ZERO SQUARE NEAR-RINGS

PATRICIA JONES

(Received 27 February 1990)

Communicated by B. J. Gardner

Abstract

The purpose of this paper is to provide examples and explore properties of a wide variety of zero square (left) near rings. Among the main results are complete classifications of (i) finite Abelian groups which are the additive group of a zero square near-ring and (ii) finite non-Abelian groups which support 3-nilpotent distributive zero square near-rings.

1991 Mathematics subject classification (Amer. Math. Soc.) 16 A 76.

1. Introduction and preliminaries

Zero square near-rings having both distributive properties were considered by Heatherly in [3]. He gave examples, explored nilpotency and properties of the additive groups of such near-rings, and raised the question of whether all zero square near-rings are right distributive. The present author [5] answered Heatherly's question by giving an example of a non-distributive zero square near-ring on the dihedral group of order eight. More recently, Feigelstock [1] has provided several examples of both Abelian and non-Abelian zero square near-rings which are not right distributive.

In this paper we will show that there is an abundance of zero square nearrings (distributive, pseudo-distributive, and neither) having a wide variety of additive groups. Complete classifications are given for finite Abelian groups which are the additive group of a zero square near-ring, and for non-Abelian groups which support 3-nilpotent distributive zero square near-rings. We also show that any zero square near-rings with cyclic addition is 3-nilpotent, and

^{© 1991} Australian Mathematical Society 0263-6115/91 \$A2.00 + 0.00

we provide several necessity conditions for a non-distributive distributively generated zero square near-ring.

Throughout the paper ZS near-ring will denote a left near-ring, which is not a ring, in which $x^2 = 0$ for all x and $xy \neq 0$ for some xy. These basic properties of such a near-ring are trivial to verify.

LEMMA 1.1. If N is a ZS near-ring, then

- (i) N is zero-symmetric;
- (ii) xyx = 0 for all $x, y \in N$;
- (iii) If $x \neq 0$ and $y \neq 0$, then $xy \neq x$ and $xy \neq y$.

If N is a near-ring and $x \in N$, x is called a right-distributive element if (a+b)x = ax + bx for every $a, b \in N$. N is a distributive near-ring if all its elements are right distributive, and N is distributively generated (d.g.) if N^+ is generated by a set of right distributive elements [7]. N is pseudo-distributive if (ab+cd)x = abx + cdx and ab+cd = ab for all $a, b, c, d, x \in N$ [4]. A near-ring is Abelian if its additive group is Abelian.

2. Abelian zero square near-rings

It is well known that distributive or distributively generated near-rings with Abelian additive groups are rings. But pseudo-distributive near-rings which are not rings can be Abelian. In this section we classify finite Abelian groups which support non-pseudo-distributive ZS near-rings. We also show that every ZS near-rings with cyclic addition is 3-nilpotent, and give examples of both pseudo-distributive and non-pseudo-distributive ZS near-rings defined on cyclic and non-cyclic groups.

THEOREM 2.1. The cyclic group of order n is the additive group of a ZS near-ring if and only if $n = p^2m$ for some prime p and m > 1.

PROOF. (i) Let N be a ZS near-ring of order n with $N^+ = \langle x \rangle$. Since $N^2 \neq 0$ and x(mx) = 0 for every $m \in Z$, there exist distinct positive integers j, k < n such that (jx)x = kx. Then (jx)(jx) = jkx = 0. So n|jk. Also notice that

$$[(jx)(jx)]x = 0 = (jx)[(jx)x] = (jx)(kx) = k^2x.$$

This implies $n|k^2$. But $n \nmid k$; hence n is not square-free.

Now suppose $n = p^2$. Since p|j, p|k, $j < p^2$, and $k < p^2$, we can write j = ap and k = bp for positive integers a, b < p. Therefore, there

exists a positive integer c < p such that $bc \equiv 1 \pmod{p}$. Let cb = rp + 1 for $0 \le r < p$. Then

$$(apx)(cax) = cabpx = (rp+1)(apx) = rp^{2}ax + apx = apx,$$

which gives us the contradiction

$$[(apx)(cax)](cax) \neq (apx)[(cax)(cax)].$$

(ii) Let $n = p^2 m$ for some prime p and some integer m > 1, and let $N^+ = \langle x \rangle$ be the cyclic group of order n. Define multiplication on N^+ by

$$(px)(jx) = jpmx$$
 and $(rx)(jx) = 0$ for $r \neq p$.

It is routine to check that $(N, +, \cdot)$ is a ZS near-ring.

The near-rings constructed in part (ii) above are pseudo-distributive and 3-nilpotent. We do not know whether all ZS near-rings with cyclic addition are pseudo-distributive, but they are all 3-nilpotent.

THEOREM 2.2. Every ZS near-ring with cyclic addition is 3-nilpotent.

PROOF. Let N be a ZS near-ring of order n with $N^+ = \langle x \rangle$. Suppose $(jx)(kx)(vx) \neq 0$ for positive integers j, k, v < n. Then $(jx)x = tx \neq 0$ and $(kx)x = mx \neq 0$. Hence $(jx)(tx) = t^2x = 0$ and $(kx)x = mx \neq 0$. Hence $(jx)(tx) = t^2x = 0$ and $(kx)(mx) = m^2x = 0$, which implies $n|t^2$ and $n|m^2$. Therefore, n|tm, giving us the contradiction

$$(jx)[(kx)(vx)] = (jx)(vmx) = tvmx = 0.$$

We now consider Abelian ZS near-rings with non-cyclic addition.

LEMMA 2.3. Let p and q be distinct primes. If $N\cong Z_{p^a}\oplus Z_{p^2}$ for $1\leq a\leq 2$, $N\cong Z_p\oplus Z_{pq}$, or $N\cong Z_p\oplus Z_p\oplus Z_p$, then N is the additive group of a ZS near-ring.

PROOF. (i) If $N = \langle x \rangle \oplus \langle y \rangle$ where $\langle x \rangle$ has order p^{α} and $\langle y \rangle$ has order p^{2} , define multiplication on N by

$$(x+y)(jx+ky) = kpy$$
 and $ab = 0$ if $a \neq (x+y)$.

(ii) If $N = \langle x \rangle \oplus \langle y \rangle$ where $\langle x \rangle$ has order p and $\langle y \rangle$ has order pq, let t be the smallest positive integer such that p|(q+t). Define multiplication on N by

$$(x+y)(jx+ky) = t(j-k)x - q(j-k)y$$
 and $ab = 0$ if $a \neq (x+y)$.

(iii) If $N=\langle x\rangle\oplus\langle y\rangle\oplus\langle z\rangle$ where each summand has order p, define multiplication on N by

$$x(jx + ky + mz) = kz$$
 and $ab = 0$ if $a \neq x$.

It is routine to verify that for each of these multiplications $(N, +, \cdot)$ is a ZS near-ring.

THEOREM 2.4. A non-cyclic Abelian group N is the additive group of a ZS near-ring if and only if N is not isomorphic to $Z_n \oplus Z_n$ for some prime p.

- PROOF. (i) If N is not isomorphic to $Z_p \oplus Z_p$, then N has a direct summand G such that $G \cong Z_{p^2m}$ for m > 1, $G \cong Z_{p^\alpha} \oplus Z_{p^2}$ for $1 \le \alpha \le 2$, $G \cong Z_p \oplus Z_{pq}$, or $G \cong Z_p \oplus Z_p \oplus Z_p \oplus Z_p$. It follows from Theorem 2.1 and Lemma 2.3 that G supports a ZS near-ring. Therefore, the direct sum of the ZS near-ring on G and the zero ring on N/G is a ZS near-ring with additive group isomorphic to N.
- (ii) Suppose N is a zero square near-ring and $N^+=\langle a\rangle\oplus\langle b\rangle$, where each summand has order p.

If (ja)a = ra + sb for some positive integer j < p and non-negative integers r, s < p, then (ja)(ja) = jra + jsb = 0. Therefore, r = s = 0. Now suppose (ja)b = ra + sb. Then

$$(ja)(ra+sb) = sra + s^2b = 0.$$

Hence r=s=0. By a similar argument, it can be shown that (jb)b=(jb)a=0. But since N does not have zero multiplication, there exist positive integers j, k < p and non-negative integers v, w < p such that $(ja+kb)(va+wb) \neq 0$. It follows that $(ja+kb)a=ma+nb \neq 0$ or $(ja+kb)b=ra+sb \neq 0$ for non-negative integers m, n, r, s < p.

If ma + nb = 0, then

$$(ja+kb)^2 = (ja+kb)(kb) = kra + ksb = 0$$

which implies r = s = 0. This contradiction gives us $ma + nb \neq 0$. The supposition that ra + sb = 0 results in the same contradiction. Therefore, $ma + nb \neq 0$ and $ra + sb \neq 0$.

If p = 2, then j = k = m = n = r = s = 1. But this implies that (a + b)a = a + b, which is impossible. So p > 2.

Notice that

$$(ja+kb)(ma+nb) = (m^2r + nr)a + (mn + ns)b = 0$$

and

$$(ja + kb)^{2} = (jm + kr)a + (jn + ks)b = 0.$$

Hence $m+s \equiv 0 \pmod{p}$, $m^2+nr \equiv 0 \pmod{p}$, and $im+kr \equiv 0 \pmod{p}$. Since p > 2, there exists a positive integer c < p such that $c \not\equiv$ $kn^{-1} \pmod{p}$. So

$$(jm + kr) \equiv c(nr + m^2) \equiv 0 \pmod{p},$$

and

$$jm - cm^2 \equiv cnr - kr \equiv (j - cm)m \equiv (cm - j)s \equiv (cn - k)r \pmod{p}.$$

Therefore, $(cm - j)r^{-1} \equiv (cn - k)s^{-1} \not\equiv 0 \pmod{p}$. Let $(j - cm)r^{-1} \equiv d \equiv (k - cn)s^{-1} \pmod{p}$. Now notice that

$$(ja+kb)(ca+db) = (cm+dr)a + (cn+ds)b$$

= $[cm+(j-cm)r^{-1}r]a + [cn+(k-cn)s^{-1}s]b = ja+kb$.

But this contradicts Lemma 1.1, hence N is not a ZS near-ring.

3. Non-Abelian ZS near-rings

First we consider distributive ZS near-rings. For any distributive nearring N, $A = \{a \in N \mid ax = xa = 0 \text{ for all } x \in N\}$ is an ideal containing N'. Heatherly [3] noted that whenever N^2 is not contained in A, then N/A is a non-trivial zero square ring; hence the limitations of order and nilpotency for zero square rings [8] are inherited by these near-rings. The commutator near-rings constructed by Heatherly on nilpotent-class-two groups and by Feigelstock [1] on generalized nil-2 groups are distributive ZS near-rings with $N^2 \subseteq A$. The next several results show that such near-rings can be defined on a wide variety of additive groups including all finite nilpotent groups and dihedral groups of order 8n for $n \ge 1$.

DEFINITION 3.1. A finite Abelian group G will be called kq-non-cyclic for some prime q and some positive integer k if, when G is written as the direct sum of cyclic groups of prime power order, at least k of the summands are q-groups.

THEOREM 3.2. A finite non-Abelian group N is the additive group of a 3nilpotent distributive ZS near-ring if and only if N has a normal subgroup A which contains N', there exists a prime p such that N/A is 2p-non-cyclic, and p||A|.

PROOF. (i) Let N be a non-Abelian group with properties described in the theorem, and let $t \in A$ be such that o(t) = p. Also let B and C be two summands of N/A which are p-groups, $N/A = B \oplus C \oplus G$, $x \in B$ such that $px \in A$, and $y \in C$ such that $py \in A$. Then every element of N can be uniquely written as jx + ky + g + a for positive integers $j, k \le p$, $g \in G$, and $a \in A$. Define multiplication in N by

$$(j_1x + k_1y + g_1 + a_1)(j_2x + k_2y + g_2 + a_2) = (j_1k_2 - j_2k_1)t.$$

It is routine to verify that $(N, +, \cdot)$ is a 3-nilpotent distributive ZS nearring.

(ii) Let N be a finite 3-nilpotent distributive ZS near-ring. Since N is non-trivial, there exists $x, y \in N$ such that $xy \neq 0$; hence there is a prime p such that p|(o(x), o(y)). It follows that p||A|, $x \notin A$, and $y \notin A$. Suppose x = jy + a for some integer j and some $a \in A$. Then xy = (jy + a)y = 0. This contradiction implies that $x \notin (jy + A)$ for every integer j. Therefore, x and y are in different cyclic summands of N/A, and each of these summands has order divisible by p. Hence N/A is 2p-non-cyclic.

COROLLARY 3.3. Every finite nilpotent group is the additive group of a distributive ZS near-ring.

PROOF. Let N be a finite nilpotent group. Then $N = S \oplus G$ where S is a non-Abelian Sylow p-subgroup. Let A be the Frattini subgroup of S. Then $S' \subseteq A$, $S' \neq 0$, and S/A is elementary abelian of order p^m with m > 1 [2, 6]. It follows that S/A is 2p-non-cyclic; so S is the additive group of a distributive ZS near-ring. The direct product of this near-ring and the zero ring on G is a distributive ZS near-ring with additive group N.

COROLLARY 3.4. A dihedral group of order 2n supports a distributive ZS near-ring if and only if 4|n.

PROOF. (i) Let N be a dihedral group of order 2n where 4|n. Then N' has an element of order two and $N/N'\cong Z_2\oplus Z_2$.

(ii) Let N be a dihedral group of order 2n where $4 \nmid n$. If n is even, $N/N' \cong Z_2 \oplus Z_2$, but N' has no element of order two. If n is odd, $N/N' \cong Z_2$. In either case N is not the additive group of a distributive ZS nearring.

The following example shows that there are non-abelian pseudo-distributive ZS near-rings which are not distributive.

EXAMPLE 3.5. Let N be a dihedral group of order 4k such that $N = \langle a, b \rangle$ where 2ka = 2b = 0. Every element of N can be uniquely written

as ja+mb for integers j, m where $0 \le j < 2k$ and $0 \le m \le 1$. So the following multiplication is well-defined on N

$$a(ja + b) = ka$$
 and $xy = 0$ otherwise.

It is routine to verify that with this multiplication N is a pseudo-distributive ZS near-ring. It is not right distributive since $(a+b)b \neq ab+b^2$.

Finally, we consider Feigelstock's question [1]: are there distributively generated ZS near-rings which are not distributive? Although the question remains open, the next theorem places several necessary conditions on such a near-ring.

The following lemmas are stated for reference; the proofs are trivial.

LEMMA 3.6. If N is a near-ring with N^+ generated by a set of right distributive elements whose products commute additively, then N is distributive.

LEMMA 3.7. If N is a near-ring and $a, b \in N$ with b right distributive, then (-a)b = a(-b) = -(ab).

LEMMA 3.8. If N is a ZS near-ring with right distributive elements a and b, then ab = -(ba).

Theorem 3.9. If N is a non-distributive ZS near-ring which is generated additively by a set D of right distributive elements, then

- (i) D contains at least three elements;
- (ii) if |N| is odd, then N is 3-nilpotent;
- (iii) for every $a, b, c \in D$, ca + (ab + cb) = (ab + cb) + ca.

PROOF. (i) Suppose $D = \{a, b\}$. Then the only products of elements of D are 0, ab, and ba. Since ab = -ba (Lemma 3.8), all products in D commute additively. Therefore, by Lemma 3.6, N is distributive.

(ii) Suppose N is k-nilpotent for k > 3. Then there exist $a, b, c \in D$ such that $abc \neq 0$. Also

$$(a+bc)(a+bc) = bca + abc = 0,$$

and

$$(ab+c)(ab+c) = cab + abc = 0.$$

Hence

$$bca = cab = (ca)b = (-b)ca = -(bca).$$

Thus bca has additive order two, which contradicts the fact that |N| is odd.

(iii) Let $a, b, c \in D$. Then

$$(a + b + c)(a + b + c) = ba + ca + ab + cb + ac + bc = 0.$$

Hence ca + ab + cb = ab + cb + ca.

References

- [1] Shalom Feigelstock, 'Generalized nil 2-groups and near-rings', *Indian J. Math.* 22 (1980), 99-103.
- [2] Marshall Hall, Jr., The theory of groups. (The MacMillan Co., New York, 1959).
- [3] Henry E. Heatherly, 'Distributive near-rings', Quart. J. Math. Oxford Ser. (2) 24 (1973), 63-70.
- [4] Henry E. Heatherly and Steve Ligh, 'Pseudo-distributive near-rings', Bull. Austral. Math. Soc. 12 (1975), 449-456.
- [5] Patricia Jones, *Distributive near-rings* (Thesis, University of Southwestern Louisiana, 1976).
- [6] A. G. Kurosh, Theory of groups, Vol. 1 (Chelsea, New York, 1960).
- [7] Günter Pilz, Near-rings (North Holland/American Elsevier, Amsterdam, 1977).
- [8] Richard P. Stanley, 'Zero Square Rings', Pacific J. Math. 30 (1969), 811-824.

University of Southwestern Louisiana Lafayette, Louisiana 70504 USA