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Divergent Richtmyer–Meshkov instability on a
heavy gas layer
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Experiments on divergent Richtmyer–Meshkov (RM) instability at a heavy gas layer are
performed in a specially designed shock tube. A novel soap-film technique is extended to
generate gas layers with controllable thicknesses and shapes. An unperturbed gas layer is
first examined and its two interfaces are found to move uniformly at the early stage and be
decelerated later. A general one-dimensional theory applicable to an arbitrary-thickness
layer is established, which gives a good prediction of the layer motion in divergent
geometry. Then, six kinds of perturbed SF6 layers with various thicknesses and shapes
surrounded by air are examined. At the early stage, the amplitude growths of the inner
interface for various-thickness layers collapse quite well and also can be predicted by the
Bell model for cylindrical RM instability at a single interface, which indicates a negligible
interface coupling effect. Later, a rarefaction wave accelerates the inner interface, causing
a dramatic rise in the growth rate. It is found that a thicker gas layer will result in a larger
extent that the rarefaction wave can promote the instability growth. A modified Bell model
accounting for both Rayleigh–Taylor (RT) instability and interface stretching caused by a
rarefaction wave is established, which well reproduces the quick instability growth. At
late stages, reverberating waves inside the layer are negligibly weak such that the inner
interface growth is dominated by RM instability and RT stability. The major factors driving
the outer interface development are a compression wave and interface coupling. A new
interface coupling phenomenon existing uniquely in divergent geometry caused by the
gradual thinning of the gas layer is observed and also modelled.

Key words: shock waves, shear-flow instability

1. Introduction

The growth of perturbations at an interface between two fluids of different property,
driven by an external force or an acceleration field, is generally referred to as the
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Rayleigh–Taylor (RT) instability (Rayleigh 1883; Taylor 1950). A similar hydrodynamic
instability is the Richtmyer–Meshkov (RM) instability (Richtmyer 1960; Meshkov 1969),
which occurs when a perturbed interface is subjected to an impulsive force typically by a
shock wave. Although RM and RT instabilities share common evolution processes such
as the formation of bubbles (a light fluid rises into a heavy one) and spikes (a heavy
fluid falls freely into a light one), their perturbation growth rates are distinctly different.
Specifically, RT perturbation grows exponentially with time at the early stage and later at
a constant asymptotic growth rate, whereas RM perturbation grows linearly at the early
stage and later nonlinearly at a time-decaying growth rate. Over the past decades, RM
instability has attracted widespread attention due to its significance in academic research,
e.g. compressible turbulence (Mohaghar et al. 2019; Groom & Thornber 2021) and vortex
dynamics (Peng et al. 2021), as well as the important role in industrial fields such as inertial
confinement fusion (ICF) (Betti & Hurricane 2016).

In terms of the flow cross-section area, RM instability can be categorized into two
types: area-invariant RM instability and area-varied RM instability. The former usually
refers to planar shock-induced RM instability, which has been extensively studied by
experimentalists (Biamino et al. 2015; Reese et al. 2018; Liang et al. 2021; Sewell
et al. 2021), theorists (Richtmyer 1960; Zhang & Sohn 1997; Dimonte & Ramaprabhu
2010; Zhang & Guo 2016) and numerical experts (Schilling & Latini 2010; Lombardini,
Pullin & Meiron 2014; Wonga & Lelea 2017; Li et al. 2022). It is widely accepted
that pressure disturbance (caused by pressure waves behind the refracted shock) and
baroclinic vorticity (caused by the misalignment of pressure and density gradients)
are the major mechanisms for the growth of area-invariant RM instability (Brouillette
2002; Ranjan, Oakley & Bonazza 2011; Zhou 2017). Two typical representatives of
area-varied RM instability are convergent shock-induced RM instability (i.e. convergent
RM instability) (Vandenboomgaerde et al. 2018) and divergent shock-induced RM
instability (i.e. divergent RM instability) (Li et al. 2020). In addition to the flow
mechanisms of area-invariant RM instability, the area-varied counterpart involves new
physical regimes such as geometric contraction/expansion (Penney & Price 1945; Bell
1951; Plesset 1954; Epstein 2004) and RT stability/instability caused by flow deceleration
(Ding et al. 2017b; Luo et al. 2018), and thus presents more possibilities and complexities
for the instability growth.

Convergent RM instability, which involves an initial setting more relevant to
hydrodynamic instabilities in ICF, has become increasingly more attractive in recent
years. The first experiments on convergent RM instability were carried out by Hosseini,
Ogawa & Takayama (2000) in a vertical coaxial shock tube. This coaxial shock tube
was later improved by Si et al. (2015) and Lei et al. (2017), in which the development
of convergent RM instability at a polygonal/single-mode interface was obtained with a
high-speed imaging technique. Also, Dimotakis & Samtaney (2006) proposed a gas-lens
technique, with which cylindrically/spherically convergent shocks can be generated
through shock refraction (Biamino et al. 2015; Vandenboomgaerde et al. 2018). Based on
shock dynamics theory, a horizontal shock tube with a special wall profile that smoothly
transforms an initial planar shock into a cylindrical one was designed by Zhai et al.
(2010). Recently, clear observation of convergent RM instability was achieved (Ding et al.
2017b, 2019; Li et al. 2020) in a novel semi-annular shock tube, and the influences of
geometric contraction/expansion and RT instability/stability on the perturbation growth
were quantified.

The development of convergent RM instability usually involves two stages: a convergent
stage (i.e. instability growth after an incident convergent shock strikes the interface) and
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a divergent stage (i.e. instability growth after a divergent shock that is reflected from
the geometric centre impacts the deforming interface). Previous studies on convergent
RM instability were mainly focused on the convergent stage (Ding et al. 2017a;
Vandenboomgaerde et al. 2018; Ding et al. 2019) and little attention was paid to
the divergent stage. The main reasons are given below. First, the interface has been
severely distorted before the arrival of the divergent shock. Thus, it is very difficult to
accurately characterize the interface shape. Second, the pre-reshock flow field exhibits
strong non-uniformity along both radial and circumferential directions, which greatly
impedes the flow analysis. It is therefore highly desirable to conduct an experimental
study on divergent RM instability with controllable initial conditions, which is essential
for understanding the flow regimes at the divergent stage of convergent RM instability. In
addition, divergent RM instability is a good approximation of hydrodynamic instability
in supernova explosion (Arnett et al. 1989; Kuranz et al. 2018), where stellar collapse
produces a spherically divergent shock that passes across multi-layer elements, and thus
the relevant study is helpful for explaining the formation of supernova remnant (Miles et al.
2004; Ribeyre, Tikhonchuk & Bouquet 2004; Musci et al. 2020). Moreover, as another
typical representative of area-varied RM instability, study on divergent RM instability
would complete the fundamental understanding of area-varied RM instability.

A key issue for the experimental study of divergent RM instability is to generate a
stable, controllable, repeatable divergent shock wave. Based on shock dynamics theory,
Li et al. (2020) recently designed a novel divergent shock tube, in which ideal cylindrical
divergent shocks can be generated. The first shock-tube experiments on divergent RM
instability in this facility showed that the growth of divergent RM instability is much
slower than the planar and convergent counterparts, and also nonlinearity is far weaker.
Nevertheless, the fundamental configuration (a cylindrical shock impacts a single-mode
interface) considered by Li et al. (2020) is too simple to represent the instability
in practical applications such as ICF, where the instability occurs simultaneously on
multiple interfaces (the ICF target is usually composed of an outer ablator, middle
deuterium–tritium ice and inner deuterium–tritium gas). Recent studies on RM instability
at two interfaces in planar and convergent geometries showed that there are complex waves
reverberating between the two interfaces, which cause RT stability/instability (Henry de
Frahan, Movahed & Johnsen 2014; Liang et al. 2020; Sun et al. 2020; Liang & Luo 2021a,
2022). Particularly, in convergent geometry, two interfaces with various initial radii could
present different radial trajectories, and consequently geometric expansion and the RT
effect may behave differently (Ding et al. 2019). Moreover, for two adjacent interfaces,
the interface coupling effect becomes evident (Jacobs et al. 1995; Mikaelian 1995; Liang
et al. 2020), which considerably affects the instability development at each interface. To
the best of the authors’ knowledge, there is no published work on divergent RM instability
at multiple interfaces. In divergent geometry, the motions of interfaces and waves as well
as the interface coupling strength are distinctly different from the convergent and planar
counterparts, which would significantly affect the instability growth. This motivates the
present study.

In this work, we shall perform an experimental study on divergent RM instability at
an SF6 gas layer surrounded by air. Three kinds of unperturbed SF6 layers with various
thicknesses are first examined. By considering the influences of reverberating waves inside
the layer and pressure non-uniformity along the radial direction, a one-dimensional (1-D)
theory is established, which well describes the layer motion. Then, six types of perturbed
layers with various thicknesses, amplitudes and wavelengths of the inner interface are
examined. The influences of interface coupling and initial interface perturbation on the

959 A37-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

16
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.161


D. Zhang, J. Ding, T. Si and X. Luo

instability growth are analysed in detail. Finally, modified models accounting for the wave
influence and RT instability/stability are proposed to predict the instability growth at the
inner and outer interfaces of the layer.

2. Experimental methods

The experiments are carried out in a divergent shock tube that is designed based on
shock dynamics theory. A sketch of the curved part of the shock tube creating the
planar-convergent–planar-divergent shock transformations is shown in figure 1(a) (not
drawn to scale). The curved part has a designed length of 2100.0 mm (the whole shock
tube is 6400.0 mm long) and an inner height of 7.0 mm, and its left-hand end is connected
to the driven section. In experiment, a planar shock wave of Mach number (Ma) of 1.35 is
first generated after the rupture of the diaphragm between the driver and driven sections.
When this planar shock propagates along the concave wall AB, it is gradually transformed
to a cylindrical convergent shock. As time proceeds, the cylindrical shock converges along
the oblique wall BC with its strength being gradually enhanced. Later, it is converted back
into a planar one by the convex wall CD. This planar shock has an Ma of 1.71, which
is stronger than the incident planar shock (Zhan et al. 2018). Finally, the planar shock is
converted to a cylindrical divergent shock by the convex wall EF. Afterwards, the divergent
shock propagates outwards and subsequently collides with the downstream SF6 gas layer,
triggering the divergent RM instability. The design principle of the curved walls (AB and
CD) executing the planar-converging–planar shock transformation has been detailed and
also fully validated in previous works (Zhai et al. 2010; Zhan et al. 2018). In this work, we
generalize the same principle to the design of the convex wall EF for the planar-divergent
shock transformation. For more details, readers are referred to the recent work of Li et al.
(2020). A divergent shock releases energy and its strength becomes increasingly weaker
with time. To ensure the successful generation of a divergent shock, the initial planar shock
should be relatively strong. An advantage of the present design is to intensify the initial
planar shock, which is essential for producing the divergent shock. Specifically, compared
to a rectangular cross-section with the same inner dimension as the throat of the present
shock tube, the present design enables the generation of a stronger planar shock under the
same pressure ratio between the driver and driven sections. This could greatly reduce the
experimental difficulty for generating strong shocks and also extend the shock strength
range under the available experimental conditions.

A novel soap-film technique, which was recently developed for generating well-defined
single interfaces in a divergent shock tube (Li et al. 2020), is extended to generate gas
layers with controllable shapes in this work. As illustrated in figure 1(c), the gas layer is
formed in a device composed of sections I, II and III. These three sections are made up
of transparent acrylic plates (3 mm thick) sculpted by a high-precision engraving machine
and the shape of the whole device is precisely controlled so as to match with the divergent
test section. Due to the surface tension of soap film, it is difficult to generate a soap film
with a desired shape without any constraints or supports. This is the reason why spherical
soap bubbles can only be seen in nature. Fortunately, previous studies have found that
thin filaments can be used to constrain the soap film, changing its shape, and meanwhile
they produce a negligible influence on the flow (Liu et al. 2018; Li et al. 2020; Liang
& Luo 2021b). This provides a novel way to generate soap-film interfaces with desired
shapes. In this work, we use such a method to generate gas layers with two controllable
surfaces. Specifically, four grooves (0.75 mm thick and 0.5 mm wide) that present the same
shapes as the boundaries of the desired gas layer are engraved on the internal surfaces of
the upper and lower plates. Then, four thin filaments (1.0 mm thick and 0.5 mm wide)
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Figure 1. (a) Sketch of the curved part of the divergent shock tube, (b) an enlarged view of section II of the
interface-formation device and (c) a drawing of the interface-formation device.

with the same shapes as the grooves are respectively inserted into the four grooves to
produce the required constraints. The height of the filaments protruding into the flow
field is less than 0.3 mm and thus produces a negligible influence on the flow field. As
a rectangular frame dipped with soap solution (60 % distilled water, 20 % sodium oleate
and 20 % glycerin) is pulled along the upper and lower filaments on each side of section II,
a gas layer with two soap-film interfaces is immediately formed. Subsequently, sections
I, II and III are successively inserted into a predesigned drawer. Then, SF6 gas in a
balloon is pumped into section II through an inflow hole, and meanwhile air is exhausted
through an outflow hole. To ensure a high concentration of SF6 inside the layer, an oxygen
concentration detector is placed at the outflow hole to monitor the exhausted gas in real
time. When the oxygen concentration measured reaches the experimental requirement
(below 2 %), the drawer containing sections I, II and III is quickly inserted into the test
section and subsequently the experiment is conducted. Note the initial conditions of the
present experiments including the shock Mach number, the gas layer shape and the gas
concentration can be well controlled, which ensures the high repeatability of experimental
results. Hence, the data for each case presented hereinafter are from one experimental run.

In this work, the gas layer interface at a smaller radius is defined as the inner interface,
and the other one as the outer interface. In a cylindrical coordinate system, the inner
interface can be parametrized as r1(θ) = R01 + a01 cos(nθ + π). Here, R01 stands for the
initial radius of the inner interface (R01 = 150 mm in this work), n for the azimuthal
mode number (n = 24 or 36 is adopted for adapting to the test section), θ for the
azimuthal angle and a01 for the initial amplitude of the inner interface. The undisturbed
outer interface is described as r2(θ) = R02 with R02 being the initial radius of the outer
interface. The flow field is recorded by a high-speed schlieren system that is composed of a
high-speed video camera (FASTCAM SA5, Photron Limited), a DC stabilized light source
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Figure 2. (a) Sequences of schlieren images showing the movements of the unperturbed gas layers of different
thickness (d0) after the impact of a cylindrically divergent shock and (b) sketches of the wave patterns and
interface morphologies at typical moments for the d0 = 20 mm layer. The lines left behind at the initial interface
locations in panel (a), which are marked by white dot lines, indicate the protruding filaments. Here, II2 is the
initial outer interface; SI1, the shocked inner interface; SI2, the shocked outer interface; TSj, jth transmitted
shock; RSj, jth reflected shock; RW1, the rarefaction wave reflected from the outer interface; and CW1, the
compression wave reflected from the inner interface. The unit of numbers is μs.

(DCR III, SCHOTT North America, Inc.) and multiple optical lens groups. The frame rate
of the high-speed camera is set to be 50 000 f.p.s. with a shutter time of 1 μs. The spatial
resolution of the schlieren images obtained is 0.38 mm pixel−1. The ambient pressure and
temperature are approximately 101.3 kPa and 301.0 K, respectively.

3. Results and discussions

3.1. Quasi-1-D experimental results and analysis
Quasi-1-D experiments corresponding to an undisturbed cylindrical SF6 layer surrounded
by air impacted by a cylindrically divergent shock are first considered. Sequences of
schlieren images illustrating the movements of undisturbed SF6 layers with different
thicknesses (d0) are displayed in figure 2(a). Here, we take the d0 = 20 mm case as an
example to detail the motions of waves and interfaces. At the beginning, an incident
cylindrical shock (ICS) expands outwards and then impinges upon the inner interface
(II1) of the layer, bifurcating into an inward-moving reflected shock (RS1) and an
outward-moving transmitted shock (TS1). After that, the shocked inner interface (SI1)
starts moving and gradually leaves its original position. Meanwhile, the shock impact
causes the soap film to atomize into small droplets, resulting in the thickening of SI1
in the schlieren images (258 μs). The relationship between the size of the atomized
soap droplets and the incident shock strength has been investigated by Cohen (1991)
and Ranjan et al. (2008). According to their work, the mean radius of the soap droplets
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in the present experiment is estimated to be approximately 30 μm for the shock wave
of Ma ∼ 1.3. Previous studies on RM instability adopting such a soap-film technique
(Ding et al. 2017a; Liu et al. 2018) showed that the experimental results are in good
agreement with the numerical simulations and theoretical predictions, which indicates a
negligible influence of the soap droplets on the interface evolution. Later, the outgoing
TS1 collides with the initial outer interface (II2) of the layer, splitting into a second
transmitted shock (TS2) and an inward-moving rarefaction wave (RW1). During this
process, a weak reflected shock (RS2) is produced, which is caused by the interaction
of TS1 with the protruding filaments. This reflected shock has also been observed in
previous experiments (Vandenboomgaerde et al. 2018; Liang et al. 2020) and its influence
on the instability development was demonstrated to be negligible due to the weak strength.
Later, RW1 stretches and accelerates the shocked inner interface SI1. At the same time, an
outward-moving compression wave (CW1) is generated inside the layer (not visible in
schlieren images due to the weak intensity). Afterwards, CW1 compresses and accelerates
the shocked outer interface SI2, generating a second rarefaction wave (RW2), which later
interacts with SI1 again. The above wave propagation process would be repeated many
times inside the layer until the waves are negligibly weak. In this work, after CW1 passes
across SI2, the waves reverberating inside the gas layer are very weak and can be ignored.
The lines left behind at the initial interface locations in figure 2(a) indicate the protruding
filaments, which are marked by white dotted lines. Sketches of the waves and interfaces at
typical moments for the d0 = 20 mm case are given in figure 2(b). Differing from the layer
motion in planar and convergent geometries, the gas layer in divergent geometry becomes
increasingly thinner with time. Particularly, the inner and outer interfaces coalesce to one
at 888 μs for the d0 = 10 mm case. The time origin in this work is defined as the moment
at which the incident shock arrives at the mean position of the inner interface.

Although a gas concentration detector is adopted to measure the oxygen concentration of
the gas mixture exhausted from the outflow hole, it can only ensure a high concentration of
SF6 inside the layer rather than directly measuring the mass fraction of SF6. In this work,
we estimate the mass fraction of SF6 inside the layer using the following method. For a
planar shock impacting a flat light/heavy interface, the subsequent flow is composed of
four uniform regions separated by a reflected shock, a transmitted shock and the interface.
According to 1-D gas dynamics theory, we can establish relations for the flow parameters
on both sides of the reflected and transmitted shocks. With the compatibility relation at
the interface (i.e. velocity and pressure continuity), the following equation can be derived:

[
(Λ2 − 1) ρ1

(Λ1 − 1) ρ2

]1/2 Pt − 1

(PtΛ2 + 1)1/2 = Pi − 1

(PiΛ1 + 1)1/2 −
(

ρ1

ρ′
1

)1/2 Pt − Pi

(PtΛ1 + Pi)
1/2 , (3.1)

where
Λ1 = (γ1 + 1)/(γ1 − 1),

Λ2 = (γ2 + 1)/(γ2 − 1),

Pi = 1 + 2γ1/(γ1 + 1)
(

M2
i − 1

)
,

ρ1/ρ
′
1 = [(γ1 − 1)M2

i + 2]/[(γ1 + 1)M2
i ].

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.2)

Here, γ1 (γ2) and ρ1 (ρ2) refer to the specific heat ratio and the fluid density outside (inside)
the layer, respectively, Pi (Pt) to the pressure ratio across the incident shock (transmitted
shock), ρ′

1 to the fluid density behind the incident shock, and Mi to the Mach number of the
incident shock. In experiment, the gas outside the layer is pure air. The incident shock has a
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Figure 3. Trajectories of the inner and outer interfaces at (a) early and (b) late stages for unperturbed gas layers
with different thicknesses (d0 = 10 mm, 20 mm, 30 mm). A wave diagram is also included in panel (a). The
solid line in panel (a) refers to the prediction of 1-D theory of Liang & Luo (2021a). ICS, incident cylindrical
shock. The other symbols are the same as those in figure 2.

measured speed of 432.7 m s−1 before its collision with the inner interface, corresponding
to Mi = 1.26. The value of mass fraction is obtained by the iterative method via numerical
calculation. Specifically, giving an arbitrary initial value between 0 and 1 for the mass
fraction of SF6 inside the layer, the flow parameters inside the layer (e.g. ρ2 and γ2) can
be obtained. Substituting the known parameters into (3.1), the pressure ratio across the
transmitted shock (Pt) can be solved and then the strength of the transmitted shock is
available. If the calculated strength of the transmitted shock is stronger than the measured
one, the value of mass fraction is reduced; otherwise, it is increased. This process is
repeated many times until the calculated value is in good agreement with the measured one
(i.e. their difference is lower than 0.1 %). For the unperturbed case here, the mass fraction
of SF6 inside the layer is calculated to be 95.0 %. With this value, the flow velocity behind
TS1 is calculated to be 92.5 m s−1 based on gas dynamics theory, which agrees reasonably
with the experimental measurement (96.7 ± 1.4 m s−1). This demonstrates good reliability
of the present calculation method. Also, it indicates a negligible influence of soap droplets
on the flow. The inner and outer interface maintain a nearly cylindrical shape during
the experimental time, which indicates a limited influence of the boundary layer on the
interface movement.

Dimensionless variations of the displacements of the inner and outer interfaces with
time for all gas layers are plotted in figure 3. It is seen that both inner and outer interfaces
move uniformly at the early stage (before CW1 crosses the outer interface, figure 3a), but
decelerate continuously at the late stage (figure 3b). For the early-stage motion, time is
scaled as tVts/d0 with Vts being the initial speed of TS1 and the interface displacement
as (Ri − R01)/d0 with Ri being the average radius of interface i (i = 1 for inner interface
and i = 2 for outer interface). For the late-stage deceleration motion (figure 3b), time is
scaled as (t − tcw)�V∗

i /R01 with tcw being the moment at which CW1 encounters the outer
interface and �V∗

1 (�V∗
2 ) being the inner (outer) interface velocity after the impact of RW1

(CW1). The interface displacement is scaled as (Ri − Rcw
i )/R01 with Rcw

i being the radius
of interface i at tcw. Using the above normalization, the dimensionless displacements of
the inner (outer) interfaces of various-thickness layers converge at all stages. It indicates
that we can establish a general 1-D theory applicable to an arbitrary-thickness layer to
describe the motion of a shocked gas layer in divergent geometry. Note that the interface
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Divergent Richtmyer–Meshkov instability

thickness in schlieren images introduces the measurement uncertainty. At the early stage,
the interface occupies approximately three pixels, corresponding to the error bar of 1.1 mm.
Later, the interface becomes gradually thicker due to the influences of gas diffusion and
soap droplets, corresponding to the error bar of 2.3 mm. These error bars are smaller than
the size of the symbols in figure 3(a), and thus not visible.

We first consider the layer motion at the early stage. After the shock impact, the inner
interface SI1 moves at a constant velocity of 0.47, corresponding to a dimensional velocity
of �V1 = 96.7 m s−1. Later, RW1 accelerates the inner interface, and its dimensionless
velocity increases to 0.60 (corresponding to �V∗

1 = 125.1 m s−1). After the impact of TS1,
the outer interface SI2 speeds up quickly to 0.54 (corresponding to �V2 = 111.4 m s−1)
and later is further accelerated to 0.58 by CW1 (corresponding to �V∗

2 = 119.5 m s−1).
The present result indicates that the interface movement at the early stage is mainly
affected by reverberating waves inside the layer rather than geometric divergence. The
reason is that at the early stage, the two interfaces travel only a short distance in the radial
direction (approximately 22 mm) and thus geometric divergence produces a negligible
influence. Hence, we can employ the 1-D theory of Liang & Luo (2021a) developed for the
layer motion in planar geometry to predict the present gas layer motion. Considering there
is a visible velocity difference (δV = �V1 − �V2) between the inner and outer interfaces
(this ensures the mass conservation inside the layer), we introduce an average velocity for
the present gas layer, which is defined as V = (�V1 + �V2)/2. Then, the 1-D theory
of Liang & Luo (2021a) is adopted to calculate the average velocity of the gas layer.
Under the incompressible flow assumption, the velocity difference between the inner and
outer interfaces is δV = Vd/R with d and R being the thickness and average radius of
the layer, respectively. Provided with the values of δV and V , the velocities of the inner
and outer interfaces can be readily obtained. As shown in figure 3(a), good agreement
between theoretical prediction and experimental result for the trajectories of two interfaces
is obtained.

At late stages, the inner and outer interfaces decelerate evidently, as shown in figure 3(b).
This differs from the gas layer motion in planar geometry, where its two interfaces move
uniformly when the reverberating waves are far away. To understand such an interface
deceleration phenomenon, we consider 1-D Euler equations in a cylindrical coordinate
system, which are written as

Dρ

Dt
+ 1

r
∂(urr)

∂r
= 0,

Dur

Dt
+ 1

ρ

∂p
∂r

= 0.

⎫⎪⎪⎬
⎪⎪⎭ (3.3)

Here, ur refers to the velocity component in the radial direction, ρ to the density and p
to the pressure. The symbol D denotes the material derivative. At late stages when the
waves are far away from the gas layer, the flow can be assumed as incompressible (i.e.
Dρ/Dt = 0). Then, the mass conservation equation reduces to

∂(urr)
∂r

= 0. (3.4)

Further assuming the post-shock flow is steady, there is
D(urr)

Dt
= ∂(urr)

∂t
+ ur

∂(urr)
∂r

= 0. (3.5)

Solving (3.5), we get
ur = C/r, (3.6)
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where C is a constant independent of time and space. For an initial time t0 at which
ur(t0) = u0 and r(t0) = r0, there is C = u0r0. Then, the trajectory of a fluid element in
divergent geometry can be derived as

r =
[
r2

0 + 2C(t − t0)
]1/2

, (3.7)

and the velocity is

ur = C
[
r2

0 + 2C(t − t0)
]−1/2

. (3.8)

Equations (3.7) and (3.8) indicate that the increment of flow cross-section area can give
rise to flow deceleration, which is qualitatively consistent with the interface deceleration
observed in experiment. Nevertheless, (3.8) quantitatively underestimates the interface
velocity at late stages, as shown in figure 3(b). This may be ascribed to the steady flow
assumption adopted in our derivation process.

A key unsteady feature of the present flow is that the divergent shock becomes gradually
weaker with time, producing a positive pressure gradient behind the shock wave in the
radial direction. This may be a major factor causing the underestimation of (3.8). The
following description gives the details regarding the treatment of post-shock pressure
gradient. According to the Chester–Chisnell–Whitham (CCW) relation (Chester 1954;
Chisnell 1957; Whitham 1958), the Mach number of a cylindrically divergent shock
decreases with the radius r, which can be described as

2MdM
(M2 − 1)K(M)

+ dr
r

= 0, (3.9)

where

K(M) =
[(

1 + 2
γ + 1

1 − σ 2

σ

)
2σ + 1 + M−2

2

]−1

, (3.10)

with

σ =
√

[(γ − 1)M2 + 2]/[2γ M2 − (γ − 1)]. (3.11)

Here, γ is the specific heat ratio of the gas. Provided the initial shock strength (M = M0)
at r = r0, the divergent shock strength at an arbitrary time (or at an arbitrary position) can
be readily obtained with (3.9). According to Rankine–Hugoniot conditions, the post-shock
pressure can be calculated by

p2

p1
= 1 + 2γ

γ + 1
(M2 − 1). (3.12)

Since the shock wave moves much faster than the interface, the post-shock pressure field
is established in a very short time, during which the pressure at each local region can
be assumed to be invariant. By incorporating the calculated pressure gradient into the
momentum equation in (3.3), the influence of a non-uniform pressure field on the interface
motion can be quantified. As shown in figure 3(b), (3.7) with the pressure gradient
modification gives a good prediction of the interface motion for all gas layers. Particularly,
the interface deceleration at late stages, which could cause RT instability/stability for an
initially perturbed interface, is well reproduced by the theory. We close this section with a
conclusion that we establish a 1-D theory to describe the motion of a gas layer in divergent
geometry from early to late stages. This non-uniform motion constitutes the background
flow for the development of a perturbed gas layer.
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Case Ma d0 (mm) a01 (mm) n λ (mm) a01/λ mfra (SF6) A A+ γ c (m s−1)

1 1.27 10 2.0 24 39.3 0.051 0.989 0.66 0.69 1.099 145.1
2 1.27 20 2.0 24 39.3 0.051 0.989 0.66 0.69 1.096 144.9
3 1.25 30 2.0 24 39.3 0.051 0.972 0.64 0.67 1.109 149.6
4 1.27 20 1.0 24 39.3 0.025 0.987 0.66 0.69 1.097 145.7
5 1.25 20 3.0 24 39.3 0.076 0.986 0.65 0.69 1.097 145.5
6 1.27 20 2.0 36 26.2 0.076 0.995 0.67 0.70 1.094 142.5

Table 1. Detailed parameters corresponding to the initial conditions for each case. Note: a01 and n are the
initial amplitude and azimuthal mode number of the inner interface, respectively; Ma refers to the Mach number
of incident cylindrical shock; d0 to the layer thickness; λ to the wavelength of the inner interface; mfra(SF6) to
the mass fraction of SF6 inside the layer; A to the Atwood number; A+ to the post-shock Atwood number; γ to
the specific heat ratio inside the layer and c to the post-shock sound speed inside the layer.

3.2. Quasi-two-dimensional experimental results and analysis
Six kinds of SF6 layers with various thicknesses, amplitudes and wavelengths of the
inner interface are then considered. Detailed parameters corresponding to the initial
conditions for each case are listed in table 1, where the Atwood number (A) is defined
as A = (ρ2 − ρ1)/(ρ2 + ρ1) with ρ2 and ρ1 being the gas densities inside and outside
the gas layer, respectively. For cases 1–3, the average position of the inner interface is
fixed at R01 = 150 mm and the outer interface takes various radii of R02 = 160, 170 and
180 mm, corresponding to the layer thicknesses of d0 = 10, 20 and 30 mm, respectively.
The amplitude-to-wavelength ratio of the inner interface is 0.051 by taking an initial
amplitude a01 = 2 mm and an azimuthal mode number n = 24.

Developments of the wave patterns and interfacial morphologies for six cases are shown
in figure 4. Since the evolution processes for these cases are qualitatively similar, we take
case 2 as an example to detail the evolution process. At the beginning (−20 μs), an incident
cylindrical shock (ICS) together with the inner and outer interfaces of the gas layer can
be clearly observed. The ICS has a cylindrical shape and also the inner (outer) interface
presents an ideal single-mode (cylindrical) shape, which demonstrates good feasibility of
the present experimental method. Later, ICS collides with the inner interface (air/SF6),
immediately bifurcating into a sine-like transmitted shock (TS1) and a reflected shock
(RS1). During this process, the inner interface suffers a quick drop in amplitude due to
shock compression. Later, driven by pressure disturbance and baroclinic vorticity, the
amplitude of the inner interface increases persistently before the arrival of the rarefaction
wave (RW1). Subsequently, the disturbed TS1 encounters the outer interface, generating
a second transmitted shock (TS2) that has a larger amplitude than TS1. It indicates that
the outer interface (SF6/air) here serves as an ‘amplifier’ for the perturbation amplitude
of a passing shock. During this process, TS1 seeds a small positive perturbation on the
outer interface. In this work, the amplitude of perturbation with the same phase as that
of the inner interface is defined as positive, and otherwise negative. As time proceeds,
TS2 propagates downwards with its amplitude decaying gradually and finally recovers
to a uniform cylindrical shock. To clearly show the layer evolution process, sketches of
the wave patterns and interfacial morphologies at typical moments for case 2 are given in
figure 5. In the following two subsections, we quantitatively discuss the instability growths
at the inner and outer interfaces, respectively.
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Figure 4. Schlieren images showing the developments of wave patterns and interfacial morphologies for all
cases. ICS denotes the incident cylindrical shock and II1 is the initial first interface. The other symbols are the
same as those in figure 2. The numbers are in μs.

40 140 240 280
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RS2
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RW1

Figure 5. Sketches of the wave patterns and interface morphologies at typical moments for case 2. Here, �V2
(�V∗

2 ) is the velocity of the outer interface after the impact of TS1 (CW1). The other symbols are the same as
those in figure 4. The numbers are in μs.

3.2.1. Instability growth at the inner interface
Normalized variations of the amplitude of the inner interface versus time for all cases
are plotted in figure 6. The interface amplitude is normalized as α = n(a1 − a+

1 )/R01 and
the time as τ = nȧ0(t − t+1 )/R01. Here, a+

1 refers to the post-shock amplitude of the inner
interface and t+1 to the time just after the incident shock passes across the inner interface,
and ȧ0 denotes the perturbation growth rate shortly after the shock impact, which can be
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Figure 6. Normalized variations of the amplitude of the inner interface versus time for different cases. SI
refers to the perturbation growth of a single air/SF6 interface from Li et al. (2020). The dashed line refers to the
prediction of Bell model, the dash–dotted line to the prediction of the Bell-RT model, and the solid line to the
prediction of the Bell-RT-m model that considers the interface stretching and RT instability caused by RW1.

Case t+1 (μs) a+
1 (mm) t+2 (μs) a+

2 (mm) �V1 (m s−1) �V2 (m s−1) ȧ0 (m s−1)

1 20.5 1.42 60.5 0.40 94.0 114.5 7.2
2 20.1 1.42 120.1 0.16 86.6 103.5 7.1
3 29.6 1.42 169.6 0.10 85.7 108.5 7.7
4 7.9 0.52 107.9 0.04 91.6 107.6 4.2
5 10.9 2.10 110.9 0.35 84.2 105.6 9.9
6 22.0 1.44 122.0 0.04 86.8 103.9 9.5

Table 2. The post-shock parameters for six cases. Note: t+i refers to the time just after the shock crosses the
inner (i = 1) or outer (i = 2) interface; a+

i to the corresponding amplitude at t+i ; �Vi to the post-shock velocity
of the interface; ȧ0 to the growth rate of the inner interface at t+i .

obtained by a linear fit of experimental data, as listed in table 2. At the early stage, the
dimensionless amplitude histories collapse quite well for all cases and also are in good
agreement with the RM instability growth at a single interface. When RW1 interacts with
the evolving inner interface, RT instability and interface stretching begin to play a role,
causing a quick rise in perturbation growth rate. Later, the perturbation growth rate decays
continuously with time. It is found that a thicker gas layer results in a larger extent that the
RW1 promotes the instability growth at the inner interface. For case 1 with a thinner gas
layer, RW1 arrives at the inner interface earlier and thus the interface presents a larger
amplitude than thicker cases at the early stage. Nevertheless, at late stages, the inner
interface presents a smaller perturbation amplitude than that of thicker layers. For cases
3–6, the perturbation growth rate approaches zero at late stages (i.e. the instability freezes
out Mikaelian 1985). It can be generally found that the existence of the outer interface
promotes the instability growth at the inner interface as compared to RM instability at an
isolated single-mode interface (Li et al. 2020).

The instability growth at the inner interface can be generally divided into three stages:
early stage, intermediate stage (i.e. wave interaction stage) and late stage. At the early stage
(t < tRW

1 ), the perturbation growths for various-thickness layers collapse quite well, which
indicates a negligible interface coupling effect. Thus, the instability growth at this stage
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can be described by the linear theory for cylindrical RM instability at an isolated interface.
According to Bell (1951) and Ding et al. (2017b), the growth of cylindrical RM instability
at a single-mode interface can be described as

1
R2

d
dt

(
R2ȧ

)
− (nA − 1)

R̈
R

a = 0, (3.13)

where ȧ is the first derivative of amplitude with time and R̈ is the second derivative of
radius with time. Treating the shock impact as an impulse function (i.e. R̈ = δ(t)�V), the
perturbation amplitude at an arbitrary time t can be obtained by integrating (3.13),

a(t) = a+
0 + ȧ0R2

0

∫ t

t+0

1
R2(t′)

dt′ + (nA − 1)

∫ t

t+0

(
1

R2(t′)

∫ t′

t+0
aRR̈ dt

′′
)

dt′. (3.14)

Here, t+0 refers to the time just after the shock passage and ȧ0 to the initial growth rate at
t+0 , which can be obtained by a linear fit of experimental data (shown in table 2). The first
term on the right-hand side of (3.14) stands for the post-shock amplitude, the second term
for pure RM instability combined with the geometric divergence effect and the third term
for the perturbation growth associated with RT instability/stability. For brevity, (3.14) is
termed as the Bell-RT model. Dynamics of an unperturbed gas layer in § 3.1 shows that
the inner interface moves at a constant speed at the early stage. For this situation, the third
term equals zero and (3.14) is called the Bell model. As shown in figure 6(a), the Bell
model gives a reasonable prediction of the perturbation growth at the early stage for all
cases. This further confirms that the interface coupling effect is very weak at the early
stage.

At the intermediate stage, RW1 accelerates the inner interface and thus the Bell model
deviates from the experimental results. We realise that RW1 does not only accelerate but
also stretches the inner interface. In the following analysis, we take both RT instability
(caused by interface acceleration) and interface stretching into account. First, we consider
the stretching effect. Since the interface stretching process lasts for a short period of time,
during which the interface travels a short distance, this process can be approximately
considered as that happening in a planar geometry. This approximation can simplify the
analysis. As sketched in figure 7, RW1 first crosses the peak of the inner interface (point
A), causing a local velocity rise, whereas the trough of the interface (point B) moves at
its original speed before the arrival of RW1. Such a velocity difference produces a quick
increment in interface amplitude, which is termed as the stretching effect. The stretching
process involves three phases: RW1 passes across point A (tRW

1 ∼ tRW
2 ), RW1 tail leaves

point A but its head has not arrived at point B (tRW
2 ∼ tRW

3 ), and RW1 passes across
point B (tRW

3 ∼ tRW
4 ). Time duration for the first phase is �t1 = tRW

2 − tRW
1 , for the second

phase is �t2 = tRW
3 − tRW

2 , and for the third phase is �t3 = tRW
4 − tRW

3 . Obviously, there
is �t1 = �t3.

To simplify the analysis, we assume the interface undergoes a constant acceleration (g)
during the passage of RW1. The constant acceleration is g = (�V∗

1 − �V1)/�t1, which
can be estimated by the 1-D theory developed in § 3.1. The layer thickness at the time
when TS1 encounters the outer interface is denoted by d∗, which can be readily obtained.
Also, the width of RW1 (defined as the distance between its head and tail) at the moment
when it encounters the inner interface is L = (γ + 1)(�V2 − �V1)d∗/(2c), where γ

and c denote the specific heat ratio and sound speed behind TS1 inside the gas layer,
respectively. For the first/third phase, the interface motion satisfies g(�t1)2/2 + c�t1 = L.
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Figure 7. Sketches showing the interface stretching process by rarefaction wave RW1.

Case a∗
1 (mm) d∗ (mm) L (mm) �V∗

1 (m s−1) �t1 (μs) �t2 (μs) g (m s−2) ȧs (m s−1)

1 1.83 5.6 0.83 118.0 5.3 19.5 4 540 000 9.9
2 2.54 11.4 1.39 110.9 8.9 25.5 2 750 000 9.7
3 3.74 17.4 2.79 108.1 17.2 31.4 1 300 000 9.5
4 1.31 10.8 1.24 112.9 7.9 9.5 2 690 000 7.3
5 3.70 11.7 1.80 106.5 11.3 38.5 1 970 000 11.1
6 3.10 11.5 1.44 108.3 9.3 33.4 2 310 000 9.8

Table 3. The relevant parameters for cases 1–6. Note: a∗
1 is the inner interface amplitude just before the arrival

of RW1; d∗ is the layer thickness at the time when TS1 encounters the outer interface; L is the width between
the head and tail of RW1 when it arrives at the inner interface; �V∗

1 is the velocity of the inner interface after
the impact of RW1; �t1 (�t2) is the time of the first (second) stage for RW1 interacting with the perturbed
inner interface; g is the acceleration of the inner interface caused by RW1; and ȧs is the average growth rate
caused by interface stretching.

Combining the above equations, �t1 and g can be readily calculated. For the second phase,
there is c�t2 = 2a∗

1 − c�t1, where a∗
1 is the amplitude of the inner interface immediately

before the impact of RW1. Analytical solutions for the key parameters are summarized as

�t1 = �t3 = 2L/
(
2c + �V∗

1 − �V1
)
,

�t2 = (
2a∗

1 − c�t1
)
/c,

g = (
�V∗

1 − �V1
)
/�t1.

⎫⎪⎪⎬
⎪⎪⎭ (3.15)

The above parameters are calculated and listed in table 3. With these values, the
displacement difference between points A and B at the stretching stage is

�x = (�V∗
1 − �V1)(�t1 + �t2). (3.16)

Thus, the average growth rate caused by interface stretching is

ȧs = �x/[2(�t1 + �t2 + �t3)]. (3.17)

Next, we consider the effect of RT instability caused by RW1 on the perturbation growth
by incorporating the average acceleration g calculated by (3.15) into the Bell-RT model.
Finally, a modified Bell-RT model (Bell-RT-m) accounting for both the RT effect and
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interface stretching can be proposed, which is written as

a(t) = a+
0 + ȧ0R2

0

∫ t

t+0

1
R2(t′)

dt′ + (nA − 1)

∫ t

t+0

(
1

R2(t′)

∫ t′

t+0
aRR̈ dt

′′
)

dt′ + ȧs(t − tRW
1 ).

(3.18)

Note, (3.18) is valid only during the interaction of RW1 with the inner interface (i.e. tRW
1 <

t < tRW
4 ). As shown in figure 6, the Bell-RT-m model well reproduces the quick instability

growth at the wave interaction stage for all cases, which demonstrates its validity. It
is found that for cases with a thicker gas layer or a larger amplitude-to-wavelength
ratio, RW1 promotes the instability growth to a larger extent. This is also confirmed
by the Bell-RT-m model. The reason is discussed below. As the layer thickness or the
initial amplitude-to-wavelength ratio becomes larger, the interface amplitude experiences
a longer period of linear growth or a faster linear growth. As a result, the inner interface
possesses a larger amplitude just before the arrival of RW1, giving rise to stronger
RT and stretching effects. It is also found that RW1 promotes the growth of divergent
RM instability to a larger extent as compared to the planar counterpart (Liang & Luo
2021a). This is ascribed to an overall slower growth of divergent RM instability caused by
geometric expansion than the planar counterpart.

At late stages, reverberating waves inside the layer are negligibly weak and also the
inner interface decelerates evidently due to geometric divergence, producing RT stability.
Thus, the instability growth at the late stage is dominated by RM instability and RT
stability. It has been reported by Li et al. (2020) that for divergent RM instability at
an isolated interface, nonlinearity is very weak and produces a negligible influence on
the growth of overall amplitude. Hence, the linear Bell-RT model can be adopted to
predict the growth of divergent RM instability at late stages. Here, we first calculate the
interface deceleration according to the 1-D theory developed in § 3.1, and then substitute
the calculated deceleration into the Bell-RT model. In this way, the Bell-RT model gives
a good prediction of the perturbation growth for cases 1, 2 and 4, as shown in figure 6.
Nevertheless, it fails to reproduce the very slow instability growth (even the instability
freeze-out) after the impact of RW1 for cases 3, 5 and 6. This is ascribed to relatively
stronger nonlinearity in these cases in which the interface amplitude is quickly amplified
by RW1. It should be noted that for case 1 with a thin layer, the perturbation amplitude
continues increasing after reaching saturation (τ > 0.8) due to the increasing interface
coupling effect, which is not considered by the Bell-RT model.

3.2.2. Instability growth at the outer interface
Variations of the amplitude of the outer interface versus time for all cases are plotted in
figure 8. Unlike the inner interface, the outer interface presents no perturbation initially.
Thus, it is difficult to choose appropriate reference quantities for normalization. This
is the reason why figure 8 is plotted in physical units. The perturbation growths for
various-thicknesses cases are distinctly different. Specifically, for case 1 with a thin layer,
the transmitted shock TS1 presents a larger perturbation amplitude immediately before it
encounters the outer interface (SF6/air). Thus, a relatively larger perturbation is seeded
at the outer interface by the rippled TS1. As CW1 impacts the outer interface, such
a perturbation experiences a quick growth. At late stages, the perturbation amplitude
continues growing due to interface coupling. Differently, for thicker gas layers (cases 2
and 3), TS1 travels a longer distance to arrive at the outer interface and its amplitude
undergoes a greater degree of decay during this process. As a consequence, only a subtle
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Figure 8. Variations of the amplitude of the outer interface versus time. The solid line refers to the model
prediction considering the effect of CW1 and interface coupling, the dashed line to model prediction
considering interface coupling effect and the dash–dotted line to the prediction of (3.27).

perturbation is produced at the outer interface by TS1, even for case 5 with an initial larger
perturbation at the inner interface. This differs greatly from convergent RM instability
(Ding et al. 2019), where the distorted transmitted shock keeps invariant or even increases
in amplitude during the propagation process, and consequently seeds a considerably large
perturbation at the downstream interface. Afterwards, the growth rate of the interface
amplitude remains nearly zero before the arrival of CW1 (i.e. freezes out). The reason for
the instability freeze-out is given below. First, the uniform TS1 in cases 2 and 3 produces
no velocity perturbation, continuous pressure perturbation and baroclinic vorticity (i.e.
there are no forces driving the instability growth). Second, even though there is a small
perturbation produced by TS1, its amplitude would reduce due to geometric divergence.
Also, after CW1 encounters the outer interface, the interface amplitude experiences a
considerably quick growth. Later, as the two interfaces become closer to each other, the
interface coupling effect becomes dominant, which continuously promotes the instability
growth at the outer interface.

The CW1 and interface coupling are major factors driving the instability growth at
the outer interface. Here, we first give a quantitative analysis on the effect of CW1 on
the instability growth. The mechanism for the perturbation growth induced by CW1 is
illustrated in figure 5. Considering the thickness of the gas layer is much smaller than its
radius (i.e. d � R), waves inside the layer vary slightly in speed and thus can be assumed
to be of constant strengths (Sun et al. 2020). The velocity jump (�Vcw ≈ 8 m s−1) of the
outer interface caused by CW1 for the unperturbed case can be adopted to approximate that
of a perturbed layer. According to a simple analysis, the amplitude of the distorted CW1
is found to be nearly twice the amplitude of the inner interface at the time when RW1
encounters the inner interface (a∗

1). Then, the time duration for the distorted CW1 passing
through the perturbed outer interface is �tcw = (4a∗

1 − 2a∗
2)/c, where a∗

2 is the amplitude
of the outer interface just before its collision with CW1. The calculated results for all cases
are listed in table 4. Hence, the average growth rate of the outer interface caused by CW1
is ȧcw = �Vcw/2.

After CW1 moves away, the amplitude of the outer interface grows persistently. This
is mainly ascribed to the interface coupling effect. For the evolution of a gas layer with
two interfaces, Mikaelian (1995) proposed a linear model (MIK model) to quantify the
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Case a∗
2 (mm) �tcw (μs) ȧcou

1 (m s−1) sin β ȧcou
2 (m s−1)

1 0.52 43.3 6.9 ± 0.6 0.75 5.2 ± 0.45
2 0.21 67.2 6.2 ± 0.3 0.47 5.9 ± 0.14
3 0.02 99.7 0 0.34 0
4 0.22 32.9 1.5 ± 1.0 0.47 0.7 ± 0.47
5 0.13 99.9 0 0.47 0
6 −0.18 89.5 0 0.28 0

Table 4. The relevant parameters for the interaction between CW1 and the outer interface. Note: a∗
2 is the

perturbation amplitude of the outer interface just before the arrival of CW1; �tcw is the duration for the
perturbed CW1 passing through the outer interface; β is the coupling angle; and ȧcou

1 (ȧcou
2 ) represents the

growth rate of the inner (outer) interface.

influence of interface coupling on the instability growth, which is written as

ȧcou
1 = �VΓ 2

cos β
(a01 − a02 sin β) ,

ȧcou
2 = −�VΓ 2

cos β
(a02 − a01 sin β) ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.19)

where

Γ 2 ≡ k(D − 1)/
[
1 + D2 + 2D coth(kd)

]1/2
,

sin β = (2W1/W2) /
[
1 + (W1/W2)

2
]
,

W1/W2 = 1 + ST + (S/D)

{
1 +

[
1 + D2 + 2D coth(kd)

]1/2
}

, D = ρ2/ρ1,

S ≡ sinh(kd), T ≡ tanh(kd/2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.20)

Here, a0i and ȧcou
i (i=1 or 2 for the inner or outer interface) are the initial perturbation

amplitude and perturbation growth rate, respectively, k = n/R is the perturbation wave
number, and �V is the velocity of the gas layer. When the layer thickness (d) tends to
infinity, the interface coupling angle (β) that represents the strength of interface coupling
tends to zero. Thus, (3.19) reduces to the impulsive model for each interface, i.e. the
developments of the two interfaces are decoupled.

To clearly show the interface coupling effect on the growths of the inner and outer
interfaces, we calculate the ratio of the growth rate predicted by the MIK model to
impulsive model (ȧSI

i ),

c1 = ȧcou
1 (d)

ȧSI
1

= Γ 2(d)

Γ 2
0

(
1

cos β
− a+

2

a+
1

tan β

)
,

c2 = ȧcou
2 (d)

ȧSI
2

= Γ 2(d)

Γ 2
0

(
1

cos β
− a+

1

a+
2

tan β

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.21)

Variations of c1 and c2 with the layer thickness are plotted in figure 9. As we can see,
for the present gas layer (inner interface is perturbed and outer interface is uniform),
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Figure 9. Variations of c1 and c2 with the layer thickness.

interface coupling produces a very weak influence on the inner interface development,
but a significant influence on the outer interface. This reasonably explains the finding that
the linear Bell model gives a good prediction of the inner perturbation development in
experiment. According to (3.19), for a02 = 0, the growth rate of the outer interface can be
rewritten as

ȧcou
2 = ȧcou

1 sin β. (3.22)

Provided with the perturbation growth rate of the inner interface and the thickness of the
unperturbed layer (measured from experiment), the growth rate of the outer interface can
be obtained.

Since nonlinearity is very weak for the divergent RM instability considered in this work,
the growth rate of the outer interface can be obtained by a linear superposition of the two
components caused by interface coupling and wave influence,

ȧ2 = ȧcw + ȧcou
2 . (3.23)

As shown in figure 8, (3.23) gives a reasonable prediction of the perturbation growth at the
wave-affecting stage for all cases. After this stage (ȧcw = 0), the amplitude growth of the
outer interface can also be well predicted by the model for cases 1–4. However, for cases 5
and 6, the model prediction deviates greatly from the experimental results. Specifically, at
late stages the perturbation growth of the inner interface freezes out (i.e. the growth rate is
zero), and thus the growth rate of the outer interface should be zero as indicated by (3.22).
This is apparently inconsistent with the experimental observation. A major reason is that
for cases 5 and 6, the amplitude of the inner interface is larger than the layer thickness at
late stages (931, 902 μs in figure 4), i.e. the two interfaces coalesce. For this situation, the
original MIK model is invalid.

Here, a primary analysis based on the volume equivalence between perturbed and
unperturbed layers is given. As found in § 3.1, when an unperturbed layer moves outwards,
it becomes gradually thinner, which can be readily measured from experiment. We realize
that the volume of a perturbed layer is equal to that of the unperturbed one during the
motion process under the incompressible flow assumption. As sketched in figure 10, for
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Figure 10. Schematic diagrams showing the gas layer deformation for unperturbed and perturbed cases.

a gas layer with a perturbed inner interface and an unperturbed outer interface, as the
layer moves outward, the layer thickness decreases continuously. After a certain critical
time (tcont

0 ) at which the amplitude of the inner interface is equal to the layer thickness,
the bubble of the inner interface penetrates into the outer interface (tcont

1 ), forming a
perturbation at the outer interface that has the same phase as the inner interface. Assuming
the inner and outer interfaces are in the form of cosine perturbation at late stages, i.e.

r1 = R1 − a1 cos nθ,

r2 = R2 − a2 cos nθ,

}
(3.24)

where a1 (a2) is the amplitude of the inner (outer) interface, R2 = R1 + a1 − a2, then the
fluid area between the two perturbed interfaces is

S =
∫ θ0

−θ0

dθ

∫ r2

r1

r dr =
[

3
2

a2
2 − 2 (R1 + a1) a2 + 2R1a1 + 1

2
a2

1

]
θ0, (3.25)

and the fluid area S′ contained in the corresponding undisturbed gas layer is

S′ =
∫ θ0

−θ0

dθ

∫ R1+d

R1

r dr =
(

2R1d + d2
)

θ0. (3.26)

For the perturbed and unperturbed cases, their areas should be equal at an arbitrary time.
By combining (3.25) and (3.26), the relationship between the amplitude of the outer
interface a2 and the amplitude of the inner interface a1 can be obtained as

a2 =
2 (R1 + a1) −

√
6 (R1 + d)2 − 2 (R1 + a1)

2 + 3a2
1

3
. (3.27)

Equation (3.27) indicates that as the amplitude of the inner interface becomes larger than
the layer thickness, it greatly increases the outer perturbation development. To the best
of the authors’ knowledge, such a perturbation growth that exists uniquely in divergent
multi-layer RM instability is reported for the first time. For cases 1, 5 and 6, where the layer
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thickness is smaller than the amplitude of the inner interface, substituting the amplitude
and radius of the inner interface as well as the layer thickness (obtained from experiment)
into (3.27), the amplitude growth of the outer interface at late stages is obtained. As shown
in figure 8, (3.27) gives a reasonable prediction of the late-stage instability growth at the
outer interface for these three cases. This indicates that interface coupling plays a crucial
role in the development of the outer interface at late stages although it produces a much
weaker effect on the development of the inner interface. It should be mentioned that the
present study is mainly focused on the RM instability induced by a weak shock. For the
strong shock case, a compressibility effect becomes evident, producing possibly new flow
structures and phenomena (Ranjan et al. 2007, 2008).

4. Conclusions

Experiments of divergent RM instability at a perturbed heavy gas layer (a sinusoidal inner
interface and a circular outer interface) are realized in a novel shock tube designed based
on shock dynamics theory. An existing soap-film technique is extended to generate gas
layers with controllable shape and thickness. The dynamics of an unperturbed gas layer is
first examined. It is found that differing from the layer motion in planar and convergent
geometries, the gas layer in divergent geometry becomes increasingly thinner with time.
The inner and outer interfaces of the layer move uniformly at the early stage and decelerate
evidently at late stages. A general 1-D theory that takes the influences of waves and
post-shock non-uniform pressure field into account is established, which gives a good
prediction of the layer motion in divergent geometry from early to late stages.

Six types of perturbed SF6 layers with different thicknesses and shapes surrounded
by air are then considered. High-quality schlieren images are obtained, which clearly
reveal the wave evolution and interface deformation. The instability growth at the inner
interface involves three stages: early stage, intermediate stage and late stage. At the early
stage, the perturbation growths for various-thickness layers collapse quite well, which
indicates a negligible interface coupling effect. Thus, the Bell model for cylindrical RM
instability at an isolated interface can be adopted to describe the perturbation growth.
At the intermediate stage (i.e. during the interaction of RW1 with inner interface), the
perturbation growth rate experiences a quick rise due to the presence of RT instability
and interface stretching. A modified Bell-RT model accounting for both RT instability and
interface stretching is established, which well reproduces the quick instability growth at
this stage for all cases. Both theoretical prediction and experimental result indicate that a
thicker gas layer results in the larger extent that RW1 promotes the instability growth. It is
also found that RW1 promotes the growth of divergent RM instability to a larger extent than
the planar counterpart (Liang & Luo 2021a) due to the overall slower growth of divergent
RM instability caused by geometric expansion. At late stages, reverberating waves inside
the layer are negligibly weak and the instability growth is dominated by RM instability
and RT stability. For cases with strong nonlinearity, the instability nearly freezes out at the
late stage, which is ascribed to the counteraction between the positive growth associated
with RM instability and the negative growth associated with geometric divergence and RT
stability.

Compression wave CW1 and interface coupling are major factors driving the instability
growth at the outer interface. As the distorted transmitted shock TS1 passes across the
uniform outer interface, it seeds a small perturbation at the outer interface. This seeded
perturbation is smaller than the counterpart in planar and convergent geometries because
the amplitude of TS1 decays more quickly in divergent geometry. Then, the outer interface
amplitude remains nearly invariant until the arrival of CW1. As CW1 encounters the outer
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interface, the interface amplitude experiences a quick growth. Later, as the two interfaces
become close to each other, interface coupling effect becomes dominant, significantly
promoting the development of the outer interface. A modified MIK model (Mikaelian
1995) that takes the influences of CW1 and interface coupling into account is developed,
which gives a good prediction of the instability growth. For cases where the inner interface
amplitude is larger than the layer thickness, a new interface coupling mechanism that
exists uniquely in divergent geometry dominates the development of the outer interface.
The finding in this work provides deep insights into divergent RM instability at multiple
interfaces, which is useful for understanding the hydrodynamic instabilities in ICF and
supernova explosion.
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