- \triangle IS POSITIVE DEFINITE ON A "SPINY URCHIN"

Robert A. Adams*

In a recent note [3] in this department C. Clark has shown that Rellich's theorem on the compactness of the imbedding $H_{0}^{1}(G) \rightarrow L^{2}(G)$ is valid if G is the "spiny urchin" domain obtained by removing from the plane the union of the sets $S_{k}(k=1,2, \ldots)$ defined in polar coordinates by

$$
S_{k}=\{(r, \theta): r \geq k, \quad \theta=n \pi / 2 k, \quad n=1,2, \ldots, 4 k\} .
$$

It follows that the eigenvalue problem

$$
\left\{\begin{align*}
-\Delta u & =\lambda u \text { in } G \tag{1}\\
u & =0 \text { on bdry } G
\end{align*}\right.
$$

has a discrete spectrum. We can show further that

$$
-\int_{G} \Delta \phi \bar{\phi} \mathrm{dx} \geq \mathrm{C}\|\phi\|_{1, G}^{2}, \quad C>0
$$

where $\|\phi\|_{1, G}^{2}=\|\phi\|_{0, G}^{2}+|\phi|_{1, G}^{2},\|.\|_{0, G}$ being the norm in $L^{2}(G)$, and $|\phi|_{1, G}^{2}=\|\partial \phi / \partial x\|_{0, G}^{2}+\|\partial \phi / \partial y\|_{0, G}^{2}$. In particular, the generalized Dirichlet problem for $-\Delta$ has a unique solution and all the eigenvalues of (1) are positive. Since $-\int_{G} \Delta \phi \bar{d} d x=|\phi|_{1, G}^{2}$ the above result is an immediate consequence of the

THEOREM. The norms $|\cdot|_{1, G}$ and $\|\cdot\|_{1, G}$ are equivalent in $H_{0}^{1}(G)$.

[^0]Proof. We must show that $\|\phi\|_{0, G} \leq$ const. $|\phi|_{1, G}$ (Poincaré's inequality) for all $\phi \in C_{o}^{\infty}(G)$. If $G_{R}=\{x \in G:|x| \geq R\}$, Clark shows in [3] that if $R \geq 1$ then

$$
\begin{equation*}
\|\phi\|_{0, G_{R}} \leq C(R)\|\phi\|_{1, G} \tag{2}
\end{equation*}
$$

We require (2) only for $R=1$. To obtain the remaining part of Poincaré's inequality, namely
(3) $\|\phi\|_{0, B} \leq$ const. $|\phi|_{1, G}, \quad B=\{x \in G:|x| \leq 1\}$,
let us take a new origin at the point $(2,0)$ and use polar coordinates (r, θ) with respect to this point. Then B is contained in the annulus $\mathrm{A}=\{(\mathrm{r}, \theta): 1 \leq \mathrm{r} \leq 3,0 \leq \theta \leq 2 \pi\}$. Since ϕ vanishes on $\theta=0,1 \leq r \leq 3$ we have

$$
\phi(r, \theta)=\int_{0}^{\theta} \frac{\partial}{\partial \gamma}(r, \gamma) d \gamma .
$$

Hence by Schwarz's inequality

$$
\begin{aligned}
\int_{B}|\phi(x)|^{2} d x & \leq \int_{1}^{3} r d r \int_{0}^{2 \pi}|\phi(r, \theta)|^{2} d \theta \\
& \leq \int_{1}^{3} r d r \cdot 2 \pi \int_{0}^{2 \pi} d \theta \int_{0}^{2 \pi}\left|\frac{\partial}{\partial \gamma} \phi(r, \gamma)\right|^{2} d \gamma \\
& \leq 4 \pi^{2} \int_{A}\left|\frac{\partial}{\partial \gamma} \phi\right|^{2} d x
\end{aligned}
$$

Since $\left|\frac{\partial}{\partial \gamma} \phi(r, \gamma)\right|^{2} \leq$ const. $r^{2}\left(\left|\frac{\partial \phi}{\partial \mathrm{x}}\right|^{2}+\left|\frac{\partial \phi}{\partial \mathrm{y}}\right|^{2}\right)$ (3) follows at once.

One clearly does not require in this proof the fact that G is quasibounded. The proof remains the same if G is replaced by the less prickly set obtained by removing from the plane the union of the sets $T_{k}(k=1,2, \ldots)$ defined in polar coordinates by

$$
\mathrm{T}_{\mathrm{k}}=\left\{(\mathrm{r}, \theta): \mathrm{r} \geq \mathrm{k}^{2}, \theta=\mathrm{n} \pi / 2 \mathrm{k}, \mathrm{n}=1,2, \ldots, 4 \mathrm{k}\right\}
$$

though the eigenvalue problem (1) need not have a discrete spectrum in this case.

The method used above can be extended to yield theorems on the equivalence of norms in the Sobolev space $W_{o}^{m, p}(G)$ for a large class of domains G for which dist ($x, b d r y G$) remains bounded as x tends to infinity in G. For such spaces some preliminary inequalities similar to (2) may be found in [1] and [2] where they are used to prove compactness theorems for imbeddings of $\mathrm{W}_{\mathrm{o}}^{\mathrm{m}, \mathrm{p}}(\mathrm{G})$.

REFERENCES

1. R.A. Adams, The Rellich-Kondrachov theorem for unbounded domains. Archive Rat. Mech. Anal. 29 (1968) 390-394.
2. R.A. Adams, Compact imbedding theorems for quasibounded domains (to appear).
3. C. W. Clark, Rellich's embedding theorem for a "spiny urchin". Can. Math. Bull. 10 (1967) 731-734.

University of British Columbia

[^0]: *Research sponsored by Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant Nr. AFOSR-68-1531.

