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A generalized Banach-Mazur theorem

Martin Kleiber and W. J. Pervin

For every infinite cardinal a we let C. toe the set of all

a

real-valued continuous functions on a product of a closed unit

intervals with the supmetric. It is shown that C has

a

separability degree a . Further, the classical theorem of

Banach and Mazur is generalized by showing that every metric

space of separability degree a is isometric to a subspace of

The classical theorem of Banach and Mazur states that the space Ci

of all real-valued continuous functions defined on the closed unit interval

I = [0 j 1] is a universal separable metric space; i.e., every separable

metric space is isometric with some subset of C\ . In this paper we shall

obtain universal metric spaces for metric spaces which are not separable;

in particular, we shall obtain a family of spaces which are generalizations

of C\ and are universal for metric spaces with fixed separability degrees.

By a direct generalization of the proof of the fact that the space C\

is separable (see [2], p. 158) one can see that the space C of all

real-valued continuous functions on the product of n closed unit

intervals with the supmetric is separable. Let a be an infinite cardinal

number and let C be the set of all real-valued continuous functions ona
the product of a closed unit intervals with the supmetric.
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THEOREM A C has separability degree a .

Proof Let A be a set of cardinality a and for each finite subset

F of A let J_ = {t e J3 : Tr.fi; = 0 for all i € A - F) . Thus !„

£ % t

can be identified with the product of n closed unit intervals where n

is the cardinality of F . By our above remarks, we may let D be a

countable dense subset of C . If g e D , then g can be extended to a

continuous function g* on J by setting g* = g o ir where ir_, is the

projection onto !„ defined by TT it) = i* where ir.ft*; = 0 for
t t %

i e A - F and ir.fi*; = it-it) for i e F . Let ff denote the set of all

gr* so obtained. Now there are a finite subsets of A and for each of

these finite subsets F the corresponding D is countable. Thus the set

G has cardinality a.N = a . We shall show that G is dense in C, .

O a

Let f e C and e be a given positive number. Since J is a compact
d

uniform space with the product uniformity, / is uniformly continuous.

Therefore there exists a finite subset F of A and a positive real

number 6 with the property that if s , t ̂  r' are such that

I IT- (s) - TT • (t) I < 6 for i e F then I f(s) - fit) \ < e/2 . Now let

t e I* and let i* = vp(t) . Then | fit) - fit*) \ < e/2 . But t* e I f

and / | j _ S C1 where n = F . Therefore there exists an element g e D

such that | /fi*; - git*) | < e/2 and so

| fit) - f*it) | + | fit*) - git*) | < 2(e/2) = e . But we have

| /ft; - g*(t) | = | fit) - git*) | < e which shows that

sup | / - g* | < e .

We may now show that the space C, is universal for metric spaces of
a

separability degree a .

THEOREM B Every metric space of separability degree a is isometric

to a subspace of C .

Proof Let iX 3 d) be a metric space of separabil i ty degree a and

l e t P be a dense subset of X with P = a . Since a = H .a we may l e t
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A be a set of cardinality a and denote the elements of P by p. with

i 6 A and n a positive integer. If X is not discrete we may choose a

fixed point a e X - P and let wn.Cpk.) = dip1. , pk.) - d(pk. , q) . Using
1 3 i 0 3

the triangle inequality we obtain | W.(p.) | £ d(p. , q) so that
i j — i

0 < \l + wn.(p.) / d(pn- , q)\/2 < 1 . If in the middle expression in this
- I. •z- J •*- J -

last inequality we fix i 3 3 , and k and let n vary over the positive

integers, we have a sequence in I . It can be shown (see [2], p. 150)

that there exists a sequence of continuous functions V : I -*• I such that

if {e^} is a sequence in J then there exists a point t £ I such that

V (t) = a for every n . Therefore we can say that there exists a point

tk. . €1 such that v (tk .) = \l + wn.(pk.)/d(pn. , q)\/2 . Solving this
1,3 n 'Z-JJ (. 13 i )

equation we have wn.(pk.) = d(pn. , q) \2v (tk .) - 1 \. Let T be the set of
13 i K n "^'O )

all t. . . We then define for every n a real-valued function f on T
%i3

such that f1 (t. .) = wn.(p .) . Since u is continuous on J , f1 can
1,3 13 n

be extended to the closure of T and then extended linearly to the entire

interval J ; we denote this function again by f . We define

J-=J o TT. where i\. is the i-th projection from J . We shall now
1 1 i

show that sup I f\ - j. I = d(pH- , p •) for each i , j € A and positive
1 3 1* 3

integers n , k • Let t 6 J be such that ir,(t) = t-, for every

h e A . Then we have

) - fytmr) = f o u.(t
m
r) - /* 0 *.<%)

- dip) ,

" , v)> •
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On the other hand

fab - hth =
L 3 3d

% • <•*> •

Finally, if t € Ja is not of the form tm , then because of the linearity

of f1 and ^ we also have | fl(t) - j^.(t) \ < d(pn. , pk.) . Now let
1 3 - t 3

u be the mapping such that u(pH.) = fl . Then u is an isometry from P

to the set of all the f1. . We wish to extend u from P to X . If
1r

x € X , there exists a net {p. : 6 € A} in P converging to x . Since

{p.} converges, it is Cauchy. Therefore iu(p&)} is Cauchy since u is

an isometry on P . But u(Px) ^s always uniformly continuous so {w(p,J}

converges to a continuous function / € C . It is easy to see that /

does not depend on the choice of net converging to x . Finally,
sup | f - f | = d(x , y) for if {pJ -»• x and {p.} •*• y then

x y o A

{sup | u(p&) - u(px) | } = id(p& , p^)} converges to sup \ f - f \ •

Thus the isometry u can be extended from P to X .

If X is a separable metric space, then A in the above proof can be

taken to be a singleton. This would yield as a corollary the classical

theorem of Banach and Mazur (see [7], p.l87).
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