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HIGHLY TRANSITIVE REPRESENTATIONS OF
FREE GROUPS AND FREE PRODUCTS

A.M.W. GLASS AND STEPHEN H. MCCLEARY

Dedicated to B.H. Neumann on his 80th birthday
with our appreciation and respect.

A permutation group is highly transitive if it is n-transitive for every positive
integer n. A group G of order-preserving permutations of the rational line Q is
highly order-transitive if for every cti < . . . < an and /3i < . . . < / ? „ in Q there
exists g £ C such that dig = Pi, i — 1, . . . , n. The free group F^(2 ^ JJ < No)
can be faithfully represented as a highly order-transitive group of order-preserving
permutations of Q, and also (reproving a theorem of McDonough) as a highly
transitive group on the natural numbers N. If G and H are nontrivial countable
groups having faithful representations as groups of order-preserving permutations
of Q, then their free product G* H has such a representation which in addition is
highly order-transitive. If G and H are nontrivial finite or countable groups and
if H has an element of infinite order, then G * H can be faithfully represented as
a highly transitive group on N. Some of the representations of Fv on Q can be
extended to faithful representations of the free lattice-ordered group Ln.

1. INTRODUCTION

Our main results are

THEOREM A. T ie free group Fn (2 < r] < No) c a n °e faithfully represented as a

highly order-transitive group Fv of order-preserving permutations of the rational line

Q-

THEOREM B. (McDonough [10]). The free group Fv (2 ^ r/ < No) can be faith-
fully represented as a highly transitive group of permutations of the natural numbers
N.

In connection with the next theorem, we mention that a countable group G can
be embedded in A(Q) if and only if G can be right ordered; see Section 4.
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20 A.M.W. Glass and S.H. McCleary [2]

THEOREM C. Let G and H be nontrivial countable groups. If G and H have
faithful representations as groups of order-preserving permutations of Q, then their free
product G * H has such a representation which in addition is highly order-transitive.

THEOREM D. Let G and H be nontrivial finite or countable groups, with H
having an element of infinite order. Then their free product G * H can be faithfully
represented as a highly transitive group of permutations of the natural numbers N.

As we shall see in Section 5, the conclusion of Theorem D fails for Z2 * Z2, where
Z2 denotes the cyclic group of 2 elements.

QUESTION . For which non-trivial groups G and H does G * H have a faithful
highly transitive representation on N ?

THEOREM E. Every faithful representation of Fv (2 ^ r\ < No) as a highly order-
transitive group of order-preserving permutations of Q (respectively as a highly tran-
sitive group of permutations of N) can be extended to such a representation of F^ .

McDonough [10] and Dixon [1] have given quite different proofs of Theorem B.
Here we prove Theorem A, its analogue for Q, and find ourselves with yet another
proof of Theorem B. (As an aside, we mention that analogues of Dixon's other results
in [1] also hold.) Another way of stating these results is to say that Fn can be densely
embedded in the group A(Q) of ordering-preserving permutations of Q, and can be
densely embedded in Sym(N). (A subgroup H of a permutation group (G,fl) is dense
if whenever a,<7 = /?< (i = 1, . . . , n) for some g 6 G, then also e*,fc = /?; (t = 1, . . . , n)
for some h 6 H.)

The proofs of Theroems A and B are prerequisites for the more intricate proofs of
their generalisations Theorems C and D. However, the proofs of C and D may be read
in either order and do not require Section 3.

On a different historical track, the present authors obtained results about free
lattice-ordered groups similar to those above. The present techniques mostly stem from
the lattice-ordered group ( £-group) proofs. However, no knowledge of £-groups is needed
except in the last section, where new results about free ^-groups are to be found.

2. FREE GROUPS

First, a bit of background. Fv can be made into a totally ordered group (a ^ b
implies cad < cbd for all a, b, c, d) which is dense in itself [2, Chapter IV, Theorem
8]. Also, every chain (that is, every totally ordered set) which is countable, dense in
itself, and lacks end points (for example, Fv ordered as above) is order-isomorphic to
the rational line Q.

Let x be a fixed set of free generators for Fv. Our fundamental tool will be the

notion of a diagram for a reduced group word w = z*1 . . . z^ 1 (x^ e x ) , As an

https://doi.org/10.1017/S0004972700028744 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028744


[3] Highly transitive representations 21

example, consider w = xix2x^1x2x1, and a substitution in A(Q) moving 0 to some

Figure 1. A diagram.

This diagram shows that (to no one's surprise) w ^ e in Fv. The precise definition

(making no reference to Q) is as follows:

The points of the diagram are the initial subwords z j ^ 1 . . • * j ^ 1 (0 ^ k ^ n) of w.

For each ordered pair (a, j3) of points such that axf1 = 0, the diagram includes

an xij-aTTOw, from a to /9 if the exponent on x^ is + 1 , otherwise from j8 to a .

The remaining aspect of the diagram is a total order on the set A of points which is

consistent with the arrows in that if there are z-arrows from c*i to 0\ and et2 t° 02

(same z for both), then ai ^ a2 if and only if 0\ K±02- (An z-arrow from a to 0 may

alternately be described as an z- 1-arrow from 0 to a . ) The empty initial subword

(fc = 0) is called the base point of the diagram.

By a diagram on Q we mean a diagram which arises from a substitution in A(Q).

LEMMA 1. Let w € Fv. If w ^ e, there exists a diagram on Q showing this (by
making 0u? ^ 0). Moreover, given any diagram for w drawn on Q, there is for each
x G x an order-preserving permutation x of Q which acts in accordance with all the
x-arrows.

PROOF: For the first claim, make Fv into a totally ordered group isomorphic as
a chain to Q, and use its right regular representation. For the second, the constraints
imposed by the collection of x-arrows can be simultaneously satisfied by some x £ A(Q)
because all open rational intervals are isomorphic as chains. U

PROOF OF THEOREM A: For each z 6 x, the action on Q of its image z will
be specified at enough points to guarantee the desired results. Each specifiction will
amount to an z-arrow. The proof splits into three distinct phases:

(1) Specifications (essentially within Q + , the positive rationals) to achieve
faithfulness and to link Q+ with Q~ by arranging that every n-tuple in
Q can be sent to an n-tuple in Q~.

(2) Specifications within Q~ to achieve high order-transitivity.
(3) Synthesis, in which for each z £ x we choose an order-preserving permu-

tation x of Q which meets the specifications for x.
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22 A.M.W. Glass and S.H. McCleary [4]

FAITHFULNESS AND LINKAGE. FV is countable, and we enumerate its nonidentity el-
ements as wo, ui), In the rational interval [0, 1], we lay out a copy of a diagram

for wo = x*1 . . . xf* showing e ^ WQ , with the smallest point Ao of the diagram taken
to be 0, and the largest point po taken to be 1. We specify about the x's that the
point (corresponding to) xf^1 ... xf1 be sent by xf^ to the point (corresponding to)

xf1 xf1 x^1. Similarly, in each interval [2n, 2ra + 1], we lay out such a diagram for

wn and make such specifications. This is already enough to give faithfulness.

For the sake of the linkage, we want to ensure that all the points in the various
diagrams lie in the same orbit of Fv, and this orbit extends down into Q~. Then
because the diagram points are cofinal in Q and all permutations in Fv will preserve
order, we will have the desired linkage.

To make all diagram points lie in one orbit, it suffices to arrange that for each
n = 0, 1, . . . , the points 2n + 1 and 2(n + 1) lie in the same orbit. For this we
construct appropriate "bridges".

We begin with the interval [1, 2]. In the original diagram for TOO > Po (*-* 1) must
have been moved by at least one free generator, say x\0; and in the diagram for w\,
Ai («-» 2) must have been moved by some free generator xxl • We decree that

(aj ) l x w = 4/3 if po was moved up by XpQ ,

(a2 ) l*^,1 = 4/3 if po was moved down by xpo ,
(b i ) (5/3)2AX = 2 if AI was moved up by x\x,
(b2) (b/fyx^1 = 2 if Ai was moved down by x\t.

To connect 4/3 and 5/3, we further decree that (4/3)s:w = 5/3 if (aj) obtains (or
that (4/3)z^)

1 = 5/3 if (a2) obtains); except that this may conflict with (b2) or (bi)
if x^ — x\t , so in that case we pick any other x 6 x (77 > 1) and decree that (4/3)S =
5/3. We build similar bridges in the other intervals [2n + 1, 2n + 2], n = 1, 2,

Diagram for u0 Diagram for t^

Figure 2

Replacing xj^ by zT1 if necessary, we may assume xx0 moves some positive point

to 0. We denote x\0 by t. Thus the figure contains a leftward i-arrow with head at 0.
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[5] Highly transitive representations 23

We specify that at = a — 1 for all a < 0. Now the orbit of Fn containing the diagram
points extends down into Q~, and we have linkage.

NOTE. White's Theorem [12] that the real maps a H a + 1 and a •-» a3 generate
a free group fixing no transcendental real number could have been used to accomplish
faithfulness and linkage; see the proof of Theorem A3. However, that approach would
not carry over to free products.

HIGH ORDER-TRANSITIVITY. We fix b e x with b ^ t, and specify that 6b — 0. Let
<Sn be the set of pairs (oi , . . . , an), ( f t , ..., ft,) of strictly negative rationals with

oo

c*i < .. . < an and ft < ... < /?„. Enumerate <S = |J Sn•
n=l

For the first pair (oti, . . . , a n i ) , (ft, . . . . f t ^ ) , we specify that a;6 = ft
(i = 1, . . . , ni); see Figure 3. Next, we pick a (negative) integer mi < min{ai, /?i},
and specify that mxb = mi . For the next pair (fix, ..., fj,nj), (fii, . . . , fj.nj), we specify
that (fii + mi )b — V{ + nil (t = 1, . . . , n2) , which entails no conflict with any previous
specification, thus arranging that mt~mi'btlni — Ui (i = 1, ..., n.2). Next, we pick an
integer 7712 < min{/i! + mi, Vi + mi} , and specify that m2b = m^ . For the third pair
(o-i, . . . , <rn3), (TI, . . . , Tn3), we specify that (<r< + m2)b - n + m2 (i = 1 , . . . , ns),
and we pick an integer mj < min{<7i + rn.2, T\ + m.2} and specify that mji = 1713.
Continuing in this manner, we arrange that every negative n-tuple can be sent to every
other negative n-tuple (same n) by some T~m'bvn.

Figure 3

SYNTHESIS. For each i G x , the set of points which are heads of specified z-arrows is
cofinal (coinitial) in Q if and only if the same holds for tails. For each x other than
t, the set of points which are ends of specified z-arrows has no limit points in R, and
for t only the nonpositive reals are limit points. Hence we can extend each x to an
order-preserving permutation of Q. u

PROOF OF THEOREM B: Establish a one-to-one correspondence between N and
Q. Then proceed as in the proof of Theorem A, but this time in the proof of high
order-transitivity include all negative n-tuples (a\, . . . , an) of distinct points without
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requiring oti < • • • < a n . Each x except for b preserves order, and even b preserves
order on the nonnegative rationals and maps the set of nonnegative rationals onto itself.
Thus again we have the desired linkage. U

THEOREM AB2. Theorem A holds for Fn of any infinite rank, except that Q
must be replaced by a suitable chain Qv; and similarly for Theorem B.

The proof is considerably easier than for finite rank, and is almost identical to the
proof for free lattice-ordered groups; see [7, Theorem 1].

3. SHARPENING THE CONCLUSIONS FOR FREE GROUPS

The preceding proofs pave the way for the proofs of our more general results about
free products. However, we digress now to look at variations of the free group proofs
which give slightly sharper conclusions. Obviously it can happen in the proof of Theo-
rem A that b fixes all points in some interval. In the opposite spirit is:

THEOREM A3. In TAeorem A, it can be arranged that for every e ^ w G Fv,
there exists qw £ Q such that w moves all irrationals above qw.

PROOF: Faithfulness and linkage can be achieved directly by White's Theorem
[12] that the maps ocf = a + 1 and ctg = a3 freely generate a copy i*2 of Fi within
.A(R), and that indeed every e ^ w £ Fi moves every transcendental number.

We have Ft ^ -A(A), where A denotes the real algebraic numbers. Let /,• = g~xfgx,
i = 0, 1, . . . . Let ki = fi, but change &2 to the left of 0 to make (fci, J^) highly order-
transitive. Now use the copy of Fv freely generated by {fc< | 0 ^ i < T}} . This gives
Theorem A3 with "irrationals" changed to "transcendentals". Since the chains A and
Q are isomorphic making the chain of real transcendentals and the chain of irrationals
isomorphic, the theorem follows. D

Along the same lines is

THEOREM A4. Let T be any countable dense subset of the irrationals. In Theo-
rem A, it can be arranged that T be an orbit of Fv and that every e ^ Q E Fv move
every point in T.

PROOF: This time we change the proof of Theorem A by changing the first part,
with an argument modelled after the proof of [8, Theorem 3].

For any T\ and T2 satisfying our hypotheses, there is an order-preserving permu-
tation of Q sending Ti onto T2 [6, Lemma 21]. Thus we may assume that T is a coset
of Q in (R, +) , so that T is mapped onto itself by integer translations.

As before, let at = o — 1, specify that 06 = 0, and make specifications for 6 in
Q~ to arrange high order-transitivity. These specifications amount to a collection of
b-arrows, and more b-arrows will be added later. Let B C Q~ be the set of points that
are ends of b-arrows. B has no limit points in R.
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[7] Highly transitive representations 25

For faithfulness, we use a brute force argument quite different from that of Theo-
rem A. Let y be x with t deleted. Let V be the set of pairs (a , z), where a 6 Q U T

and z — y ± J for some y 6 y . We proceed inductively through the enumeration, defining
y-arrows ( j / € y ) as we go. There are two cases: z = y and z = y " 1 .

When we reach (a , y) , we specify a y-arrow with tail at a (unless there is already
such an arrow). Now we explain how to choose the head /? of this arrow. Let A be
the largest point in Q U T which is the head of an already existing y-arrow whose tail
lies below a ; or if there aren't any, let A = —oo. (Only finitely many y-arrows have
been added so far during the induction, and by the construction of t-arrows prior to
the induction there must be a largest such point, even for y = b.) Let p be the smallest
of the points that are heads of already existing y-arrows whose tails lie above a ; or if
there aren't any, let p = +oo. We choose the head /? of the new y-arrow from (A, p),

and from the same set Q or T as a .

Choose 6 here

Figure 4

If a € T, we impose one more constraint on /?, namely that /? not differ by an
integer from a or from either end of any previously defined 2-arrow (u G y ) . (The
6-arrows specified prior to the induction have their ends in Q, so there are only finitely
many ends of u-arrows in T.) The reason for the constraint is this: A loop is a path
which starts at some 6 £ Q U T and follows a sequence of arrows (i-arrows are included
here) and eventually returns to 6. (No arrow has its two ends the same, removing any
ambiguity from this definition.) The constraint makes sure that no sequence of t-arrows
leads from /J to a or to any point which is either end of an already existing u-arrow
(u € y ) . This in turn guarantees that as we proceed through the induction, there can
never arise for the first time a loop involving a point from T. And this guarantees that
no w ^ e fixes any point in T (which then guarantees faithfulness).

We treat the case z = y"1 similarly, this time defining a y^1 -arrow from a to j3

(that is, a y-arrow from /? to a).

The y-arrows defined prior to and during the induction define an order preserving

permutation of Q [onto Q because of the case z = y " 1 ) which maps T onto itself. U

In all the preceding proofs, every nonidentity element of Fv has unbounded sup-

port. This is no accident:
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26 A.M.W. Glass and S.H. McCleary [8]

PROPOSITION 2 . Fv cannot be faithfully represented as a transitive group of
order-preserving permutations of a chain Q so as to include both a nonidentity element
whose support is bounded above and another whose support is bounded below.

PROOF: Suppose 7}A has support bounded above and <7B has support bounded
below. By transitivity, supp(^ ) < s u p p f / " 1 ^ / ) for some / G G. Hence / - 1 5 B /

commutes with "(/A, and so has a common root with 5.4; this makes their supports
coincide, which is a contradiction. U

PROOF OF THEOREM E: We prove the Q version, the N version being similar.
Our task is to specify xv+i, xv+2, . . . so that the resulting representation of F^ on Q
is faithful. By induction, it suffices to specify just £,,+1, which we denote by y.

We enumerate the elements of Fv+i \FV as wo, wi, Suppose by induction that
we have specified a finite number of y-arrows which together with the given X\-, ..., Sp-
arrows create for each of i = 0, . . . ,& — 1 a diagram showing W{ ^ e. Pick /3 = 0^ € Q
exceeding both ends of all these y-arrows. Let w* be the longest final subword of Wk
which involves no y±x 's. Pick 6 > f3w*. We will arrange that SiSk ^ 6. Beginning
at S, we trace through wt, noting the X\-, ..., ic^-arrows which arise and specifying
heads of y^1 -arrows as we encounter occurrences of y (except when a y^1 -arrow is
already defined there, which can happen below j3i). We arrange that the head of a new
y±2 -arrow not coincide with its tail or with either end of any previous y±1-arrow. We
are done unless we are so unlucky that Sw^ = 6. But there must be at least one
y±1-arrow, so if 8Qk = 6, we change the head of the last y^-arrow (without changing its
tail or either end of any previous y-arrow, which is possible because of how we arranged
the heads of the new y*1-arrows and because our choices of /? and 6 guarantee that
the y±1-arTOW being changed is new). D

4. FREE PRODUCTS REPRESENTED ON Q

The next theorem deals with countable groups which can be embedded in J4(Q).

Equivalently ([11, Theorem 7.1.2], and [4, Theorem 4] or the present Lemma 3), these
are the countable groups which can be right ordered (equipped with a total order
preserved by multiplication on the right). Here we reprove a special case of [4, Theorem
4] so as to sharpen the conclusion a bit.

LEMMA 3 . Let G be a countable right orderabiegroup. Then G can be embedded
as a subgroup G of J4(Q) in such a way that no e ^ 5 £ G fixes any point in Q.

PROOF: Let (G, ^) be a right ordering of G, and form the right regular represen-
tation of G. If (G, <) is dense in itself, we are done. If instead it is discrete, replace
each point in (G, ^ ) by a copy of Q, and let G act on the resulting chain in the obvious
way. U
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We pause to point out a few things about right orderable groups which we won't
actually use here: They are torsion free and are unique product groups. Several charac-
terisations of them are given in [11, Section 7.1]. They form a quasi-variety of groups
(closed under subgroup, direct product, and ultraproduct) and thus can be characterised
in first order group theoretic language.

The following proof is modelled after the proof in [3] of the corresponding theorem
for lattice-ordered groups. A word of caution: Within the lattice-ordered group free
product of lattice-ordered groups G and H which are not totally ordered, the subgroup
generated by G and H is not their free product as groups [5, Theorem 3].

PROOF OF THEOREM C: The proof splits into the same three phases as the proof
of Theorem A.

FAITHFULNESS AND LINKAGE. Since the free product of right orderable groups is right
orderable [11, Theorem 7.3.2], we can embed G * H in A(Q,) so that no nonidentity
element fixes any point of Q (Lemma 3). We so represent G* H on each of the rational
intervals (2n, In + 1), n ^ 0, denoting the embedding by <f>n. Later we shall modify
the restriction <j>n \ H, but not <f>n \ G.

We enumerate the nonidentity elements of G*H as w0, IOJ, . . . . Now wo<j>o moves
some point a0 € (0, 1), and thus gives rise to a diagram with base point a0 witnessing
within (0, 1) the fact that WQ ^ e. Let Ao denote the leftmost point of this diagram,
and po the rightmost (see Figure 5). Since no nonidentity element of (G * H)<f>o fixes
any point in (0, 1), we can pick h\0 € H such that 0 < \oh\0 < Ao. Similarly, we can
pick hn € H such that p0 < poh^ < 1. Next we pick f0 6 A ( ( - l / 2 , 3/2)) such that
(AO/IA0)/O = - 1 / 4 , (pofc»)/o - 5/4 and supp(/0) C ( - 1 / 2 , Ao) U (p0, 3/2).

Range of

Figure 5

For w 6 H, let wif>^ = /o~1('U>$o)/o- Thus ij}^ is a representation of H on
( - 1 / 2 , 3/2). For w eG, let wr/>^ = w<f>0 on (0, 1) and let VJ3 be the identity action
on ( -1 /2 , 0) U (1, 3/2). (This identity action will be changed later.) Let Vo be the
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unique extension of iji^ and i/)^ to an order-preserving representation of G * H on
(—1/2, 3/2). Now V'o agrees with fo at all diagram points, so that the diagram with
base point ao arising from woipo coincides with that arising from wo<f>o • Also, the orbit
ao((G * H)rl>0) spills outside (0, 1) to include both —1/4 and 5/4.

We repeat this for n = 1, 2, . . . , obtaining representations r/>n of G * H on
( - 1 / 2 + 2n, 2n + 3/2).

Now for each n ^ 0, we pick an order-preserving action £n of G on (2n — 1, 2n) for
which (2n — 3/4)(<7n£n) = In — 1/4 for some gn £ G. We splice together these various
actions by defining i/> to be the unique (faithful) order-preserving representation of
G * H on (—1, oo) such that

( wi/>n on (2n, 2n + 1), n^O.and
(1) for w £ G, wip = <

\w£n on (2n + 1, 2n + 2), n > - 1 ;

f Wn on (2n - 1/2, 2n + 3/2), n^O.and
(2) for w £ H, wij) — <

( e o n ( -1 , -1/2) .

Note that for each n ^ 0, the diagram with base point a n arising from wnil> coincides
with that arising from the original wn<f>n, making t/> faithful.

Moreover, all the points from the various diagrams (and also the points —3/4 and
—1/4) lie in the same orbit of (G*H)ili. At present Hi/) is the identity action on
(—1, —1/2), but we change this (and define Hrj> also on (—oo, —1/2)) by choosing v

in accordance with

CLAIM 1. There is a representation v of H on (—oo, —1/2) such that for each
integer m > 0 (here exists hm £ H for which (—m)(hmv) = — m — 1 and such that
—3/4 lies in the same orbit of Hv as do the nonnegative integers.

PROOF: First pick a representation 9 of H on Q such that O(h-i0) < 0 for some
hi £ H. Discarding the rationals below inf (0(HO)), we may assume that inf (0(HO)) =

—oo, and similarly that sup(O(H0)) = +oo. Since inf (0(H0)) = —oo, we can pick
/i2> h.3, • • • £ H such that

(0(M) • • • {hi6))(hi+i8) < 0 (M) • • • ( M ) , * = 1, 2, . . . ,

and such that this decreasing sequence of points approaches - c o . Finally, transfer 6

to a representation of H on (—oo, —1/2) via a chain isomorphism 02 from Q onto
( - o o , - l / 2 ) such that

f O02 = - 3 / 4 , and
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[11] Highly transitive representations 29

Having chosen v as in Claim 1, we redefine rj>H on (—oo, —1/2) to agree with v,
and redefine i(> accordingly. (This preserves the properties of ij> arranged above.) Since
all diagram points h'e in the same orbit of (G * H)i/> as —3/4 which in turn lies in the
same orbit as all negative integers, we have linkage.

HIGH ORDER-TRANSITIVITY. Let kv — hx...hp G H. We have (-l)(Jbp^) =

We enumerate the set of pairs of n-tuples a\ < ... < ctn and /?i < . . . < /?„ of

rationals below — 1 . Let m0 — —1. For the first pair ( a i , . . . , a n j ) , (/?i, . . . , / ? n i ) , we

pick pj large enough that /3n i kPl < ai, and we pick an integer mi < /?i (kPl ifr). Then

we use Claim 2 to pick a representation £i of G on (mi, mo) such that e*i(<7i£i) =

V0> * = l , - - . , n i , for some g! G G. We have ai{giCi){^i>) = A , * =

CLAIM 2 . Let ai < . . . < <rn < T\ < . . . < rn G Q. Tien there is a representa-

tion £ of G on Q such that Ti(g£) = <rt-, i — 1, . . . , n, for some g £ G.

PROOF OF CLAIM: First, pick a representation 9 of G on Q such that 0(g0) < 0
for some g G G. Then pick T[ < ... < r'n strictly between 0(g0) and 0, and let
o\ — T[{gO), i — 1, . . . , n . Then <r'n < T[ . Transfer 0 to a map ( of G on Q via a
chain automorphism of Q that maps <J\ to <r< and T\ to rt-, i — 1, . . . , n . D

For the next pair (pi, ..., /xn j) , (i/i, . . . , unj), we pick q2 large enough that
/Jn2(fc,2V>) < "H and then p2 large enough that i'nj(fcpaV') < M i ^ j ^ ) ) a n ^ we pick
an integer m2 < vi{kP7ij>). We now use Claim 2 to pick a representation £2 of G on
(m2, m ^ such that iii(kn^)(g2C2) = ".(kpaVO. t = 1, . . . , n2 , for some g2 G G. We
have

( f c V) (6 ) ( f cp ,V I )~ 1 = î» i = 1, . . . , n2 .

We continue in this fashion. Then we define if>a on (—oo, —1) to agree with £n

on ( m n + i , mn), n = 1, 2, . . . , and to preserve order.

SYNTHESIS. Finally, we define ip to be the unique (faithful, order-preserving) extension

of i/>G and ij}H to a representation of G * H on Q. D

5. F R E E PRODUCTS ON N

PROOF OF THEOREM D: Pick fceff having infinite order.

FAITHFULNESS AND LINKAGE. Let A be any (fc)-orbit in the right regular representa-
tion of H. The action of (h) on A is the regular representation (Z, Z) of the integers.
Pick 6 G A, and order A by setting Sh < 6h if and only if m ^ n (so that h moves
these points downwards). Let O be the set of such orbits A, including if necessary mul-
tiple pairwise disjoint copies of them in order to make card(O) = Ho . Choose any order
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of the union of the orbits (including multiple copies) in O which extends the orders on
the individual A's and produces a copy Q of the rationale in which each A is a coset
of Z. This gives an action (j>H of H on Q for which a (h<f>H) = a — 1 for all a G Q.
This action (and the other actions of H yet to be specified) will remain unchanged
throughout the proof, whereas actions of G will often be changed. Temporarily, let <f>a

be the identity action of G on Q.
Index O by N x N and from each A £ O pick one special point 6A £ A (~lQ+. Let

Si consist of those special points indexed by pairs (i, n), n € N.
Pick e^gtG.
Enumerate the nonidentity elements of G * H as WQ, WI, ... (written in reduced

form). For each i ̂  0, let I \ be a copy of the set G*B (with the I\ 's pairwise disjoint
and disjoint from Q), and let 0< be the right regular representation of G * H on I \ .
Pick n; ^ 1 sufficiently large that (tig) is not an initial subword of iu<, and let A;
consist of those points of F< which end in a power (hg~) of Kg with n ̂  nj (the special
points of Ti). Card(Aj) = No, and we put A,- into one-to-one correspondence with Ej.

In order to make I\ interact with Q, we change the restriction Bf = Si \ G of the
action of G * H on T{ and also the identity action <f>f = <f>a \ Sj of G on E;. We
do this by interchanging each special point in A,- C I\ with the corresponding special
point in £,• C Q + . (For any one pair of corresponding special points, this interchange
amounts to conjugation of Of1 U^f by the transposition that interchanges those special
points.) This new action ij)f of G on Ti U E,- fixes all points in A< C I\ but moves the
points in Ê  C Q+.

Let V>° denote the union of the actions rjif, with ipG the identity action on the
nonspecial points of Q+ and (temporarily) on Q~ U {0}. This action of G on il+ =
Q + u U i r< w i l 1 n o t b e further changed. Let i/>H = ^"ujj,- (#» I B). Let V> be the unique
extension of %j>a and i>H to a representation of G*H on Q = Q-U{0}un+ = QU(Ji ^ .

Write Wi (in reduced form) as Wj = wn ... Win (wij 6GU H). Pick any IUJJ ,
and let W? — w^j be the initial subowrd of to; preceding w^. Let e< denote the
identity element in Ti. We have ei(w*8i) = to,* because 0i is just the right regular
representation of G * H. Then

because ei(w*8i) and ei[w*0i)(wij8i) are initial words of Wi and so are not special
elements in A; C Ti. Hence

ei(wii/>) = ei(wi9i) ̂  e,- for every t.

Therefore the representation i/) is faithful.
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For the linkage, we want to know that given any ax, ..., an € fl+, there exists
Jfc G G * H such that all points a{(kip) belong to Q + (or maybe Q~). Then since
a(hip) — a — 1 for a G Q, following ifê  by a suitable power of hip will move all a, 's
into Q~. For this, it suffices to show

CLAIM 1 . Given any /3 G fl+, there exists mp such that 0((hip)(grl>))m G Q
for all m ^ mp.

PROOF OF CLAIM: First, suppose /? G I\- \ Aj. As we multiply 0 € G *H on the

right alternately by h (first), then g~, then H, then ~g, ..., there must be a first time

that we obtain an element of A;.

If this first occurs upon multiplication by ~g, we have rh G I \ \ A< but TK§ G A,-

for some r — f3(Kg) (r ^ 0), with )3u G T; \ Aj for all initial words u of (Kg) . Then

and T{K%I)) = T ( A ^ ) = rh;

also (~rh)(g~9i) = rhg,

but (rK)(gil>) = *,

where a is the special point in Sj C Q+ corresponding to rhg G A<. Further alternate

applications of hip and g~ip keep <r in Q. This is because each orbit of (hip) in Q

contains just one special point, and because ~§T\> fixes all nonspecial points of Q. This

establishes the claim for this case.

If the first time we obtain an element of Aj occurs upon multiplication by h

(possible because of cancellation involving w), then for some T = fiQig) we have

T£Ti\Ai but TH G Ai. We have

Since we did not change 0< | H,

( ) () = rh.

Since in the original representation, TjipG fixes the special point in Ej corresponding
to rh G Ai, g~tp fixes rh, so unfortunately Th(g~ij>) £ Q. However, we continue to
apply to Th(Jjij)) alternately hip, g~i}>, hip, ~gip, ..., which multiplies rh alternately by
h,9,h,^,..., until we again obtain an element of A;. If this occurs upon multiplication
by ~g, we proceed as first case; if it occurs upon multiplication by h, we continue this
process. Eventually no more cancellation with w occurs. After that, if multiplication
by h gives us an element of Aj, then multiplication by ~g gives us an element of I \ \ Aj
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(by the definition of A;), and finally the next multiplication giving us an element of A,-
must be by ~g (again by the definition of Aj), and we axe done.

Next, if /? £ A,-, then {ih € F< \ A< and f3h~g £ Aj, and we apply the first paragraph
of the proof.

Finally, suppose that /? G Q~, but that some P((hrj))(g^))r lies in some I \ . By

what has already been shown, P((hil>)(^i/>)) ((h^)(sVO) e Q f°r sufficiently large

D
HIGH ORDER-TRANSITIVITY. We need to specify V>° on Q~ so that for any two
n-tuples (<*!, . . . , an) and (/?i, . . . , /3n) of distinct points of Q~ , there exists / € G*H

such that a i ( / ^ ) =/?,-, i = 1, . . . , n . Clearly it suffices to treat the case in which the
f3i 's are distinct from the on's.

We enumerate the set of pairs of such n-tuples. Let mi = 0. For the first pair
(c*i, . . . , ani), (ft, . . . , /?„,), we pick an integer mi < min{ai, . . . , aB l , /?i, ..., / ? n i } .
We use the following Claim 2 to pick a representation £i of G o n (mi> mo) such that
«»(Ki) = /3i, * = 1, . . . , n i .

CLAIM 2 . There is a representation £ of G on [mi, mo), not necessarily order-

preserving, such that a^TjQ = fa, i = 1 , . . . , n\.

PROOF OF CLAIM: Partition [mi,m0) into n\ countable subsets I I i , . . . , I I n i ,
with ai, Pi 6 Hi. In the right regular representation (G, G) of G, ~g moves some a
to some f3 ̂  a . For each i = 1, . . . , n i , establish a correspondence between the (finite
or countable) set G and some subset of Hi such that a <-> a< and /? «-• /?;. Use these
correspondences to transfer ni copies of (G, G) to obtain the desired £ (letting the
action be the identity on points of [mi, mo) not involved in the correspondences). U

For the second pair (/xx, . . . , /xnj ), (i/i, . . . , unj), we pick

m2 <min{^i - m i , . . . , [Mni - m i , ^i - m i , . . . , i/n, - m i } ,

and use Claim 2 to pick a representation & of G on [m2, mi) for which

Then we have

Vi(hrl>)mi(K2)(h1>ymi =vu t = 1, . . . . n, .

We continue in this fashion. Then we define ipG so that for all g G G, 5^° = ffCi
on [m,-, m,_i) , i = 1, 2, 3, . . . , and so that gij)G acts as before on fi+.

SYNTHESIS. Finally, we let ^ be the unique (faithful, highly transitive) representation

ofG + S o n f i which extends V>° and ^M. D

Not every free product of groups which are at most countable can be represented

as in Theorem D. Specifically, Z2 * ~L2 cannot:
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PROPOSITION 4 . Let G be a group generated by two elements of order two.
Then G has no doubly transitive representation on N, not even a nonfaithful represen-
tation.

PROOF: Let G = (g, h), with g and h of order 2. Suppose by way of contradiction
that G is a doubly transitive representation of G on N. The permutation g~ consists
of transformations (1, 1'), (2, 2'), . . . , and (maybe) fixed points, as does h.

Consider first the case in which g~ has no fixed points.

3 * 4

9
•

9

Figure 6. The cycles of g~.

We trace a "path" P of points beginning at 1. Unless l/i = 1, so that the path
terminates with only the one point 1, the next point is "new" (not 1 or 1') because G
has no proper fixed blocks. With no loss of generality, lh = 2. Unless 2'h = 2', causing
termination, 2'h must be new (not 1 or 2 because h is one-to-one, not 1' because
{1, 1', 2, 2'} would be a fixed block of G). With no loss of generality, 2'h = 3 ' . Again
unless 3/i = 3, 3/i must be new (not 1, 1', 2, 2', 3, 3'). Continuing in this fashion, we
obtain a (possibly finite) set P of points.

We trace a similar path P' starting at 1'. P and P' have no point in common
because h is one-to-one. Let the points of P' be 1', n[, ni , n.2, n'2, ... (perhaps ter-
minating). Then ? U P' is a fixed block of N and thus all of N, and the set of primed
points of N and the set of unprimed points of N both form blocks of G, in violation
of double transitivity.

Now suppose g has at least one fixed point a.
We trace a path P beginning at a. Now ah cannot be fixed by 'g, and with no loss of
generality ah = 1, the next point in P. Also l'h must be new (not a, 1, 1') and not
fixed by g~; with no loss of generality l'h — 2. This infinite path P, being a block of
G, must be all of N (so that a is the only fixed point of g~). But the action of (g, h)
on P is not doubly transitive—since every w 6 G is a string of alternating «j's and
/i's, only e and ^ fix a. D
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Perhaps other
fixed points of g

2'

Transpositions of g

Figure 7. The cycles of g~.

6. FREE LATTICE-ORDERED GROUPS

Many of the ideas in the preceding proofs came from earlier work by the authors
on free lattice-ordered groups. Here we give a brief description of the free ^-group Lv

of rank 7/, followed by some new results about free ^-groups which grew out of our
research on free groups, completing the circle. The expository article [9] is a good
source of further information, and familarity with it is assumed in the proofs.

In the free ^-group Lv on a set x , the subgroup generataed by x is a copy of Fv.
Each t i ) 6 l , can be expressed as w = V{ / \ . Wij, a finite supremum of finite infima of
group words (though this expression is far from unique).

For 2 < r) ^ No, Lv can be faithfully represented as a highly order-transitive
(-permutation group Lv on Q, meaning that Lv is an l-group of order-preserving
permutations of Q under the pointwise order

f « ( / V g) - max{a/, ag},

\ a ( / Aj) = min{a/, ag}.

The orbits aFv and aLv must coincide, so Fv must be transitive on Q. Must Fv

(can Fv) be highly order-transitive? The range of possible behaviours is extreme:

THEOREM 5 . Ln (2 ^ r\ ̂  Ho) can be faithfully represented as a highly order-
transitive (.-permutation group Lv on Q in each of the following fashions:

(1) Fv is highly transitive on Q (and it can be further arranged that Theorem
A4 hold for Fv).

(2) Fv is uniquely transitive on Q.

PROOF: For the first part of (1), proceed as in the proof of Theorem A, but arrange
the faithfulness of Lv by including in the enumeration a diagram (see [9]) for each t-
group word.

https://doi.org/10.1017/S0004972700028744 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028744


[17] Highly transitive representations 35

To prove the rest of (1), we elaborate on the proof of Theorem A4. We arrange
high order-transitivity as in that proof (but setting at = a — 1 only for a < 0), and
arrange faithfulness as in the preceding paragraph. This time we include t-arrows in
V. At the beginning of the induction, the only arrows having ends in T are t-arrows,
so there are no loops involving points in T; we need to avoid ever creating a first such
loop. This can be done as before, since even for t-arrows there must exist A and p as
before whenever a new t-arrow actually needs to be defined.

(2) follows from [8, Theorem 3], which says that Fv has a right ordering (i*1,,, ^)
which gives a chain isomorphic to Q and for which the right regular representation of
Fv can be extended to a faithful highly order-transitive representation of Lv. U

Added in Proof: Steven Gunhouse has recently proved that if G and H are countable
or finite, then G * H has a faithful highly transitive representation unless G — H =
Z2. This, and most of the results of this paper, have been independently obtained by
Kenneth K. Hickin (unpublished) by completely different techniques.

REFERENCES

[1] J.D. Dixon, 'Most finitely generated permutation groups are free', Bull. London Math.
Soc. 22 (1990), 222-226.

[2] L. Fuchs, Partially ordered algebraic systems (Pergamon Press, New York, 1963).
[3] A.M.W. Glass, 'Free products of lattice-ordered groups', Proc. Amer. Math. Soc. 101

(1987), 11-16.
[4] W.C. Holland, 'The lattice-ordered group of automorphisms of an ordered set', Michigan

Math. J. 10 (1963), 399-408.
[5] W.C. Holland, 'Group equations which hold in lattice-ordered groups', Sympos. Math. 21

(1977), 365-378.
[6] S.H. McCleary, 'O-primitive ordered permutation groups II", Pacific J. Math. 49 (1973),

431-443.
[7] S.H. McCleary, 'Free lattice-ordered groups represented as o-2-transitive /-permutation

groups', Trans. Amer. Math. Soc. 290 (1985), 69-79.
[8] S.H. McCleary, 'An even better representation for free lattice-ordered groups', Trans.

Amer. Math. Soc. 290 (1985), 81-100.
[9] S.H. McCleary, 'Free lattice-ordered groups', in Lattice-ordered groups: advances and

techniques, Editors A.M.W. Glass and W.C. Holland, pp. 206-227 (Kluwer Academic
Publishers, Dordrecht, 1989).

[10] T.P. McDonough, 'A permutation representation of a free group', Quart. J. Math. Oxford
Ser 2 28 (1977), 353-356.

[11] R.B. Mura and A. Rhemtulla, Orderable groups (Marcel Dekker, New York, 1977).
[12] S. White, 'The group generated by J H I + 1 and x i-» x" is free', J. Algebra 118 (1988),

408-422.

https://doi.org/10.1017/S0004972700028744 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028744


36 A.M.W. Glass and S.H. McCleary [18]

Mathematics and Statistics Department
Bowling Green State University
Bowling Green, Ohio 43403
United States of America

https://doi.org/10.1017/S0004972700028744 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028744

