ON THE ORDER OF THE SYLOW SUBGROUPS OF THE AUTOMORPHISM GROUP OF A FINITE GROUP

by K. H. HYDE

(Received 30 September, 1968; revised 26 September, 1969)

1. Introduction. Given any finite group G, we wish to determine a relationship between the highest power of a prime p dividing the order of G, denoted by $|G|_{p}$, and $|A(G)|_{p}$, where $A(G)$ is the automorphism group of G. It was shown by Herstein and Adney $[8]$ that $|A(G)|_{p} \geqq p$ whenever $|G|_{p} \geqq p^{2}$. Later Scott [16] showed that $|A(G)|_{p} \geqq p^{2}$ whenever $|G|_{p} \geqq p^{3}$. For the special case where G is abelian, Hilton [9] proved that $|A(G)|_{p} \geqq p^{n-1}$ whenever $|G|_{p} \geqq p^{n}$. Adney [1] showed that this result holds if a Sylow p-subgroup of G is abelian, and gave an example where $|G|_{p}=p^{4}$ and $|A(G)|_{p}=p^{2}$. We are able to show in Theorem 4.5 that, if $|G|_{p} \geqq p^{5}$, then $|A(G)|_{p} \geqq p^{3}$.

In the general case, Ledermann and Neumann [11] showed that there exists a function $g(h)$ having the property that $|A(G)|_{p} \geqq p^{h}$ whenever $|G|_{p} \geqq p^{g(h)}$, and gave an upper bound for $g(h)$. Later, Green [6] improved their result by showing that

$$
g(h) \leqq \frac{1}{2}\left(h^{2}+3 h+2\right) .
$$

Howarth [10] then proved that, for $h \geqq 12, \dagger$

$$
g(h) \leqq\left\{\begin{array}{llll}
\frac{1}{2}\left(h^{2}+3\right) & \text { for } & h & \text { odd } \\
\frac{1}{2}\left(h^{2}+4\right) & \text { for } & h & \text { even } .
\end{array}\right.
$$

We are able to improve this result by showing that, for all h,

$$
g(h) \leqq \frac{1}{2}\left(h^{2}-h+6\right) .
$$

We shall also consider the special case where G is a p-group, and show that in this case $|A(G)|_{p} \geqq p^{h}$ whenever $|G| \geqq p^{A}$, where

$$
A= \begin{cases}\frac{1}{2}\left(h^{2}-3 h+6\right) & \text { for } h \geqq 5, \\ h+1 & \text { for } h \leqq 4\end{cases}
$$

We point out that all groups considered in this paper are finite. Also, the letter p will always stand for a prime.
2. Central automorphisms. An automorphism σ such that $g^{-1} g^{\sigma}$ is in the center of G, for all g in G, is called central. The set of all central automorphisms of G forms a subgroup of $A(G)$, which we denote by $A_{c}(G)$. It is easy to show that $A_{c}(G)$ is the centralizer of the inner automorphism group $I(G)$ in $A(G)$. From this it follows that $A_{c}(G)$ is normal in $A(G)$, and that
\dagger Howarth remarks that the result can be shown to be valid for $h \geqq 6$.
$A_{c}(G)$ contains $I(G)$ if and only if $I(G)$ is abelian. If G^{\prime} is the derived group of G, then G^{\prime} is left fixed elementwise by any σ in $A_{c}(G)$, and σ induces the identity on G / Z.

The mapping f_{σ} defined by $g f_{\sigma}=g^{-1} g^{\sigma}$ is a homomorphism of G into Z. The map $\sigma \rightarrow f_{\sigma}$ is a one-one map of $A_{c}(G)$ into the group $\operatorname{Hom}(G, Z)$ of homomorphisms of G into Z. On the other hand, if f is in $\operatorname{Hom}(G, Z)$, then $\sigma: g \rightarrow g(g f)$ defines an endomorphism of G. It has been shown by Adney and Yen [2] that, if G has no abelian direct factor, then the endomorphism $\sigma: g \rightarrow g(g f)$ is an automorphism of G. If G is a group which does not have an abelian direct factor, we say that G is purely non-abelian. We shall for brevity call such a group a $P N$-group.

We note that, for any f in $\operatorname{Hom}(G, Z)$, the kernel of f contains G^{\prime} so that $\operatorname{Hom}(G, Z)=$ Hom $\left(G / G^{\prime}, Z\right)$. We now state the result of Adney and Yen as a lemma for future reference.

Lemma 2.1. If G is a $P N$-group, then the order of $\operatorname{Hom}\left(G / G^{\prime}, Z\right)$ is equal to the order of $A_{c}(G)$.

For a prime p we shall denote the cyclic group of order p^{a} by $C\left(p^{a}\right)$. We shall denote the minimum of two real numbers x and y by $\min (x, y)$. The proofs of the following two lemmas are straightforward.

Lemma 2.2. If $H=C\left(p^{a}\right) \times C\left(p^{b+x}\right), K=C\left(p^{d}\right)$ and $H_{1}=C\left(p^{a+x}\right) \times C\left(p^{b}\right)$, where $a \geqq b$, then $\left|\operatorname{Hom}\left(H_{1}, K\right)\right| \leqq|\operatorname{Hom}(H, K)|$. We also have $\left|\operatorname{Hom}\left(K, H_{1}\right)\right| \leqq|\operatorname{Hom}(K, H)|$.

Lemma 2.3. If H and K are abelian p-groups, then $|\operatorname{Hom}(H, K)| \geqq \min (|H|,|K|)$.
The following result will reduce our problem to the case of a p-group.
Lemma 2.4. If $\left|A_{c}(G)\right|_{p}=|A(G)|_{p}$, then $G=G_{p} \times G_{p^{\prime}}$, where G_{p} is a Sylow p-subgroup of G.

Proof. Let x be an element of a Sylow p-subgroup G_{p}. If T_{x} is the inner automorphism induced by x, then $o\left(T_{x}\right)=p^{a}$ for some a. Let A_{p} be a Sylow p-subgroup of $A(G)$ which contains T_{x}. Since $\left|A_{c}(G)\right|_{p}=|A(G)|_{p}$ and since $A_{c}(G)$ is normal in $A(G)$, by Sylow's Theorem, $A_{p} \subseteq A_{c}(G)$. Therefore T_{x} is central and, for any $g \in G,(g Z) T_{x}=g^{x} Z=g Z$. Hence $[g, x] \in Z$ for all $x \in G_{p}$, and so $\left[G, G_{p}\right]$ is contained in the center of G. Now let H be any subgroup of G_{p} and x an element of order prime to p which normalizes H. For any h in H we have $h T_{x}=$ $h[h, x]$ and $[h, x]$ is in $H \cap\left[G, G_{p}\right] \subseteq H \cap Z(G)$. Let $n=o\left(T_{x}\right)$; then $h T_{x}^{n}=h[h, x]^{n}=h$. But n divides the order of x, which is prime to p, and $[h, x]$ is in G_{p}. Therefore $[h, x]=e$ and x centralizes H. From Theorem 14.4.7 of Hall [7], G_{p} has a normal complement $G_{p^{\prime}}$. Since [G_{p}, G] is contained in the center, $G_{p} Z$ is normal in G. Also G_{p} is characteristic in $G_{p} Z$ and therefore normal in G. We now have that $G=G_{p} \times G_{p^{\prime}}$.
3. Automorphisms of p-groups. We shall make use of the following results. The first is due to Gaschütz [5].

Lemma 3.1. If G is a non-abelian p-group, then there exists an outer automorphism of G which has order a power of p.

The proof of the following result is given in a paper by Otto [12].
Lemma 3.2. If the p-group G is a direct product of an abelian group H and a PN-group K, then
(i) $|A(G)|_{p} \geqq|H||A(K)|_{p}$ and
(ii) $\left|A_{c}(G)\right|_{p} \geqq|H|\left|A_{c}(K)\right|_{p}$.

The next lemma is due to Wiegold [17].
Lemma 3.3. Let p be a prime and G a group with $|G| Z \mid=p^{r}$. Then G^{\prime} is a p-group of order at most $p^{r(r-1) / 2}$.

It is known that, if $|G / Z|_{p}=p^{r}$, then $\left|G^{\prime} \cap Z\right|_{p} \leqq p^{p(r-1) / 2}$.
This result can be found in a paper of Howarth [10, Lemmas 4.2 to 4.5].
From this we get the following result.
Lemma 3.4. If G is a group with $|G / Z|_{p}=p^{r}$, then $\left|G^{\prime}\right|_{p} \leqq p^{r(r+1) / 2}$.
Theorem 3.5. If G is a p-group of order at least p^{h+1} and $h \leqq 4$, then $|A(G)|_{p} \geqq p^{h}$.
Proof. The result holds for abelian groups, so we shall assume that G is non-abelian. Hence $|I(G)|=|G / Z| \geqq p^{2}$. Since there also exists an outer automorphism of p-power order, we have $|A(G)|_{p} \geqq p^{3}$. This leaves only the case where $h=4$. In this case, if $|G / Z| \geqq p^{3}$, then, as in the preceding argument, $|A(G)|_{p} \geqq p^{4}$. It will now be sufficient to consider the case where $|G| \geqq p^{5}$ and $|G / Z|=p^{2}$. From Lemma 3.3, $\left|G^{\prime}\right|=p$ and $\left|G / G^{\prime}\right| \geqq p^{4}$. Now G / Z is elementary abelian and is isomorphic to a subgroup of G / G^{\prime}. Therefore G / G^{\prime} has at least two cyclic factors. We have $|Z| \geqq p^{3}$ and so, by Lemma 2.2, $\left|\operatorname{Hom}\left(G / G^{\prime}, Z\right)\right| \geqq$ $|\operatorname{Hom}(H, K)|$, where $H \cong C\left(\rho^{3}\right) \times C(p)$ and $K \cong C\left(p^{3}\right)$. If G is purely non-abelian, then, from Lemma 2.1,

$$
\left|A_{c}(G)\right|=\left|\operatorname{Hom}\left(G / G^{\prime}, Z\right)\right| \geqq|\operatorname{Hom}(H, K)|=p^{4}
$$

If G has an abelian direct factor, we write $G=H \times K$ with H abelian and K a $P N$-group and apply the previous results to get

$$
|A(G)|_{p} \geqq|H||A(K)|_{p} \geqq|H||K| / p=|G| / p \geqq p^{4}
$$

Theorem 3.6. If G is a p-group of order at least $p^{g(h)}$ with $g(h)=\frac{1}{2}\left(h^{2}-3 h+6\right)$ and $h \geqq 5$, then $|A(G)|_{p} \geqq p^{h}$.

Proof. The result holds if G is abelian. We therefore consider the case where G is nonabelian. If $|G / Z| \geqq p^{h-1}$, then $|I(G)| \geqq p^{h-1}$. By Lemma 3.1 there exists an outer automorphism α which has order a power of p, and α along with $I(G)$ will generate a subgroup whose order is divisible by p^{h}.

We now consider the case where $|G / Z| \leqq p^{h-2}$, and G is purely non-abelian. From Lemma 3.3,

$$
\left|G^{\prime}\right| \leqq p^{\left(h^{2}-5 h+6\right) / 2}
$$

and so $\left|G / G^{\prime}\right| \geqq p^{h}$. Also

$$
|Z| \geqq p^{\left(h^{2}-5 h+10\right) / 2}
$$

and, for $h \geqq 5, \frac{1}{2}\left(h^{2}-5 h+10\right) \geqq h$. We apply Lemma 2.1 and Lemma 2.3 to get

$$
\left|A_{c}(G)\right|=\left|\operatorname{Hom}\left(G / G^{\prime}, Z\right)\right| \geqq p^{h}
$$

If $|G / Z| \leqq p^{h-2}$ and G has an abelian direct factor, then we write $G=H \times K$, where H is abelian and K is a $P N$-group. From Lemma 3.2,

$$
|A(G)|_{p} \geqq|H||A(K)|_{p} .
$$

Let $|H|=p^{r}$ so that $|K| \geqq p^{g(h)-r}$. If $r \geqq h$, we have the result. We therefore take $h \geqq r$, and show that $|A(K)|_{p} \geqq p^{h-r}$. If $h-r \geqq 5$, then $2 r h \geqq r^{2}+5 r$, which implies that $g(h)-r \geqq$ $g(h-r)$. From the first part of the proof for $P N$-groups, we have $|A(K)|_{p} \geqq p^{h-r}$. In the case in which $h-r \leqq 4$, we have $h^{2}-5 h+4 \geqq 0$ for $h \geqq 5$, which implies that $g(h)-r \geqq h-r+1$. From Theorem 3.5, we get $|A(K)|_{p} \geqq p^{h-r}$. This completes the proof.
4. The main results. We shall now find a bound for the least function $g(h)$ such that $|A(G)|_{p} \geqq p^{h}$ whenever $|G|_{p} \geqq p^{g(h)}$. It was conjectured that $g(h)=h+1$, but it was pointed out by Adney [1] that this is not true. Let G be the general linear group $G L(2,19)$. The order of G is $\left(19^{2}-1\right)\left(19^{2}-19\right)$, and so $|G|_{3}=3^{4}$. The order of the automorphism group of G is $2|I(G)|$ and so

$$
|A(G)|_{3}=|G / Z|_{3}=3^{2}
$$

This example can be extended to show that $g(h) \geqq 2 h-1 . \dagger$ It is known that, if a and d are integers which are relatively prime, then the set $\{a+n d \mid n=0,1,2, \ldots\}$ contains an infinite number of primes. Let $a=1+p^{n}$ and $d=p^{n+1}$; then a and d are relatively prime and, for some $k, 1+p^{n}+k p^{n+1}$ ($=q$ say) is a prime. Now let $G=G L(2, q)$; then the order of G is $(q+1) q(q-1)^{2}$. For an odd prime p, p^{n} divides $q-1, p^{n+1}$ does not divide $q-1$, and p does not divide q or $q+1$. Hence the highest power of p dividing the order of G is $p^{2 n}$. Now $|Z(G)|=q-1$ and so $|I(G)|=(q+1) q(q-1)$. Since q is a prime, $|A(G)|=2|I(G)|$, and the highest power of p dividing $|A(G)|$ is p^{n}. Therefore in seeking a bound for the least function $g(h)$ such that $p^{h} \leqq|A(G)|_{p}$ whenever $|G|_{p} \geqq p^{g(h)}$, we must have $g(h) \geqq 2 h-1$, where $h \geqq 2$. We have thus proved the following theorem.

Theorem 4.1. For $h \geqq 2$, the least function $g(h)$ such that $|A(G)|_{p} \geqq p^{h}$ whenever $|G|_{p} \geqq$ $p^{g(h)}$, satisfies the inequality $g(h) \geqq 2 h-1$.

Our main problem in this section will be to find an upper bound for $g(h)$, and we shall show that $g(h) \leqq \frac{1}{2}\left(h^{2}-h+6\right)$. We shall be mainly concerned with central automorphisms, and shall repeatedly use the fact that, for $P N$-groups, $\left|A_{c}(G)\right|=\left|\operatorname{Hom}\left(G / G^{\prime}, Z\right)\right|$. We are interested in finding the highest order of a prime p which divides $\left|A_{c}(G)\right|_{p}$. We note that $\left|\operatorname{Hom}\left(G / G^{\prime}, Z\right)\right|_{p}=\left|\operatorname{Hom}\left(\left(G / G^{\prime}\right)_{p}, Z_{p}\right)\right|$, so that we can apply the lemmas in Section 2 as they apply to p-groups.
\dagger The author is indebted to W. R. Scott for the proof of this result.

Lemma 4.2. If $G=H \times K$, where H is abelian with order divisible by p and K is a group with $\left|Z(K) \cap K^{\prime}\right|$ divisible by p, then $|A(G)|_{p}>|A(K)|_{p}$.

Proof. If $|H|_{p}>p$, then $|A(H)|_{p} \geqq p$ and we have $|A(G)|_{p} \geqq|A(H)|_{p}>|A(K)|_{p}$. If $|H|_{p}=p$, it will be sufficient to consider the case in which $H \cong C(p)$. Since $A_{c}(G)$ is normal in $A(G)$, we have

$$
\begin{aligned}
|A(G)|_{p} & \geqq\left|A_{c}(G) A(K)\right|_{p} \\
& =\frac{\left|A_{c}(G)\right|_{p}|A(K)|_{p}}{\left|A_{c}(G) \cap A(K)\right|_{p}} \\
& =\frac{\left|A_{c}(G)\right|_{p}}{\left|A_{c}(K)\right|_{p}}|A(K)|_{p} .
\end{aligned}
$$

Therefore it will be sufficient to show that $\left|A_{c}(G)\right|_{p}>\left|A_{c}(K)\right|_{p}$. We shall now construct a central automorphism of order p which is not induced by a central automorphism of K. First, we define a homomorphism of G / G^{\prime} into $Z(G)$. We note that $G / G^{\prime} \cong H \times K / K^{\prime}$, and let h be a generator of H. Since p divides $\left|Z(K) \cap K^{\prime}\right|$, we can pick an element z in $Z(K) \cap K^{\prime}$ of order p. The mapping defined by

$$
\begin{aligned}
& h \rightarrow z, \\
& k \rightarrow e, \text { for all } \bar{k} \text { in } K / K^{\prime}
\end{aligned}
$$

defines a homomorphism f of G / G^{\prime} into Z. As described in Section 2, there exists a corresponding central endomorphism σ of G defined by $g \sigma=g\left(g G^{\prime} f\right)$. Each g in G can be written in the form $g=\left(h^{n}, k\right)$, where k is in K, and so $g \sigma=\left(h^{n}, k z^{n}\right)$ with $k z^{n}$ in K. We claim that σ is an automorphism. Since G is finite, it will be sufficient to show that $\operatorname{ker}(\sigma)=0$. Suppose there exists $\left(h^{n}, k\right) \neq e$ such that $\left(h^{n}, k\right) \sigma=\left(h^{n}, k z^{n}\right)=e$. Then $h^{n}=e$ and $n \equiv 0(\bmod p)$. Since z is of order $p, z^{n}=e$ and $\left(h^{n}, k\right)=\left(h^{n}, k z^{n}\right)=e$, a contradiction. It is clear that the central automorphism σ is of order p. Also $h \sigma=h z$, so that σ is not an automorphism induced by an automorphism of K.

We shall now show that σ centralizes $A_{c}(K)$. Let α be any element of $A_{c}(K)$; then

$$
\begin{aligned}
\left(h^{n}, k\right) \sigma^{-1} \alpha \sigma & =\left(h^{n}, k z^{-n}\right) \alpha \sigma=\left(h^{n},(k \alpha)\left(z^{-n} \alpha\right)\right) \sigma \\
& =\left(h^{n},(k \alpha)\left(z^{-n} \alpha\right) z^{n}\right) .
\end{aligned}
$$

Since z^{-n} is in K^{\prime} and α is central, we have $z^{-n} \alpha=z^{-n}$. Therefore $\left(h^{n}, k\right) \alpha^{\sigma}=\left(h^{n}, k\right) \alpha$ and σ centralizes $A_{c}(K)$. We can form the subgroup $A_{c}(K)\langle\sigma\rangle$ and we have

$$
\left.\left|A_{c}(G)\right|_{p} \geqq\left|A_{c}(K)\langle\sigma\rangle\right|_{p}\right\rangle\left|A_{c}(K)\right|_{p}
$$

which is what we wanted to show.
Lemma 4.3. If G is a $P N$-group such that $|G|_{p} \geqq p^{\left(h^{2}-h+2\right) / 2}$, where $h \geqq 3$ and $\left|G^{\prime} \cap Z\right|_{p}=1$, then $|A(G)|_{p} \geqq p^{h}$.

Proof. If $|G / Z|_{p} \geqq p^{h}$, the results holds. If $|G / Z|_{p} \leqq p^{h-2}$, then, by Lemma 3.4,
and $\left|G / G^{\prime}\right|_{p} \geqq p^{h}$. Also

$$
\left|G^{\prime}\right|_{p} \leqq p^{(h-2)(h-1) / 2}=p^{\left(h^{2}-3 h+2\right) / 2}
$$

$$
|Z|_{p} \geqq p^{\left(h^{2}-h+2\right) / 2-(h-2)}=p^{\left(h^{2}-3 h+6\right) / 2} \geqq p^{h}
$$

for integral values of h. Therefore

$$
\left|A_{c}(G)\right|_{p} \geqq \min \left(\left|G / G^{\prime}\right|_{p},|Z|_{p}\right) \geqq p^{h} .
$$

Finally, if $|G / Z|_{p}=p^{h-1}$, then, using the fact that $\left|G^{\prime} \cap Z\right|_{p}=1$, we obtain

Therefore

$$
\left|G^{\prime}\right|_{p}=\left|G^{\prime} / G^{\prime} \cap Z\right|_{p} \leqq\left.\left|G G^{\prime}\right| Z\right|_{p}=|G / Z|_{p}=p^{h-1}
$$

$$
\left|G / G^{\prime}\right|_{p} \geqq p^{\left(h^{2}-h+2\right) / 2-(h-1)}=p^{\left(h^{2}-3 h+4\right) / 2} \geqq p^{h-1}
$$

for integral values of h. Since $|G / Z|_{p}=p^{h-1}$, a similar argument shows that $|Z|_{p} \geqq p^{h-1}$, and we have

$$
\left|A_{c}(G)\right|_{p} \geqq \min \left(|Z|_{p},\left|G / G^{\prime}\right|_{p}\right) \geqq p^{h-1}
$$

If $|A(G)|_{p}>\left|A_{c}(G)\right|_{p}$, we have the desired result. If $|A(G)|_{p}=\left|A_{c}(G)\right|_{p}$, we apply Lemma 2.4 and obtain $G=G_{p} \times G_{p}$. If G_{p} is abelian, then the result follows, since $\frac{1}{2}\left(h^{2}-h\right) \geqq h$ for $h \geqq 3$. If G_{p} is non-abelian, then, by Lemma 3.1, there exists an outer automorphism of order a power of p which together with $I(G)$ generates a group with order divisible by p^{h}.

Lemma 4.4. Let H and K be abelian p-groups with $|H|=p^{a}, \exp (H) \leqq p^{b},|K|=p^{t}$, and $t \leqq b$. Then $|\operatorname{Hom}(H, K)| \geqq p^{B}$, where $B=a t / b$.

Proof. Let $a=b q+r$, where $0 \leqq r<b$, let H_{1} be a p-group of type ($p^{b(1)}, \ldots, p^{b(q)}, p^{r}$) with $b(1)=\ldots=b(q)=b$, and let K_{1} be cyclic of order p^{t}. Repeated application of Lemma 2.2 gives $\left|\operatorname{Hom}\left(H_{1}, K_{1}\right)\right| \leqq|\operatorname{Hom}(H, K)|$ but $\left|\operatorname{Hom}\left(H_{1}, K_{1}\right)\right|=p^{A}$, where $A=q t+\min (t, r)$. Now

$$
a t / b=(b q+r) t / b=q t+(r t) / b
$$

but neither r nor t exceeds b, so that $r t / b \leqq \min (t, r)$ and $A \geqq a t / b$, which proves the result.
We are now prepared to prove our main result. We shall show that the least function $g(h)$, such that $|A(G)|_{p} \geqq p^{h}$ whenever $|G|_{p} \geqq p^{g(h)}$, satisfies the inequality $g(h) \leqq \frac{1}{2}\left(h^{2}-h+6\right)$. We know from previous results ([8] and [16]) that $g(1)=2$ and $g(2)=3$. We begin by showing that $g(3)=5$. From Theorem 4.1, we know that $g(3) \geqq 5$. We must show that, if $|G|_{p} \geqq p^{5}$, then $|A(G)|_{p} \geqq p^{3}$. It will be sufficient to consider the case in which $|G / Z|_{p} \leqq p^{2}$. By Lemma 3.4, $\left|G^{\prime}\right|_{p} \leqq p^{3}$ and so $\left|G / G^{\prime}\right| \geqq p^{2}$. If G is purely non-abelian, then

$$
\left|A_{c}(G)\right|_{p}=\left|\operatorname{Hom}\left(G / G^{\prime}, Z\right)\right|_{p} \geqq \min \left(\left|G / G^{\prime}\right|_{p},|Z|_{p}\right) \geqq p^{2}
$$

If the strict inequality holds, then we are done. Otherwise, we can apply Lemma 2.4 and write $G=G_{p} \times G_{p^{\prime}}$, where G_{p} is a Sylow p-subgroup of G. This reduces the problem to the case of a p-group and, by Theorem 3.5, the result holds. If G is not $P N$, then we write $G=H \times K$, where H is abelian and K is $P N$. We now look at the different possibilities for
$|H|_{p}$. The result follows immediately in each case except when $|H|_{p}=p$ and $|K|_{p}=p^{4}$. If $\left|K^{\prime} \cap Z(K)\right|$ is divisible by p, then, by Lemma 4.2, we obtain

$$
|A(G)|_{p}>|A(K)|_{p} \geqq p^{2}
$$

If $\left|K^{\prime} \cap Z(K)\right|_{p}=1$, then, applying Lemma 4.3, we have $|A(K)|_{p} \geqq p^{3}$. We now have the desired result, which is significant since it is best possible, and we state it as a theorem.

Theorem 4.5. If $|G|_{p} \geqq p^{5}$, then $|A(G)|_{p} \geqq p^{3}$.
We note that this is in agreement with our general result, since $5=g(3) \leqq \frac{1}{2}\left(3^{2}-3+6\right)$.
We now proceed to the general case. We shall need the following result, due to Howarth [10, Corollary 4.7, p. 168].

$$
\begin{equation*}
\exp (Z) \text { divides }|G / Z| \exp \left(G / G^{\prime}\right) \tag{4.6}
\end{equation*}
$$

We want to show that $|A(G)|_{p} \geqq p^{h}$ whenever

$$
|G|_{p} \geqq p^{\left(h^{2}-h+6\right) / 2}
$$

It is sufficient to consider the case in which $|G / Z|_{p} \leqq p^{h-1}$. In this case, $|Z|_{p} \geqq p^{\left(h^{2}-3 h+8\right) / 2}$, and, by Lemma 3.4, $\left|G^{\prime}\right|_{p} \leqq p^{\left(h^{2}-h\right) / 2}$, which implies that $\left|G / G^{\prime}\right|_{p} \geqq p^{3}$. Let $\left|G / G^{\prime}\right|_{p}=p^{t} \geqq p^{3}$; then, by (4.6),

$$
\begin{aligned}
\exp (Z)_{p} & \leqq|G / Z|_{p} \exp \left(G / G^{\prime}\right)_{p} \\
& \leqq p^{h-1}\left|G / G^{\prime}\right|_{p}=p^{h-1+t}
\end{aligned}
$$

Suppose now that G is purely non-abelian. If $t \geqq h$, then, since $|Z|_{p} \geqq p^{h}$, we have

$$
\left|A_{c}(G)\right|_{p}=\left|\operatorname{Hom}\left(G / G^{\prime}, Z\right)\right|_{p} \geqq p^{h} .
$$

Therefore we consider the case in which $t \leqq h-1$. In this case we can apply Lemma 4.4 and get $\left|\operatorname{Hom}\left(G / G^{\prime}, Z\right)\right|_{p} \geqq p^{B}$ with

$$
B \geqq \frac{1}{2}\left(h^{2}-3 h+8\right) t /(h-1+t) \quad(=C \text { say }) .
$$

We can now show that $C \geqq h-1$. This is equivalent to showing that

$$
(t-2) h^{2}+(4-5 t) h+10 t-2 \geqq 0
$$

The discriminant of the quadratic in h is $-15 t^{2}+48 t$, which is negative for $t \geqq 4$. Hence, for $t \geqq 4$, the above inequality holds. For $t=3$, we have $h^{2}-11 h+28 \geqq 0$, which holds for $h>6$ and $h=4$. We must now examine separately the cases in which $5 \leqq h \leqq 6$ and $\left|G / G^{\prime}\right|_{p}=p^{3}$. We wish to show that $\left|A_{c}(G)\right|_{p} \geqq p^{h-1}$. For $h=5,|Z|_{p} \geqq p^{9}$ and, by (4.6),

$$
\exp (Z)_{p} \leqq p^{4} p^{3}=p^{7}
$$

By Lemma 2.2,

$$
\left|\operatorname{Hom}\left(G / G^{\prime}, Z\right)\right|_{p} \geqq\left|\operatorname{Hom}\left(C\left(p^{7}\right) \times C\left(p^{2}\right), C\left(p^{3}\right)\right)\right| \geqq p^{4}
$$

For $h=6,|Z|_{p} \geqq p^{13}$ and, by (4.6), $\exp (Z)_{p} \leqq p^{5} p^{3}=p^{8}$. By Lemma 2.2,

$$
\left|\operatorname{Hom}\left(G / G^{\prime}, Z\right)\right|_{p} \geqq\left|\operatorname{Hom}\left(C\left(p^{8}\right) \times C\left(p^{5}\right), C\left(p^{3}\right)\right)\right| \geqq p^{5}
$$

We now have $\left|A_{c}(G)\right|_{p} \geqq p^{h-1}$. If $|A(G)|_{p}>\left|A_{c}(G)\right|_{p}$, the desired result follows. Otherwise, we may apply Lemma 2.4 , so that $G=G_{p} \times G_{p^{\prime}}$. Since $|A(G)|_{p} \geqq\left|A\left(G_{p}\right)\right|_{p}$, we can apply Theorem 3.5 and Theorem 3.6, obtaining $|A(G)|_{p} \geqq p^{h}$, since $\frac{1}{2}\left(h^{2}-h+6\right)$ is greater than both $\frac{1}{2}\left(h^{2}-3 h+6\right)$ and $h+1$.

Now suppose G has an abelian direct factor, and write $G=H \times K$, where H is abelian and K is purely non-abelian. Let $|H|_{p}=p^{r}$ and

$$
|K|_{p} \geqq p^{\left(h^{2}-h+6\right) / 2-r}
$$

If $r=0$, then the problem reduces to the case previously considered. Also, if $r \geqq h+1$, then $|A(H)|_{p} \geqq p^{h}$, which gives the desired result. For $1 \leqq r \leqq h$, we shall consider two cases, $2 \leqq r \leqq h$ and $1=r \leqq h$. Since the theorem is known to hold for $h \leqq 3$, we shall assume that $h>3$. We know that $|A(H)|_{p} \geqq p^{r-1}$, and so we shall show that $|A(K)|_{p} \geqq p^{h-r+1}$. For $r>2$ and $h \geqq r$, we can show that

$$
2 h r \geqq r^{2}+2 h+r
$$

For $r=2$ this inequality reduces to $h \geqq 3$. Therefore, for $2 \leqq r \leqq h$, the inequality holds, and from it we get

$$
\frac{1}{2}\left(h^{2}-h+6\right)-r \geqq \frac{1}{2}\left\{(h-r+1)^{2}-(h-r+1)+6\right\},
$$

which implies that

$$
|K|_{p} \geqq p^{\left((h-r+1)^{2}-(h-r+1)+6\right) / 2}
$$

From the proof of the first part of the theorem, we obtain

$$
|A(K)|_{p} \geqq p^{h-r+1}
$$

Now suppose that $h \geqq r=1$; then

Since $h \geqq 3$, we have

$$
|K|_{p} \geqq p^{\ddagger\left(h^{2}-h+6\right)-1}=p^{\ddagger\left(h^{2}-h+4\right)}
$$

$$
\frac{1}{2}\left(h^{2}-h+4\right) \geqq \frac{1}{2}\left\{(h-1)^{2}-(h-1)+6\right\} .
$$

This gives $|A(K)|_{p} \geqq p^{h-1}$. If p divides $\left|Z(K) \cap K^{\prime}\right|$, then, by Lemma 4.2, we get $|A(G)|_{p}>|A(K)|_{p}$, which gives the desired result. If $\left|Z(K) \cap K^{\prime}\right|_{p}=1$, then we apply Lemma 4.3 to obtain $|A(K)|_{p} \geqq p^{h}$. We have now considered all possible cases and have our main result.

Theorem 4.7. If $|G|_{p} \geqq p^{\left(h^{2}-h+6\right) / 2}$, then $|A(G)|_{p} \geqq p^{h}$.

REFERENCES

1. J. E. Adney, On the power of a prime dividing the order of a group of automorphisms, Proc. Amer. Math. Soc. 8 (1957), 627-633.
2. J. E. Adney and T. Yen, Automorphisms of a p-group, Illinois J. Math. 9 (1965), 137-143.
3. R. Faudree, A note on the automorphism group of a p-group, Proc. Amer. Math. Soc. 19 (1968), 1379-1382.
4. H. Fitting, Die Gruppe der zentralen Automorphismen einer Gruppe mit Hauptreihe, Math. Ann. 114 (1937), 355-372.
5. W. Gaschütz, Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen, Journal of Algebra 4 (1966), 1-2.
6. J. A. Green, On the number of automorphisms of a finite group, Proc. Roy. Soc. (A) 237 (1956), 574-581.
7. M. Hall, The theory of groups (New York, 1959).
8. I. N. Herstein and J. E. Adney, A note on the automorphism group of a finite group, Amer. Math. Monthly 59 (1952), 309-310.
9. H. Hilton, On the order of the group of automorphisms of an abelian group, Messenger of Mathematics II 38 (1909), 132-134.
10. J. C. Howarth, On the power of a prime dividing the order of the automorphism group of a finite group, Proc. Glasgow Math. Assoc. 4 (1960), 163-170.
11. W. Ledermann and B. H. Neumann, On the order of the automorphism group of a finite group II, Proc. Roy. Soc. (A) 235 (1956), 235-246.
12. A. D. Otto, Central automorphisms of a finite p-group, Trans. Amer. Math. Soc. 125 (1966), 280-287.
13. A. Ranum, The group of classes of congruent matrices with application to the group of isomorphisms of any abelian group, Trans. Amer. Math. Soc. 8 (1907), 71-91.
14. E. Schenkman, The existence of outer automorphisms of some nilpotent groups of class 2 , Proc. Amer. Math. Soc. 6 (1955), 6-11.
15. I. Schur, Uber die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen, J. reine angew. Math. 127 (1904), 20-50.
16. W. R. Scott, On the order of the automorphism group of a finite group, Proc. Amer. Math. Soc. 5 (1954), 23-24.
17. J. Wiegold, Multiplicators and groups with finite central factor-groups, Math. Zeit. 89 (1965), 345-347.

Weber State College
Ogden, Utah, U.S.A.

