L., and Bogen, J. (1996). Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global and Planetary Change, 12, 213–235.CrossRefGoogle Scholar
Harris, K. J., Carey, A. E., Lyons, W. B., Welch, K. A., and Fountain, A. G. (2007). Solute and isotope geochemistry of subsurface ice melt seeps in Taylor Valley, Antarctica. Geological Society of America Bulletin, 119, 548–555.CrossRefGoogle Scholar
Hartman, B. N. (1998). Miocene paleoclimate and ice sheet dynamics as recorded in central Taylor Valley, Antarctica. Unpublished M.S. thesis. Boston University, MA.
Haskin, L. A. and 29 colleagues (2005). Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature, 436, 66–69.CrossRefGoogle ScholarPubMed
Hassinger, J. M. and Mayewski, P. A. (1983). Morphology and dynamics of rock glaciers in southern Victoria Land, Antarctica. Arctic and Alpine Research, 15, 351–368.CrossRefGoogle Scholar
Head, J. W. and Kreslavsky, M. A. (2006). Formation of weathering pits on rock surfaces in the Antarctic Dry Valleys and on Mars. Paper presented at the 44th Brown/Vernadsky Microsymposium, Moscow, Russia, abstract m44–25.Google Scholar
Head, J. W. and Marchant, D. R. (2003). Cold-based mountain glaciers on Mars: Western Arsia Mons. Geology, 31(7), 641–644.2.0.CO;2>CrossRefGoogle Scholar
Head, J. W. and Marchant, D. R. (2006). Gullies and saline ponds in the cold hyper-arid desert of the Antarctic Dry Valleys: clues to interpreting climate conditions on Mars. Paper presented at the 44th Brown/Vernadsky Microsymposium, Moscow, Russia, Abstract m44–26.Google Scholar
Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E., and Marchant, D. R. (2003). Recent ice ages on Mars. Nature, 426, 797–802.CrossRefGoogle ScholarPubMed
Head, J. W., Marchant, D. R., and Ghatan, G. J. (2004). Glacial deposits on the rim of a Hesperian-Amazonian outflow channel source trough: Mangala Valles, Mars. Geophysical Research Letters, L10701, doi: 10.1029/2004GL020294.Google Scholar
Head, J. W. and 13 colleagues (2005). Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 434, 346–351.CrossRefGoogle ScholarPubMed
Head, J. W., Marchant, D. R., Agnew, M. C., Fassett, C. I., and Kreslavsky, M. A (2006a). Extensive valley glacier deposits in the northern mid-latitudes of Mars: evidence for Late Amazonian obliquity-driven climate change. Earth and Planetary Science Letters, 241, 663–671.CrossRefGoogle Scholar
Head, J. W., Nahm, A. L., Marchant, D. R., Neukum, G., and ,the HRSC Co-Investigator Team (2006b). Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophysical Research Letters, 33(8), doi: 2005GL024360.CrossRefGoogle Scholar
Head, J. W., Marchant, D. R., Dickson, J. L., Levy, J. S., and Morgan, G. A. (2007a). Mars gully analogs in the Antarctic Dry Valleys: geological setting and processes. Lunar Planetary Science Conference, 38, Abstract 1617.Google Scholar
Head, J. W., Marchant, D. R., Dickson, J., Levy, J., and Morgan, G. (2007b). Transient streams and gullies in the Antarctic Dry Valleys: geological setting, processes and analogs to Mars. Online Proceedings of the 10th ISAES X, ed. A. K. Cooper, C. R. Raymond, et al. USGS Open-File Report 2007-1047, Extended Abstract 1763, 1–4.
Head, J. W., Marchant, D. R., and Kreslavsky, M. A. (2008). Formation of gullies on Mars: link to recent climate history and insolation microenvironments implicate surface water flow origin. Proceedings of the National Academy of Sciences, 105, 13 258–13 263, doi 10.1073 pnas.08037 60105.CrossRefGoogle ScholarPubMed
Healy, M., Webster-Brown, J. G., Brown, K. L., and Lane, V. (2006). Chemistry and stratification of Antarctic meltwater ponds. II. Inland ponds in the McMurdo Dry Valleys, Victoria Land. Antarctic Science, 18, 525–533.CrossRefGoogle Scholar
Hecht, M. H. (2002). Metastability of liquid water on Mars. Icarus, 156, 373–386.CrossRefGoogle Scholar
Helbert, J., Head, J. W., and Kreslavsky, M. (2007). A global physical and morphological survey of candidate ice-rich environments and deposits on Mars. Lunar Planetary Science Conference, 38, Abstract 1279.Google Scholar
Heldmann, J. L. and Mellon, M. T. (2004). Observations of martian gullies and constraints on potential formation mechanisms. Icarus, 168, 285–304.CrossRefGoogle Scholar
Heldmann, J. L., Toon, O. B., Pollard, W. H., et al. (2005b). Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions. Journal of Geophysical Research, 110, E05004, doi: 10.1029/2004JE002261.CrossRefGoogle Scholar
Holt, J. W., Safaeinili, A., Plaut, J. J., et al., and the SHARAD Team (2008a). Radar sounding evidence for ice within lobate debris aprons near Hellas basin, mid-southern latitudes on Mars, Lunar Planetary Science Conference, 39, Abstract 2441.Google Scholar
Holt, J. W., Safaeinili, A., Plaut, J. J., et al. (2008b). Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science, 322, 1235–1238.CrossRefGoogle ScholarPubMed
Huinink, H. P., Pel, L., and Kopinga, K. (2004). Stimulating the growth of tafoni. Earth Surface Process Landforms, 29(10), 1225–1233.CrossRefGoogle Scholar
Ikard, S. J, Gooseff, M. N., Barrett, J. E., and Takacs-Vesbach, C. (2009). Thermal characterization of active layer across a soil moisture gradient in the McMurdo Dry Valleys, Antarctica. Permafrost and Periglacial Processes, 20, 27–39.CrossRefGoogle Scholar
Jakosky, B. M. and Mellon, M. T. (2001). High-resolution thermal intertia mapping of Mars: sites of exobiological interest. Journal of Geophysical Research, 106(E10), 23 887–23 908.CrossRefGoogle Scholar
Jones, K. L., Bragg, S. L., Wall, S. D., Carlston, C. E., and Pidek, D. G. (1979). One Mars year: Viking lander imaging observations. Science, 204, 799–806.CrossRefGoogle ScholarPubMed
Kleman, J. and Hattestrand, C. (1999). Frozen-bed Fennoscandian and Laurentide ice sheets during the last glacial maximum. Nature, 402, 63–66.CrossRefGoogle Scholar
Kleman, J., Marchant, D. R., and Borgstrom, I. (2001). Late glacial ice dynamics on southern Baffin Island and in Hudson Strait. Arctic Antarctic and Alpine Research, 33(3), 249–257.CrossRefGoogle Scholar
Knauth, L. P. and Burt, D. M. (2002). Eutectic brine seeps on Mars: origin and possible relation to young seepage features. Icarus, 158, 267–271.CrossRefGoogle Scholar
Koppes, M. and Hallet, B. (2006). Erosion rates during rapid deglaciation in Icy Bay, Alaska. Journal of Geophysical Research, 111, doi: 10.1029/2005JF000349.CrossRefGoogle Scholar
Kostama, V. -P., Kreslavsky, M. A., and Head, J. W. (2006). Recent high-latitude icy mantle in the northern plains of Mars: characteristics and ages of emplacement. Geophysical Research Letters, 33(11), doi: 10.1029/2006GL025946.CrossRefGoogle Scholar
Kowalewski, D. E., Marchant, D. R., Levy, J. S., and Head, J. W. III. (2006). Quantifying low rates of summertime sublimation for buried glacier ice in Beacon Valley, Antarctica. Antarctic Science, 18(3), 421–428.CrossRefGoogle Scholar
Kreslavsky, M. A. and Head, J. W. (1999). Kilometer-scale slopes on Mars and their correlation with geologic units: initial results from Mars Orbiter Laser Altimeter (MOLA) data. Journal of Geophysical Research, 104(E9), 21 911–21 924.CrossRefGoogle Scholar
Kreslavsky, M. A. and Head, J. W. (2000). Kilometer-scale roughness of Mars: results from MOLA data analysis. Journal of Geophysical Research, 105(E11), 26 695–26 712.CrossRefGoogle Scholar
Kreslavsky, M. A. and Head, J. W. (2002a). Mars: nature and evolution of young latitude-dependent water-ice-rich mantle. Geophysical Research Letters, 29(15), doi: 10.1029/2002GL015392.CrossRefGoogle Scholar
Kreslavsky, M. A. and Head, J. W. (2002b). The fate of outflow channel effluents in the Northern Lowlands of Mars: the Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. Journal of Geophysical Research, 107(E12), 5121, doi: 10.1029/2001JE001831.CrossRefGoogle Scholar
Kreslavsky, M. A. and Head, J. W. (2003). North-south topographic slope asymmetry on Mars: evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15), doi: 10.1029/2003GL017795.CrossRefGoogle Scholar
Kreslavsky, M. A. and Head, J. W. (2004). Periods of active permafrost layer formation in the recent geological history of Mars. Lunar Planetary Science Conference, 35, Abstract 1201.Google Scholar
Kreslavsky, M. A. and Head, J. W. (2005). Mars at very low obliquity: atmospheric collapse and the fate of volatiles. Geophysical Research Letters, 32, doi: 10.1029/2005GL022645.CrossRefGoogle Scholar
Kreslavsky, M. A., Head, III, J. W., and Marchant, D. R. (2008). Periods of active permafrost layer formation during the geological history of Mars: implications for circum-polar and mid-latitude surface processes. Planetary and Space Sciences, 56, 289–302, doi:10.1016/j.pss.2006.02.010.CrossRefGoogle Scholar
Kress, A. M. and Head, J. W. (2008). Ring-mold craters in lineated valley fill and lobate debris aprons on Mars: evidence for subsurface glacial ice. Geophysical Research Letters, 35, L23206, doi:10.1029/2008GL035501.CrossRefGoogle Scholar
Kuzmin, R. O. and Zabalueva, E. V. (1998). On salt solutions of the martian cryolithosphere. Solar System Research, 32, 187–197.Google Scholar
Lachenbruch, A. H. (1962). Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Geological Society of America Special Paper, 70, 1–69.CrossRefGoogle Scholar
Lancaster, N. (2002). Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic Antarctic and Alpine Research, 34(3), 318–323.CrossRefGoogle Scholar
Langbein, W. B. and Schumm, S. A. (1958). Yield of sediment in relation to mean annual precipitation. AGU Transactions, 39, 1023–1036.CrossRefGoogle Scholar
Larsen, K. W., Arvidson, R. E., Jolliff, B. L., and Clark, B. C. (2000). Correspondence and least-squares analysis of soil and rock compositions for the Viking Lander 1 and Pathfinder landing sites. Journal of Geophysical Research, 105, 29 207–29 221.CrossRefGoogle Scholar
Laskar, J., Levrard, B., and Mustard, J. F. (2002). Orbital forcing of the martian polar layered deposits. Nature, 419, 375–377.CrossRefGoogle ScholarPubMed
Laskar, J., Gastineau, M., Joutel, F., et al. (2004). Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus, 170, 343–364.CrossRefGoogle Scholar
Levrard, B., Forget, F., Montmessin, F., and Laskar, J. (2004). Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature, 431, 1072–1075.CrossRefGoogle ScholarPubMed
Levy, J. S., Marchant, D. R., and Head, III, J. W. (2006). Distribution and origin of patterned ground on Mullins Valley debris-covered glacier, Antarctica: the roles of ice flow and sublimation. Antarctic Science, 18(3), 385–397.CrossRefGoogle Scholar
Levy, J., Head, J. W., Marchant, D. R., Morgan, G. A., and Dickson, J. L. (2007). Gully surface and shallow subsurface structure in the South Fork of Wright Valley, Antarctic Dry Valleys: implications for gully activity on Mars. Lunar Planetary Science Conference, 38, Abstract 1728.Google Scholar
Levy, J. S., Head, J. W., and Marchant, D. R. (2008a). The role of thermal contraction crack polygons in cold-desert fluvial systems. Antarctic Science, 20, 565–579, doi: 10.1017/S0954102008001375.CrossRefGoogle Scholar
Levy, J. S., Head, J. W., Marchant, D. R., and Kowalewski, D. E. (2008b). Identification of sublimation-type thermal contraction crack polygons at the proposed NASA landing site: implications for substrate properties and climate-driven morphological evolution. Geophysical Research Letters, 35, L04202, doi: 10.1029/2007GL032813.CrossRefGoogle Scholar
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hemming, S. R., and Machlus, M. (2007). Major middle Miocene global climate change: evidence from East Antarctica and the Transantarctic Mountains. Geological Society of America Bulletin, 119(11/12), 1449–1461, doi: 10.1130B26134.1.CrossRefGoogle Scholar
Lewis, A. R., Marchant, D. R., Ashworth, A. C., et al. (2008). Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National Academy of Sciences, 105(31), 10 676–10 689, doi: 10.1073/ pnas.08025 01105.CrossRefGoogle ScholarPubMed
Lobitz, B., Wood, B. L., Averner, M. M., and McKay, C. P. (2001). Use of spacecraft data to derive regions on Mars where liquid water would be stable. Proceedings of the National Academy of Sciences, 98(5), 2132–2137, doi: 10.1073/ pnas.031581098.CrossRefGoogle ScholarPubMed
Lyons, W. B., Howard-Williams, C., and Hawes, I., eds. (1997). Ecosystem Processes in Antarctic Ice-Free Landscapes. Rotterdam, Netherlands: A.A. Balkema
Lyons, W. B., Welch, K. A., Carey, A. E., et al. (2005). Groundwater seeps in Taylor Valley, Antarctica: an example of a subsurface melt event. Annals of Glaciology, 40, 200–206.CrossRefGoogle Scholar
Mackay, J. R. (1977). The widths of ice wedges. Geological Survey of Canada Professional Paper, 77–1A, 43–44.Google Scholar
Mahaney, W. C., Dohm, J. M., Baker, V. R., et al. (2001). Morphogenesis of Antarctic Paleosols: Martian analogue. Icarus, 154(1), 113–130.CrossRefGoogle Scholar
Malin, M. C. (1974). Salt weathering on Mars. Journal of Geophysical Research, 79, 3888–3894.CrossRefGoogle Scholar
Malin, M. C. (1984). Abrasion rate observations in Victoria Valley, Antarctica: 340-day experiment. Antarctic Journal of the United States, 19(5), 14–16.Google Scholar
Malin, M. C. (1987). Abrasion in ice-free areas of southern Victoria Land, Antarctica. Antarctic Journal of the United States, 21(5), 38–39.Google Scholar
Malin, M. C. and Edgett, K. S. (2000). Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 2330–2335.CrossRefGoogle ScholarPubMed
Malin, M. C. and Edgett, K. S. (2001). Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. Journal of Geophysical Research, 106(E10), 23 429–23 570.CrossRefGoogle Scholar
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Noe Dobrea, E. Z. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 1573–1577.CrossRefGoogle ScholarPubMed
Mangold, N. (2005). High latitude patterned grounds on Mars: classification, distribution and climatic control. Icarus, 174, 336–359.CrossRefGoogle Scholar
Mangold, N., Allemand, P., Duval, P., Geraud, Y., and Thomas, P. (2002). Experimental and theoretical deformation of ice-rock mixtures: implications on rheology and ice content of Martian permafrost. Planetary and Space Science, 50(4), 385–401.CrossRefGoogle Scholar
Mangold, N., Maurice, S., Feldman, W. C., Costard, F., and Forget, F. (2004). Spatial relationships between patterned ground and ground ice detected by the Neutron Spectrometer on Mars. Journal of Geophysical Research, 109(E8), doi: 10.1029/2004JE002235.CrossRefGoogle Scholar
Marchant, D. R. and Denton, G. H. (1996). Miocene and Pliocene paleoclimate of the Dry Valleys region, southern Victoria Land: a geomorphological approach. Marine Micropaleontology, 27, 253–271.CrossRefGoogle Scholar
Marchant, D. R. and Head, J. W. (2003). Origin of sublimation polygons in the Antarctic western Dry Valleys region: implications for patterned ground development on Mars. EOS (fall Suppl.), 84(46), Abstract C12C–06.Google Scholar
Marchant, D. R. and Head, III, J. W. (2004). Microclimates zones of the Dry Valleys of Antarctica: implications for landscape evolution and climate change on Mars. Lunar Planetary Science Conference, 35, Abstract 1405.Google Scholar
Marchant, D. R. and Head, J. W. (2007). Antarctic Dry Valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus, 192(1), 187–222, doi: 10.1016/j.icarus.2007.06.018.CrossRefGoogle Scholar
Marchant, D. R., Denton, G. H., and Swisher, III, C. C. (1993a). Miocene-Pliocene-Pleistocene glacial history of Arena Valley, Quartermain Mountains, Antarctica. Geografiska Annaler, 75A, 269–302.CrossRefGoogle Scholar
Marchant, D. R., Denton, G. H., and Sugden, D. E. (1993b). Miocene glacial stratigraphy and landscape evolution of the western Asgard Range, Antarctica. Geografiska Annaler, 75A, 303–330.CrossRefGoogle Scholar
Marchant, D. R., Swisher, III, C. C., Lux, D. R., West, Jr., D. P., and Denton, G. H. (1993c). Pliocene paleoclimate and East Antarctic ice-sheet history from surficial ash deposits. Science, 260, 667–670.CrossRefGoogle Scholar
Marchant, D. R., Denton, G. H., Bockheim, J. G., Wilson, S. C., and Kerr, A. R. (1994). Quaternary ice-level changes of upper Taylor Glacier, Antarctica: implications for paleoclimate and ice-sheet dynamics. Boreas, 23, 29–42.CrossRefGoogle Scholar
Marchant, D. R., Denton, G. H., Swisher, III, C. C., and Potter, Jr., N. (1996). Late Cenozoic Antarctic paleoclimate reconstructed from volcanic ashes in the Dry Valleys region, south Victoria Land. Geological Society of America Bulletin, 108(2), 181–194.2.3.CO;2>CrossRefGoogle Scholar
Marchant, D. R., Lewis, A., Phillips, W. C., et al. (2002). Formation of patterned-ground and sublimation till over Miocene glacier ice in Beacon Valley, Antarctica. Geological Society of America Bulletin, 114, 718–730.2.0.CO;2>CrossRefGoogle Scholar
Margerison, H. R., Phillips, W. M., Stuart, F. M., and Sugden, D. E. (2005). Cosmogenic He-3 concentrations in ancient flood deposits from the Coombs Hills, northern Dry Valleys, East Antarctica: interpreting exposure ages and erosion rates. Earth and Planetary Science Letters, 230, 163–175.CrossRefGoogle Scholar
Marion, G. M. (1997). A theoretical evaluation of mineral stability in Don Juan Pond, Wright Valley, Victoria Land. Antarctic Science, 9, 92–99.CrossRefGoogle Scholar
Marshall, G. J. and Turner, J. (1997). Katabatic wind propagation over the western Ross Sea observed using ERS-1 scatterometer data. Antarctic Science, 9, 221–226.CrossRefGoogle Scholar
Matsuoka, N. (2001). Solifluction rates, processes, and landforms: a global review. Earth-science Reviews, 44, 107–134.CrossRefGoogle Scholar
McKay, C. P. (2009). Snow recurrence sets the depth of dry permafrost at high elevations in the McMurdo Dry Valleys of Antarctica. Antarctic Science, 21, 89–94.CrossRefGoogle Scholar
McKay, C. P., Mellon, M. T., and Friedmann, E. I. (1998). Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica. Antarctic Science, 10, 31–38.CrossRefGoogle ScholarPubMed
McKnight, D. M., Niyogi, D. K., Alger, A. S., et al. (1999). Dry valley streams in Antarctica: ecosystems waiting for water. BioScience, 49, 985–995, doi: 10.2307/1313732.CrossRefGoogle Scholar
Mellon, M. T. (1997). Small-scale polygonal features on Mars: seasonal thermal contraction cracks in permafrost. Journal of Geophysical Research, 102, 25 617–25 628.CrossRefGoogle Scholar
Mellon, M. T. (2003). Theory of ground ice on Mars and implications to the neutron leakage flux. Lunar Planetary Science Conference, 34, Abstract 1916.Google Scholar
Mellon, M. T. and Jakosky, B. M. (1995). The distribution and behavior of martian ground ice during past and present epochs. Journal of Geophysical Research, 100, 11 781–11 799.Google Scholar
,MEPAG Next Decade Science Analysis Group (2008). Science priorities for Mars sample return. Astrobiology, 8, doi: 10.1089/ast.2008.0759.Google Scholar
Milkovich, S. M. and Head, J. W. (2005). North polar cap of Mars: polar layered deposit characterization and identification of a fundamental climate signal. Journal of Geophysical Research, 110(E1), doi: 10.1029/2004JE002349.CrossRefGoogle Scholar
Milkovich, S. M., Head, J. W., Neukum, G., and ,the HRSC Co-Investigator Team (2008). Stratigraphic analysis of the northern polar layered deposits of Mars: implications for recent climate history. Planetary and Space Science, 56, 266–288, doi: 10.1016/j.pss.2007.08.004.CrossRefGoogle Scholar
Miller, G. H., Wolfe, A. P., Briner, J. P., Sauer, P. E., and Nesje, A. (2005). Holocene glaciation and climate evolution of Baffin Island, Arctic Canada. Quaternary Science Reviews, 24, 1703–1721.CrossRefGoogle Scholar
Milliken, R. E., Mustard, J. F., and Goldsby, D. L. (2003). Viscous flow features on the surface of Mars: observations from high-resolution Mars Orbiter Camera (MOC) images. Journal of Geophysical Research, 108(E6), doi: 10.1029/2002JE002005.CrossRefGoogle Scholar
Mitrofanov, I. and 11 colleagues (2002). Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science, 297, 78–81.CrossRefGoogle ScholarPubMed
Morgan, G., Head, J. W., Marchant, D. R., Dickson, J. L., and Levy, J. S. (2007). Gully formation on Mars: testing the snowpack hypothesis from analysis of analogs in the Antarctic Dry Valleys. Lunar Planetary Science Conference, 38, Abstract 1656.Google Scholar
Murton, J. B., Worsley, P., and Gozdzik, J. (2000). Sand veins and wedges in cold aeolian environments. Quaternary Science Reviews, 19, 899–922.CrossRefGoogle Scholar
Mustard, J. F., Cooper, C. D., and Rifkin, M. K. (2001). Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature, 412, 411–414.CrossRefGoogle ScholarPubMed
Mutch, T. A., Grenander, S. U., Jones, K. L., et al. (1976a). The surface of Mars: the view from the Viking 2 lander. Science, 194, 1277–1283.CrossRefGoogle ScholarPubMed
Mutch, T. A., Patterson, W. R., Binder, A. B., et al. (1976b). The surface of Mars: the view from the Viking 1 Lander. Science, 193, 791–801.CrossRefGoogle ScholarPubMed
Mutch, T. A., Arvidson, R. E., Guinness, E. A., Binder, A. B., and Morris, E. C. (1977). The geology of the Viking Lander 2 site. Journal of Geophysical Research, 82, 4452–4467.CrossRefGoogle Scholar
Nichols, R. L. (1968). Coastal geomorphology, McMurdo Sound, Antarctica. Journal of Glaciology, 7, 449–478.CrossRefGoogle Scholar
Nkem, J. N., Virginia, R. A., Barrett, J. E., Wall, D. H., and Li, G. (2006). Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biology, 28(8), 643–651.CrossRefGoogle Scholar
Northcott, M. L., Gooseff, M. N., Barrett, J. E., et al. (2009). Hydrologic characteristics of lake- and stream-side riparian wetted margins in the McMurdo Dry Valleys, Antarctica. Hydrological Processes, 23, 1255–1267.CrossRefGoogle Scholar
Nylen, T., Fountain, A. G., and Doran, P. (2004). Climatology of katabatic winds in the McMurdo Dry Valleys, southern Victoria Land, Antarctica. Journal of Geophysical Research, 109, doi: 10.10292–2003JD003937.CrossRefGoogle Scholar
Ostrach, L. R., Head, J. W., and Kress, A. M. (2008). Ring-mold craters (RMC) in lobate debris aprons (LDA) in the Deuteronilus Mensae region of Mars: evidence for shallow subsurface glacial ice in lobate debris aprons. Lunar Planetary Science Conference, 39, Abstract 2422.Google Scholar
Paige, D. A. (2002). Near-surface liquid water on Mars. Lunar Planetary Science Conference, 33, Abstract 2049.Google Scholar
Parsons, R., Head, J. W., and Marchant, D. R. (2005). Weathering pits in the Antarctic Dry Valleys: insolation-induced heating and melting and applications to Mars. Lunar Planetary Science Conference, 36, Abstract 1138.Google Scholar
Patterson, W. S. B. (2001). The Physics of Glaciers. London: Butterworth-Heinemann.Google Scholar
Péwé, T. L. (1959). Sand-wedge polygons (tesselations) in the McMurdo Sound region, Antarctica: a progress report. American Journal of Science, 257, 545–552.CrossRefGoogle Scholar
Pierce, T. L. and Crown, D. A. (2003). Morphologic and topographic analyses of debris aprons in the eastern Hellas region, Mars. Icarus, 163, 46–65.CrossRefGoogle Scholar
Plaut, J. J., Safaeinili, A., and Holt, J. W., et al. (2009). Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophysical Research Letters, 36, L02203, doi: 10.1029/2008GL036379.CrossRefGoogle Scholar
Prentice, M. L., Kleman, J. K., and Stroeven, A. P. (1998). The composite glacial erosional landscape of the northern McMurdo Dry Valleys: implications for Antarctic Tertiary glacial history. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 1–38.Google Scholar
Priscu, J. C., ed. (1998). Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. AGU Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, 370 pp.CrossRef
Reiss, D. and Jaumann, R. (2003). Recent debris flows on Mars: seasonal observations of the Russell Crater dune field. Geophysical Research Letters, 30(6), doi: 10.1029/2002GL016704.CrossRefGoogle Scholar
Richardson, M. I. and Mischna, M. A. (2005). Long-term evolution of transient liquid water on Mars. Journal of Geophysical Research, 110(E3), doi: 10.1029/2004JE002367.CrossRefGoogle Scholar
Rieder, R. and 14 colleagues (2004). Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray Spectrometer. Science, 306, 1746–1749.CrossRefGoogle ScholarPubMed
Rignot, E., Hallet, B., and Fountain, A. (2002). Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar interferometry. Geophysical Research Letters, 29(12), doi: 10.1029/2001GL013494.CrossRefGoogle Scholar
Schaefer, J. M., Bauer, H., Denton, G. H., et al. (2000). The oldest ice on Earth in Beacon Valley, Antarctica: new evidence from surface exposure dating. Earth and Planetary Science Letters, 179, 91–99.CrossRefGoogle Scholar
Schumm, S. A. (1965). Quaternary paleohydrology. In The Quaternary of the United States, ed. Wright, H. E. and Frey, D. G.. Princeton, NJ: Princeton University Press, p. 922.Google Scholar
Schumm, S. A. and Lichty, R. W. (1965). Time, space and causality in geomorphology. American Journal of Science, 263, 110–119.CrossRefGoogle Scholar
Schwerdtfeger, W. (1984). Weather and Climate of the Antarctic. Developments in Atmospheric Science 15. Amsterdam, Netherlands: Elsevier, 262 pp.Google Scholar
Selby, M. J. (1971a). Slopes and their development in an ice-free, arid area of Antarctica. Geografiska Annaler, 53(A), 235–245.CrossRefGoogle Scholar
Selby, M. J. (1971b). Some solifluction surfaces and terraces in the ice-free valleys of Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 14(3), 469–476.CrossRefGoogle Scholar
Selby, M. J. (1974). Slope evolution in an Antarctic oasis. New Zealand Geographer, 30, 18–34.CrossRefGoogle Scholar
Selby, M. J. (1977). Transverse erosional marks on ventifacts from Antarctica. New Zealand Journal of Geology and Geophysics, 20(5), 949–969.CrossRefGoogle Scholar
Settle, M. (1979). Formation and deposition of volcanic sulfate aerosols on Mars. Journal of Geophysical Research, 84, 8343–8354.CrossRefGoogle Scholar
Shean, D. E., Head, J. W., and Marchant, D. R. (2005). Origin and evolution of a cold-based tropical mountain glacier on Mars: the Pavonis Mons fan-shaped deposit. Journal of Geophysical Research, 110, E05001, doi: 10.1029/2004JE002360.CrossRefGoogle Scholar
Shean, D. E., Head, III, J. W., Fastook, J. L., and Marchant, D. R. (2007a). Recent glaciation at high elevations on Arsia Mons, Mars: implications for the formation and evolution of large tropical mountain glaciers. Journal of Geophysical Research, 112, E03004, doi: 10.1029/2006JE002761.CrossRefGoogle Scholar
Shean, D. E., Head, J. W., and Marchant, D. R. (2007b). Shallow seismic surveys and ice thickness estimates of the Mullins Valley debris-covered glacier, McMurdo Dry Valleys, Antarctica. Antarctic Science, 19, 485–496, doi: 10.1017/S0954102007000624.CrossRefGoogle Scholar
Siegel, B. Z., McMurty, G., Siegel, S. M., Chen, J., and Larock, P. (1979). Life in the calcium chloride environment of Don Juan Pond, Antarctica. Nature, 280, 828–829.CrossRefGoogle Scholar
Sletten, R. S., Hallet, B., and Fletcher, R. C. (2003). Resurfacing time of terrestrial surfaces by the formation and maturation of polygonally patterned ground. Journal of Geophysical Research, 108, doi: 10.1029/2002JE001914.CrossRefGoogle Scholar
Smith, D. E. and 23 colleagues (2001). Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. Journal of Geophysical Research, 106, 23 689–23 722.CrossRefGoogle Scholar
Smith, P. H. and the Phoenix Science Team (2007). The Phoenix mission. In Seventh International Conference on Mars, Abstract 3180.
Spotila, J. A, Buscher, J. T, Meigs, A. J., and Reiners, P. W. (2004). Long-term glacial erosion of active mountain belts: example of the Chugach-St. Elias Range, Alaska. Geology, 32, 501–504.CrossRefGoogle Scholar
Squyres, S. W., Clifford, S. M., Kuzmin, R. O., Zimbelman, J. R., and Costard, F. M. (1992). Ice in the martian regolith. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 523–554.Google Scholar
Squyres, S. W. and 49 colleagues (2004a). The Spirit rover's Athena science investigation at Gusev Crater, Mars. Science, 305, 794–799.CrossRefGoogle ScholarPubMed
Squyres, S. W. and 49 colleagues (2004b). The Opportunity rover's Athena science investigation at Meridiani Planum, Mars. Science, 306, 1698–1703.CrossRefGoogle ScholarPubMed
Squyres, S. W. and 17 colleagues (2004c). In-situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 1709–1714.CrossRefGoogle ScholarPubMed
Squyres, S. W. and 17 colleagues (2006). Two years at Meridiani Planum: results from the Opportunity rover. Science, 313, 1403–1407.CrossRefGoogle ScholarPubMed
Staiger, J. W., Marchant, D. R., Schaefer, J. M., et al. (2006). Plio-Pleistocene history of Ferrar Glacier, Antarctica: implications for climate and ice sheet stability. Earth and Planetary Science Letters, 243, 489–503.CrossRefGoogle Scholar
Sugden, D. E., Denton, G. H., and Marchant, D. R. (1995a). Landscape evolution of the Dry Valleys, Transantarctic Mountains: tectonic implications. Journal of Geophysical Research, 100(B7), 9949–9967.CrossRefGoogle Scholar
Sugden, D. E., Marchant, D. R., Potter, Jr., N., et al. (1995b). Miocene glacier ice in Beacon Valley, Antarctica. Nature, 376, 412–416.CrossRefGoogle Scholar
Summerfield, M. A., Stuart, F. M., Cockburn, H. A. P., et al. (1998). Long-term rates of denudation in the Dry Valleys region of the Transantarctic Mountains, southern Victoria Land based on in-situ produced cosmogenic Ne-21. Geomorphology, 27, 113–129.CrossRefGoogle Scholar
Summerfield, M. A., Sugden, D. E., Denton, G. H., et al. (1999). Cosmogenic isotope data support previous evidence of extremely low rates of denudation in the Dry Valleys region, southern Victoria Land, Antarctica. Geological Society of London Special Publication, 162, 255–267.CrossRefGoogle Scholar
Swanger, K. M. and Marchant, D. R. (2007). Sensitivity of ice-cemented Antarctic soils to greenhouse-induced thawing: are terrestrial archives at risk?Earth and Planetary Science Letters, 259, 347–359.CrossRefGoogle Scholar
Takamatsu, N., Kato, N., and Matsumoto, G. I. (1998). The origin of salts in water bodies of the McMurdo Dry Valleys. Antarctic Science, 10, 439–448.CrossRefGoogle Scholar
Tanaka, K. L. (2005). Geology and insolation-driven climatic history of Amazonian north polar materials on Mars. Nature, 437, 991–994.CrossRefGoogle ScholarPubMed
Tillman, J. E. (1988). Mars global atmospheric oscillations: annually synchronized, transient normal mode oscillations and the triggering of global dust storms. Journal of Geophysical Research, 93, 9433–9451.CrossRefGoogle Scholar
Torii, T., Nakaya, S., Matsubaya, O., et al. (1989). Chemical characteristics of pond waters in the Labyrinth of southern Victoria Land, Antarctica. Hydrobiologia, 172, 255–264.CrossRefGoogle Scholar
Tosca, N. J., McLennan, S. M., Clark, B. C., et al. (2005). Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum. Earth and Planetary Science Letters, 240, 122–148.CrossRefGoogle Scholar
Toulmin, P., Baird, A. K., Clark, B. C., et al. (1977). Geochemical and mineralogical interpretation of the Viking inorganic chemical results. Journal of Geophysical Research, 82, 4625–4634.CrossRefGoogle Scholar
Wateren, D. and Hindmarsh, R. (1995). Stabilists strike again. Nature, 376, 389–391.CrossRefGoogle Scholar
Vaniman, D. T. and Chipera, S. J. (2006). Transformation of Mg- and Ca-sulfate hydrates in Mars regolith. American Mineralogist, 91, 1628–1642.CrossRefGoogle Scholar
Wall, S. D. (1981). Analysis of condensates formed at the Viking 2 lander site: the first winter. Icarus, 47, 173–183.CrossRefGoogle Scholar
Wang, A. and 11 colleagues (2007). Sulfate-rich soils exposed by Spirit rover at multiple locations in Guseve Crater on Mars. In Seventh International Conference on Mars, Abstract 3348.
Wentworth, S. K.Gibson, E. K.Velbel, M. A., and McKay, D. S. (2005). Antarctic Dry Valleys and indigenous weathering in Mars meteorites: implications for water and life on Mars. Icarus, 174, 383–395.CrossRefGoogle Scholar
Whalley, W. B. and Palmer, C. F. (1998). A glacial interpretation for the origin and formation of the Marinet Rock Glacier, Alpes Maritimes, France. Geografiska Annaler, 80, 221–236.CrossRefGoogle Scholar
Wilson, L. (1969). Les relations entre les processus geomorphologique et le climat moderne comme méthode de paléoclimatologie. Revue De Géographie Physique et de Geologie Dynamique, 11, 309–314.Google Scholar
Yershov, E. D. (1998). General Geocryology. Studies in Polar Research. Cambridge, UK: Cambridge University Press, 580 pp.CrossRefGoogle Scholar
Zent, A. P. and Fanale, F. P. (1986). Possible Mars brines: equilibrium and kinetic considerations. Journal of Geophysical Research, 91, 439–445.CrossRefGoogle Scholar
Zent, A. P. and Fanale, F. P. (1990). Possible martian brines: radar observations and models. Journal of Geophysical Research, 95, 14 531–14 542.CrossRefGoogle Scholar
Zent, A. P., Fanale, F. P., Salvail, J. R., and Postawko, S. E. (1986). Distribution and state of H2O in the high-latitude shallow subsurface of Mars. Icarus, 67, 19–36.CrossRefGoogle Scholar
Zurek, R. (1992). Comparative aspects of the climate of Mars: an introduction to the current atmosphere. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 799–817.Google Scholar
Zurek, R. W., Barnes, J. R., Haberle, R. M., et al. (1992). Dynamics of the atmosphere of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 835–933.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×